
The death of optimizing compilers

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Programmers waste enormous

amounts of time thinking about,

or worrying about, the speed

of noncritical parts of their

programs, and these attempts at

efficiency actually have a strong

negative impact when debugging

and maintenance are considered.

We should forget about small

efficiencies, say about 97% of

the time; premature optimization

is the root of all evil.

(Donald E. Knuth,

“Structured programming

with go to statements”, 1974)

The oversimplified story

Once upon a time:

CPUs were painfully slow.

Software speed mattered.

Software was carefully

hand-tuned in machine language.

The oversimplified story

Once upon a time:

CPUs were painfully slow.

Software speed mattered.

Software was carefully

hand-tuned in machine language.

Today:

CPUs are so fast that

software speed is irrelevant.

“Unoptimized” is fast enough.

Programmers have stopped

thinking about performance.

Compilers will do the same:

easier to write, test, verify.

The actual story

Wait! It’s not that simple.

Software speed still matters.

Users are often waiting

for their computers.

The actual story

Wait! It’s not that simple.

Software speed still matters.

Users are often waiting

for their computers.

To avoid unacceptably slow

computations, users are often

limiting what they compute.

The actual story

Wait! It’s not that simple.

Software speed still matters.

Users are often waiting

for their computers.

To avoid unacceptably slow

computations, users are often

limiting what they compute.

Example: In your favorite

sword-fighting video game,

are light reflections affected

realistically by sword vibration?

Old CPU displaying a file:

0ms: Start opening file.

400ms: Start displaying contents.

1200ms: Start cleaning up.

1600ms: Finish.

CPUs become faster:

0ms: Start opening file.

350ms: Start displaying contents.

1050ms: Start cleaning up.

1400ms: Finish.

CPUs become faster:

0ms: Start opening file.

300ms: Start displaying contents.

900ms: Start cleaning up.

1200ms: Finish.

CPUs become faster:

0ms: Start opening file.

250ms: Start displaying contents.

800ms: Start cleaning up.

1000ms: Finish.

CPUs become faster:

0ms: Start opening file.

200ms: Start displaying contents.

600ms: Start cleaning up.

800ms: Finish.

User displays bigger file:

0ms: Start opening file.

200ms: Start displaying contents.

1000ms: Start cleaning up.

1200ms: Finish.

CPUs become faster:

0ms: Start opening file.

175ms: Start displaying contents.

875ms: Start cleaning up.

1050ms: Finish.

CPUs become faster:

0ms: Start opening file.

150ms: Start displaying contents.

750ms: Start cleaning up.

900ms: Finish.

CPUs become faster:

0ms: Start opening file.

125ms: Start displaying contents.

625ms: Start cleaning up.

750ms: Finish.

CPUs become faster:

0ms: Start opening file.
100ms: Start displaying contents.

500ms: Start cleaning up.
600ms: Finish.

User displays bigger file:

0ms: Start opening file.
100ms: Start displaying contents.

900ms: Start cleaning up.
1000ms: Finish.

User displays bigger file:

100ms: Start displaying contents.

1000ms: Finish.

CPUs become faster:

87.5ms: Start displaying contents.

875ms: Finish.

CPUs become faster:

75.0ms: Start displaying contents.

750ms: Finish.

CPUs become faster:

62.5ms: Start displaying contents.

625ms: Finish.

CPUs become faster:

50ms: Start displaying contents.

500ms: Finish.

User displays bigger file:

50ms: Start displaying contents.

900ms: Finish.

Cheaper computation ⇒
users process more data.

Cheaper computation ⇒
users process more data.

Performance issues disappear

for most operations.

e.g. open file, clean up.

Cheaper computation ⇒
users process more data.

Performance issues disappear

for most operations.

e.g. open file, clean up.

Inside the top operations:

Performance issues disappear

for most subroutines.

Cheaper computation ⇒
users process more data.

Performance issues disappear

for most operations.

e.g. open file, clean up.

Inside the top operations:

Performance issues disappear

for most subroutines.

Performance remains important

for occasional hot spots:

small segments of code

applied to tons of data.

“Except, uh, a lot of people have

applications whose profiles are

mostly flat, because they’ve spent

a lot of time optimizing them.”

“Except, uh, a lot of people have

applications whose profiles are

mostly flat, because they’ve spent

a lot of time optimizing them.”

— This view is obsolete.

Flat profiles are dying.

Already dead for most programs.

Larger and larger fraction

of code runs freezingly cold,

while hot spots run hotter.

Underlying phenomena:

Optimization tends to converge.

Data volume tends to diverge.

Speed matters: an example

2015.02.23 CloudFlare blog post

“Do the ChaCha: better mobile

performance with cryptography”

(boldface added): “Until today,

Google services were the only

major sites on the Internet that

supported this new algorithm.

Now all sites on CloudFlare

support it, too. : : : ChaCha20-

Poly1305 is three times faster

than AES-128-GCM on mobile

devices. Spending less time on

decryption means faster page

rendering and better battery life.”

What about the servers?

CloudFlare blog post, continued:

“In order to support over a million

HTTPS sites on our servers,

we have to make sure CPU

usage is low. To help improve

performance we are using an open

source assembly code version

of ChaCha/Poly by CloudFlare

engineer Vlad Krasnov and others

that has been optimized for our

servers’ Intel CPUs. This keeps

the cost of encrypting data with

this new cipher to a minimum.”

Typical excerpt from

inner loop of server code:

vpaddd $b, $a, $a

vpxor $a, $d, $d

vpshufb .rol16(%rip), $d, $d

vpaddd $d, $c, $c

vpxor $c, $b, $b

vpslld \$12, $b, $tmp

vpsrld \$20, $b, $b

vpxor $tmp, $b, $b

Mobile code similarly has

heavy vectorization + asm.

Hand-tuned? In 2015? Seriously?

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

Hand-tuned? In 2015? Seriously?

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

— [citation needed]

Hand-tuned? In 2015? Seriously?

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

— The experts disagree,

and hold the speed records.

Hand-tuned? In 2015? Seriously?

Wikipedia: “By the late 1990s for

even performance sensitive code,

optimizing compilers exceeded the

performance of human experts.”

— The experts disagree,

and hold the speed records.

Mike Pall, LuaJIT author, 2011:

“If you write an interpreter loop

in assembler, you can do much

better : : : There’s just no way

you can reasonably expect even

the most advanced C compilers to

do this on your behalf.”

— “We come so close to optimal

on most architectures that we

can’t do much more without using

NP complete algorithms instead

of heuristics. We can only try to

get little niggles here and there

where the heuristics get slightly

wrong answers.”

— “We come so close to optimal

on most architectures that we

can’t do much more without using

NP complete algorithms instead

of heuristics. We can only try to

get little niggles here and there

where the heuristics get slightly

wrong answers.”

— “Which compiler is this which

can, for instance, take Netlib

LAPACK and run serial Linpack

as fast as OpenBLAS on recent

x86-64? (Other common hotspots

are available.) Enquiring HPC

minds want to know.”

The algorithm designer’s job

Context: What’s the metric

that we’re trying to optimize?

CS 101 view: “Time”.

The algorithm designer’s job

Context: What’s the metric

that we’re trying to optimize?

CS 101 view: “Time”.

What exactly does this mean?

Need to specify machine model

in enough detail to analyze.

The algorithm designer’s job

Context: What’s the metric

that we’re trying to optimize?

CS 101 view: “Time”.

What exactly does this mean?

Need to specify machine model

in enough detail to analyze.

Simple defn of “RAM” model

has pathologies: e.g., can

factor integers in poly “time”.

The algorithm designer’s job

Context: What’s the metric

that we’re trying to optimize?

CS 101 view: “Time”.

What exactly does this mean?

Need to specify machine model

in enough detail to analyze.

Simple defn of “RAM” model

has pathologies: e.g., can

factor integers in poly “time”.

With more work can build

more reasonable “RAM” model.

Many other choices of metrics:

space, cache utilization, etc.

Many other choices of metrics:

space, cache utilization, etc.

Many physical metrics

such as real time and energy

defined by physical machines:

e.g., my smartphone;

my laptop;

a cluster;

a data center;

the entire Internet.

Many other choices of metrics:

space, cache utilization, etc.

Many physical metrics

such as real time and energy

defined by physical machines:

e.g., my smartphone;

my laptop;

a cluster;

a data center;

the entire Internet.

Many other abstract models.

e.g. Simplify: Turing machine.

e.g. Allow parallelism: PRAM.

Output of algorithm design:

an algorithm—specification

of instructions for machine.

Try to minimize

cost of the algorithm

in the specified metric

(or combinations of metrics).

Output of algorithm design:

an algorithm—specification

of instructions for machine.

Try to minimize

cost of the algorithm

in the specified metric

(or combinations of metrics).

Input to algorithm design:

specification of function

that we want to compute.

Typically a simpler algorithm

in a higher-level language:

e.g., a mathematical formula.

Algorithm design is hard.

Massive research topic.

State of the art is

extremely complicated.

Some general techniques

with broad applicability

(e.g., dynamic programming)

but most progress is

heavily domain-specific:

Karatsuba’s algorithm,

Strassen’s algorithm,

the Boyer–Moore algorithm,

the Ford–Fulkerson algorithm,

Shor’s algorithm, : : :

Algorithm designer vs. compiler

Wikipedia: “An optimizing

compiler is a compiler that

tries to minimize or maximize

some attributes of an executable

computer program.”

— So the algorithm designer

(viewed as a machine)

is an optimizing compiler?

Algorithm designer vs. compiler

Wikipedia: “An optimizing

compiler is a compiler that

tries to minimize or maximize

some attributes of an executable

computer program.”

— So the algorithm designer

(viewed as a machine)

is an optimizing compiler?

Nonsense. Compiler designers

have narrower focus. Example:

“A compiler will not change an

implementation of bubble sort to

use mergesort.” — Why not?

In fact, compiler designers

take responsibility only for

“machine-specific optimization”.

Outside this bailiwick they

freely blame algorithm designers:

Function specification

Algorithm designer
��

Source code with all
machine-independent

optimizations

Optimizing compiler
��

Object code with
machine-specific

optimizations

Output of optimizing compiler

is algorithm for target machine.

Algorithm designer could have

targeted this machine directly.

Why build a new designer as

compiler ◦ old designer?

Output of optimizing compiler

is algorithm for target machine.

Algorithm designer could have

targeted this machine directly.

Why build a new designer as

compiler ◦ old designer?

Advantages of this composition:

(1) save designer’s time

in handling complex machines;

(2) save designer’s time

in handling many machines.

Optimizing compiler is general-

purpose, used by many designers.

And the compiler designers

say the results are great!

Remember the typical quote:

“We come so close to optimal

on most architectures : : : We can

only try to get little niggles here

and there where the heuristics

get slightly wrong answers.”

And the compiler designers

say the results are great!

Remember the typical quote:

“We come so close to optimal

on most architectures : : : We can

only try to get little niggles here

and there where the heuristics

get slightly wrong answers.”

— But they’re wrong.

Their results are becoming

less and less satisfactory,

despite clever compiler research;

more CPU time for compilation;

extermination of many targets.

How the code base is evolving:

Fastest code:

hot spots targeted directly

by algorithm designers,

using domain-specific tools.

Mediocre code:

output of optimizing compilers;

hot spots not yet reached by

algorithm designers.

How the code base is evolving:

Fastest code:

hot spots targeted directly

by algorithm designers,

using domain-specific tools.

Mediocre code:

output of optimizing compilers;

hot spots not yet reached by

algorithm designers.

Slowest code:

code with optimization turned off;

so cold that optimization

isn’t worth the costs.

How the code base is evolving:

Fastest code:

hot spots targeted directly

by algorithm designers,

using domain-specific tools.

Mediocre code:

output of optimizing compilers;

hot spots not yet reached by

algorithm designers.

Slowest code:

code with optimization turned off;

so cold that optimization

isn’t worth the costs.

How the code base is evolving:

Fastest code:

hot spots targeted directly

by algorithm designers,

using domain-specific tools.

Mediocre code:

output of optimizing compilers;

hot spots not yet reached by

algorithm designers.

Slowest code:

code with optimization turned off;

so cold that optimization

isn’t worth the costs.

How the code base is evolving:

Fastest code:

hot spots targeted directly

by algorithm designers,

using domain-specific tools.

Mediocre code:

output of optimizing compilers;

hot spots not yet reached by

algorithm designers.

Slowest code:

code with optimization turned off;

so cold that optimization

isn’t worth the costs.

How the code base is evolving:

Fastest code:

hot spots targeted directly

by algorithm designers,

using domain-specific tools.

Mediocre code:

output of optimizing compilers;

hot spots not yet reached by

algorithm designers.

Slowest code:

code with optimization turned off;

so cold that optimization

isn’t worth the costs.

How the code base is evolving:

Fastest code:

hot spots targeted directly

by algorithm designers,

using domain-specific tools.

Mediocre code:

output of optimizing compilers;

hot spots not yet reached by

algorithm designers.

Slowest code:

code with optimization turned off;

so cold that optimization

isn’t worth the costs.

How the code base is evolving:

Fastest code:

hot spots targeted directly

by algorithm designers,

using domain-specific tools.

Mediocre code:

output of optimizing compilers;

hot spots not yet reached by

algorithm designers.

Slowest code:

code with optimization turned off;

so cold that optimization

isn’t worth the costs.

How the code base is evolving:

Fastest code:

hot spots targeted directly

by algorithm designers,

using domain-specific tools.

Mediocre code:

output of optimizing compilers;

hot spots not yet reached by

algorithm designers.

Slowest code:

code with optimization turned off;

so cold that optimization

isn’t worth the costs.

How the code base is evolving:

Fastest code:

hot spots targeted directly

by algorithm designers,

using domain-specific tools.

Mediocre code:

output of optimizing compilers;

hot spots not yet reached by

algorithm designers.

Slowest code:

code with optimization turned off;

so cold that optimization

isn’t worth the costs.

How the code base is evolving:

Fastest code:

hot spots targeted directly

by algorithm designers,

using domain-specific tools.

Mediocre code:

output of optimizing compilers;

hot spots not yet reached by

algorithm designers.

Slowest code:

code with optimization turned off;

so cold that optimization

isn’t worth the costs.

How the code base is evolving:

Fastest code:

hot spots targeted directly

by algorithm designers,

using domain-specific tools.

Mediocre code:

output of optimizing compilers;

hot spots not yet reached by

algorithm designers.

Slowest code:

code with optimization turned off;

so cold that optimization

isn’t worth the costs.

How the code base is evolving:

Fastest code (most CPU time):

hot spots targeted directly

by algorithm designers,

using domain-specific tools.

Slowest code (almost all code):

code with optimization turned off;

so cold that optimization

isn’t worth the costs.

2013 Wang–Zhang–Zhang–Yi

“AUGEM: automatically generate

high performance dense linear

algebra kernels on x86 CPUs”:

“Many DLA kernels in ATLAS

are manually implemented in

assembly by domain experts : : :

Our template-based approach

[allows] multiple machine-level

optimizations in a domain/

application specific setting and

allows the expert knowledge of

how best to optimize varying

kernels to be seamlessly

integrated in the process.”

Why this is happening

The actual machine is evolving

farther and farther away

from the source machine.

Why this is happening

The actual machine is evolving

farther and farther away

from the source machine.

Minor optimization challenges:

• Pipelining.

• Superscalar processing.

Major optimization challenges:

• Vectorization.

• Many threads; many cores.

• The memory hierarchy;

the ring; the mesh.

• Larger-scale parallelism.

• Larger-scale networking.

CPU design in a nutshell

f0

�� !!BBBB g0

}}||||
((QQQQQQQQQ g1

vvmmmmmmmmm

 AAAA f1

~~}}}}
��

∧

��

∧

�� ""EEEEE ∧

��||yyyyy ∧

��
∧

��

∧

""EEEEE ∧

��

∧

||yyyyy ∧

����������

∧

��||yyyyy
""EEEEE

∧

��

∧

��

∧

��
∧

��

∧

��
h0 h1 h3 h2

Gates ∧ : a; b 7→ 1− ab computing

product h0 + 2h1 + 4h2 + 8h3

of integers f0 + 2f1; g0 + 2g1.

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Electricity takes time to

percolate through wires and gates.

If f0; f1; g0; g1 are stable

then h0; h1; h2; h3 are stable

a few moments later.

Build circuit with more gates

to multiply (e.g.) 32-bit integers:

������������������� ???????????????????

(Details omitted.)

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit to compute

32-bit integer ri
given 4-bit integer i

and 32-bit integers r0; r1; : : : ; r15:

register
read

Build circuit for “register write”:

r0; : : : ; r15; s; i 7→ r ′0; : : : ; r
′
15

where r ′j = rj except r ′i = s.

Build circuit for addition. Etc.

r0; : : : ; r15; i ; j; k 7→ r ′0; : : : ; r
′
15

where r ′‘ = r‘ except r ′i = rj rk :

register
read

register
read

������������� ?????????????

register
write

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

Add more flexibility.

More arithmetic:

replace (i ; j; k) with

(“×”; i ; j; k) and

(“+”; i ; j; k) and more options.

“Instruction fetch”:

p 7→ op; ip; jp; kp; p
′.

“Instruction decode”:

decompression of compressed

format for op; ip; jp; kp; p
′.

More (but slower) storage:

“load” from and “store” to

larger “RAM” arrays.

Build “flip-flops”

storing (p; r0; : : : ; r15).

Hook (p; r0; : : : ; r15)

flip-flops into circuit inputs.

Hook outputs (p′; r ′0; : : : ; r
′
15)

into the same flip-flops.

At each “clock tick”,

flip-flops are overwritten

with the outputs.

Clock needs to be slow enough

for electricity to percolate

all the way through the circuit,

from flip-flops to flip-flops.

Now have semi-flexible CPU:

flip-flops

insn
fetch

insn
decode

register
read

register
read

������� ???????

register
write

Further flexibility is useful

but orthogonal to this talk.

“Pipelining” allows faster clock:

flip-flops

insn
fetch

stage 1

flip-flops

insn
decode

stage 2

flip-flops

register
read

register
read

stage 3

flip-flops
������� ???????

stage 4

flip-flops

register
write

stage 5

Goal: Stage n handles instruction

one tick after stage n − 1.

Instruction fetch

reads next instruction,

feeds p′ back, sends instruction.

After next clock tick,

instruction decode

uncompresses this instruction,

while instruction fetch

reads another instruction.

Some extra flip-flop area.

Also extra area to

preserve instruction semantics:

e.g., stall on read-after-write.

“Superscalar” processing:

flip-flops

insn
fetch

insn
fetch

flip-flops

insn
decode

insn
decode

flip-flops

register
read

register
read

register
read

register
read

flip-flops
������� ???????

flip-flops

register
write

register
write

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

“Vector” processing:

Expand each 32-bit integer

into n-vector of 32-bit integers.

ARM “NEON” has n = 4;

Intel “AVX2” has n = 8;

Intel “AVX-512” has n = 16;

GPUs have larger n.

n× speedup if

n× arithmetic circuits,

n× read/write circuits.

Benefit: Amortizes insn circuits.

Huge effect on higher-level

algorithms and data structures.

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Network on chip: the mesh

How expensive is sorting?

Input: array of n numbers.

Each number in
˘

1; 2; : : : ; n2
¯

,

represented in binary.

Output: array of n numbers,

in increasing order,

represented in binary;

same multiset as input.

Metric: seconds used by

circuit of area n1+o(1).

For simplicity assume n = 4k .

Spread array across

square mesh of n small cells,

each of area no(1),

with near-neighbor wiring:

× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×
× × × × × × × × × ×

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort row of n0:5 cells

in n0:5+o(1) seconds:

• Sort each pair in parallel.

3 1 4 1 5 9 2 6 7→
1 3 1 4 5 9 2 6

• Sort alternate pairs in parallel.

1 3 1 4 5 9 2 6 7→
1 1 3 4 5 2 9 6

• Repeat until number of steps

equals row length.

Sort each row, in parallel,

in a total of n0:5+o(1) seconds.

Sort all n cells

in n0:5+o(1) seconds:

• Recursively sort quadrants

in parallel, if n > 1.

• Sort each column in parallel.

• Sort each row in parallel.

• Sort each column in parallel.

• Sort each row in parallel.

With proper choice of

left-to-right/right-to-left

for each row, can prove

that this sorts whole array.

For example, assume that

this 8× 8 array is in cells:

3 1 4 1 5 9 2 6

5 3 5 8 9 7 9 3

2 3 8 4 6 2 6 4

3 3 8 3 2 7 9 5

0 2 8 8 4 1 9 7

1 6 9 3 9 9 3 7

5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2

Recursively sort quadrants,

top →, bottom ←:

1 1 2 3 2 2 2 3

3 3 3 3 4 5 5 6

3 4 4 5 6 6 7 7

5 8 8 8 9 9 9 9

1 1 0 0 2 2 1 0

4 4 3 2 5 4 4 3

7 6 5 5 9 8 7 7

9 9 8 8 9 9 9 9

Sort each column

in parallel:

1 1 0 0 2 2 1 0

1 1 2 2 2 2 2 3

3 3 3 3 4 4 4 3

3 4 3 3 5 5 5 6

4 4 4 5 6 6 7 7

5 6 5 5 9 8 7 7

7 8 8 8 9 9 9 9

9 9 8 8 9 9 9 9

Sort each row in parallel,

alternately ←, →:

0 0 0 1 1 1 2 2

3 2 2 2 2 2 1 1

3 3 3 3 3 4 4 4

6 5 5 5 4 3 3 3

4 4 4 5 6 6 7 7

9 8 7 7 6 5 5 5

7 8 8 8 9 9 9 9

9 9 9 9 9 9 8 8

Sort each column

in parallel:

0 0 0 1 1 1 1 1

3 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 5 4 4 4 4

6 5 5 5 6 5 5 5

7 8 7 7 6 6 7 7

9 8 8 8 9 9 8 8

9 9 9 9 9 9 9 9

Sort each row in parallel,

← or → as desired:

0 0 0 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 5

5 5 5 5 5 5 6 6

6 6 7 7 7 7 7 8

8 8 8 8 8 9 9 9

9 9 9 9 9 9 9 9

Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.

Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.

Algorithm designers

don’t even get the right exponent

without taking this into account.

Chips are in fact evolving

towards having this much

parallelism and communication.

GPUs: parallel + global RAM.

Old Xeon Phi: parallel + ring.

New Xeon Phi: parallel + mesh.

Algorithm designers

don’t even get the right exponent

without taking this into account.

Shock waves into high levels of

domain-specific algorithm design:

e.g., for “NFS” factorization,

replace “sieving” with “ECM”.

The future of compilers

At this point many readers will

say, “But he should only write

P, and an optimizing compiler

will produce Q.” To this I say,

“No, the optimizing compiler

would have to be so complicated

(much more so than anything

we have now) that it will in fact

be unreliable.” I have another

alternative to propose, a new

class of software which will be

far better. : : :

For 15 years or so I have been

trying to think of how to write a

compiler that really produces top

quality code. For example, most

of the Mix programs in my books

are considerably more efficient

than any of today’s most visionary

compiling schemes would be able

to produce. I’ve tried to study the

various techniques that a hand-

coder like myself uses, and to fit

them into some systematic and

automatic system. A few years

ago, several students and I looked

at a typical sample of FORTRAN

programs [51], and we all tried

hard to see how a machine

could produce code that would

compete with our best hand-

optimized object programs. We

found ourselves always running

up against the same problem: the

compiler needs to be in a dialog

with the programmer; it needs to

know properties of the data, and

whether certain cases can arise,

etc. And we couldn’t think of a

good language in which to have

such a dialog.

For some reason we all (especially

me) had a mental block about

optimization, namely that we

always regarded it as a behind-

the-scenes activity, to be done

in the machine language, which

the programmer isn’t supposed

to know. This veil was first

lifted from my eyes : : : when I

ran across a remark by Hoare

[42] that, ideally, a language

should be designed so that an

optimizing compiler can describe

its optimizations in the source

language. Of course! : : :

The time is clearly ripe

for program-manipulation

systems : : :The programmer

using such a system will write

his beautifully-structured, but

possibly inefficient, program P;

then he will interactively specify

transformations that make it

efficient. Such a system will be

much more powerful and reliable

than a completely automatic

one. : : : As I say, this idea

certainly isn’t my own; it is so

exciting I hope that everyone soon

becomes aware of its possibilities.

