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ABSTRACT

The Bullet server is an innovative file server that outperforms tradi-
tional file servers like SUN’s NFS by more than a factor of three. It
achieves high throughput and low delay by a radically different software
design than current file servers in use. Instead of storing files as a
sequence of disk blocks, each Bullet server file is stored contiguously,
both on disk and in the server’s RAM cache. Furthermore, it employs the
concept of an immutable file, to improve performance, to enable caching,
and to provide a clean semantic model to the user. The paper describes
the design and implementation of the Bullet server in detail, presents
measurements of its performance, and compares this performance with
other well-known file servers running on the same hardware.

1. INTRODUCTION

Traditional file systems were designed for small machines, that is, computers with
little RAM memory and small disks. Emphasis was on supporting large files using as
few resources as possible. To allow dynamic growth of files, files were split into fixed
size blocks scattered all over the disk. Blocks would be dynamically allocated to files,
such that a large file would be scattered all over a disk. Performance suffered since each
block had to be separately accessed. Also the block management introduced high over-
head: indirect blocks were necessary to administer the files and their blocks. A small
part of the computer’s little memory was used to keep parts of files in a RAM cache to
make access more efficient.

Today the situation has changed considerably. Machines have enormous RAM
memories and huge disks. Files usually fit completely in memory. For example,
memory sizes of at least 16 Megabytes are common today, enough to hold most files
encountered in practice. Measurements [1] show that the median file size in a UNIX† sys-
tem is 1 Kbyte and 99% of all files are less than 64 Kbytes. File systems, however, have
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not changed yet. Files are still subdivided into blocks. To take some advantage of new
technology, the size of blocks has been increased, and the memory caches have been
enlarged. This has led to a marginal performance improvement.

As part of the Amoeba distributed operating system project [2] we have designed
and implemented a file server that is intended for current and future computer and disk
technology. We have devoted considerable energy to making the file server fast. Since
we believe we have achieved this goal, we have named it the Bullet file server . Among
its features are support for replication, caching, and immutability.

This paper has five sections. In the following section we will present the architec-
tural model of the Bullet file service. In section three we present the implementation of
the server, including the data structures and interfaces. The performance of the file
server is the subject of section four. We will compare the the performance of the Bullet
file server with other files servers, such as SUN NFS. Section five contains our conclu-
sions.

2. ARCHITECTURAL MODEL

The basic idea behind the design of the Bullet file server is to do away with the
block model. In fact, we have chosen the extreme, which is to maintain files contigu-
ously throughout the system. That is, files are contiguously stored on disk, contiguously
cached in RAM, and kept contiguously in processes’ memories. This dictates the choice
for whole file transfer. As a consequence, processors can only operate on files that fit in
their physical memory. This affects the way in which we store data structures on files,
and how we assign processors to applications. Since most files (about 75%) are accessed
in entirety [4], whole file transfer optimizes overall scaling and performance, as has also
been reported in other system that do whole file transfer, such as in the Andrew ITC file
system [5].

Another design choice, which is closely linked to keeping files contiguous, is to
make all files immutable. That is, the only operations on files are creation, retrieval, and
deletion; there are no update-in-place operations. Instead, if we want to update a data
structure that is stored on a file, we do this by creating a new file holding the updated
data structure. In other words, we store files as sequences of versions. Note that as we
do whole file transfer anyway, this puts no performance penalties on the file server. Ver-
sion mechanisms have positive influences on caching, as reported in the Cedar File Sys-
tem [6], and on replication. It also presents the possibility of keeping versions on write-
once storage such as optical disks. The version mechanism is itself quite interesting, and
is discussed in [7].

For most applications this model works well, but there are some applications where
different solutions will have to be found. Each append to a log file, for example, would
require the whole file to be copied. Similarly, for data bases, a small update might incur
a large overhead. For log files we have implemented a separate server. Data bases can
be subdivided over many smaller Bullet files, for example based on the identifying keys.

Throughout the design we have strived for performance, scalability, and availabil-
ity. The Bullet file server is the main storage server for the Amoeba distributed operating
system, where these issues are of high importance [8]. Performance can only be
achieved if the management of storage and replication are low, and the model of
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contiguity and immutability corresponds to how files are usually accessed. Scalability
involves both geographic scalability—Amoeba currently runs in four different
countries—and quantitative scalability—there may be thousands of processors accessing
files. Availability implies the need for replication.

Since these issues correlate heavily with those of the Amoeba distributed operating
system, we will first devote a section to Amoeba. In this section we will also describe the
naming service of Amoeba, which plays a role in how data structures, especially large
ones, may be stored efficiently on immutable files [7]. In the following section we will
describe the Bullet file interface.

2.1. Amoeba

Amoeba [2,3] is a distributed operating system that was designed and implemented
at the Vrije Universiteit in Amsterdam, and is now being further developed there and at
the Centre for Mathematics and Computer Science, also in Amsterdam. It is based on the
object model. An object is an abstract data type, and operations on it are invoked
through remote procedure calls. Amoeba consists of four principal components:

g Workstations

g Dynamically allocatable processors

g Specialized services

g Gateways

Workstations provide the user interface to Amoeba and are only involved with
interactive tasks such as command interpretation and text editing. Consequently they do
not deal with very large or dynamically changing files. The dynamically allocatable pro-
cessors together form the so-called processor pool . These processors may be allocated
for compiling or text formatting purposes, or for distributed or parallel algorithms.
Among other applications, we have implemented a parallel make [10] and parallel
heuristic search [11].

Specialized servers include filing servers such as the Bullet file server, and the
directory server. The directory server is used in conjunction with the Bullet server. It’s
function is to handle naming and protection of Bullet server files and other objects in a
simple, uniform way. Servers manage the Amoeba objects, that is, they handle the
storage and perform the operations. Gateways provide transparent communication
among Amoeba sites currently operating in four different countries (The Netherlands,
England, Norway, and Germany).

All objects in Amoeba are addressed and protected by capabilities [3, 12]. A capa-
bility consists of four parts:

1) The server port identifies the server that manages the object. It is a 48-bit
location-independent number that is chosen by the server itself and made known to
the server’s potential clients.

2) The object number identifies the object within the server. For example, a file server
may manage many files, and use the object number to index in a table of inodes .
An inode contains the position of the file on disk, and accounting information.
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3) The rights field specifies which access rights the holder of the capability has to the
object. For a file server there may be a bit indicating the right to read the file,
another bit for deleting the file, and so on.

4) The check field is used to protect capabilities against forging and tampering. In the
case of the file server this can be done as follows. Each time a file is created the
server generates a large random number and stores this in the inode for the file.
Capabilities for the file can be generated by taking the server’s port, the index of the
file in the inode table, and the required rights. The check field can be generated by
taking the rights and the random number from the inode, and encrypting both. If,
later, a client shows a capability for a file, its validity can be checked by decrypting
the check field and comparing the rights and the random number. Other schemes
are described in [12]. Capabilities can be cached to avoid decryption for each
access.

Although capabilities are a convenient way for addressing and protecting objects,
they are not usable for human users. For this the directory service maps human-chosen
ASCII names to capabilities. Directories are two-column tables, the first column contain-
ing names, and the second containing the corresponding capabilities. Directories are
objects themselves, and can be addressed by capabilities. By placing directory capabili-
ties in directories an arbitrary naming structure can be built at the convenience of the
user. The directory service provides a single global naming space for objects. This has
allowed us to link multiple Bullet file servers together providing one single large file ser-
vice that crosses international borders [13, 14].

2.2. Bullet Server Interface

The simple architectural model of the file service is reflected in its simple interface.
Whole file transfer eliminates the need for relatively complicated interfaces to access
parts of files. Immutability eliminates the need for separate update operators. Version
management is not part of the file server interface, since it is done by the directory ser-
vice [7].

The Bullet interface consist of four functions:

g BULLET.CREATE(SERVER, DATA, SIZE, P-FACTOR) → CAPABILITY

g BULLET.SIZE(CAPABILITY) → SIZE

g BULLET.READ(CAPABILITY, &DATA)

g BULLET.DELETE(CAPABILITY)

The BULLET.CREATE function is the only way to store data on a Bullet server. The
SERVER argument specifies which Bullet server to use. This enables users to use more
that on Bullet server. The DATA and SIZE arguments describe the contents of the file to
be created. A capability for the file is returned for subsequent usage.

P-FACTOR stands for Paranoia Factor. It is a measure for how carefully the file
should be stored before BULLET.CREATE can return to the invoker. If the P-FACTOR is
zero, BULLET.CREATE will return immediately after the file has been copied to the file
server’s RAM cache, but before it has been stored on disk. This is fast, but if the server
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crashes shortly afterwards the file may be lost. If the P-FACTOR is one, the file will be
stored on one disk before the client can resume. If the P-FACTOR is N , the file will be
stored on N disks before the client can resume. This requires the file server to have at
least N disks available for replication. At present we have two disks.

The BULLET.SIZE and BULLET.READ functions are used to retrieve files from a
server. First BULLET.SIZE is called to get the size of the file addressed by CAPABILITY,
after which local memory is allocated to store its contents. Then BULLET.READ is
invoked to get the contents, where &DATA is the address of the allocated local memory.
Alternatively a section of the virtual address space can be reserved, after which the file
can be mapped into the virtual memory of the process. In that case the underlying kernel
performs the BULLET.READ function. BULLET.DELETE allows files to be discarded from
the file server.

3. IMPLEMENTATION

Keeping files contiguous (i.e., not splitting them up in blocks) greatly simplifies file
server design. Consequently, the implementation of the file server can be simple. In this
section we will discuss an implementation on a 16.7 MHz Motorola 68020-based server
with 16 Mbytes of RAM memory and two 800 Mbyte magnetic disk drives. We will
describe the disk layout of the file server, the file server cache, and how replication is
done.

The disk is divided into two sections. The first is the inode table, each entry of
which gives the ownership, location, and size of one file. The second section contains
contiguous files, along with the gaps between files. Inode entry 0 is special, and contains
three 4 byte integers:

1) block size : the physical sector size used by the disk hardware;

2) control size : the number of blocks in the inode table;

3) data size : the number of blocks in the file table;
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Inode Table
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Inode 1

Inode 2
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Inode N

file 2

free

file 1

free

Contiguous Files
and Holes

Fig. 1. The Bullet disk layout.

The remaining inodes describe files. An inode consist of four fields:

1) A 6-byte random number that is used for access protection. It is essentially the key
used to decrypt capabilities that are presented to the server.

2) A 2-byte integer that is called the index . The index has no significance on disk, but
is used for cache management and will be described later.

3) A 4-byte integer specifying the first block of the file on disk. Files are aligned on
blocks (sectors).

4) A 4-byte integer giving the size of the file in bytes.

When the file server starts up, it reads the complete inode table into the RAM inode
table and keeps it there permanently. By scanning the inodes it can figure out which
parts of disk are free. It uses this information to build a free list in RAM. Also unused
inodes (inodes that are zero-filled) are maintained in a list. While scanning the inodes,
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the file server performs some consistency checks, for example to make sure that files do
not overlap. All of the server’s remaining memory will be used for file caching. At this
time the file server is ready for operation and starts awaiting client requests.

A separate table in RAM maintains the administration of the cached files. The
entries in this table have a slightly different format from those on the disk, and are called
rnodes . An rnode contains the following information:

1) The inode table index of the corresponding file;

2) A pointer to the file in RAM cache, if present;

3) An age field to implement an LRU cache strategy.

The free rnodes and free parts in the RAM cache are also maintained using free
lists.

Client requests basically come in three varieties: reading files, creating files, and
deleting files. To read a file the client has to provide the capability of the file. The object
number in the capability indexes into the inode table to find the inode for the file. Using
the random number in the inode, and the check field in the capability, the right to read the
file by this client can be checked. Next the index field in the inode is inspected to see
whether there is a copy of the file in the RAM cache. If the index in the inode is non-
zero, there is a copy in the server’s RAM cache. The index is used to locate an rnode,
which describes where to find the file in memory. Since the file is contiguously kept in
RAM, it can be sent to the client in one RPC operation. The age field is updated to
reflect the recent access of the file.

If the index in the inode is zero, the file is not in memory and has to be loaded from
disk. First the memory free list is searched to see if there is a part large enough to hold
the file. If not, the least recently accessed file is removed from the RAM cache, found by
checking the age fields in the rnodes. This is done by re-claiming the rnode, freeing the
associated memory, and clearing the index field in the corresponding inode, repeating
until enough memory is found. Then an rnode is allocated for this file, and its fields ini-
tialized. The index field in the inode of the file is set to the rnode index. Then the file
can be read into the RAM cache. The client read operation can now proceed as with files
that were already cached.

Creating files is much the same as reading files that were not in the cache. A large
enough part of cache memory has to be allocated to hold the file, after which it can be
filled with data specified by the client. Also, an inode and a free part in the disk data sec-
tion have to be allocated. For this we use a first fit strategy. In our implementation we
use a write-through caching scheme, that is, we immediately write the file to disk. The
new inode, complete with a new random number, is immediately written as well. For
this the whole disk block containing the inode has to be written. The new random
number is used to create a capability for the user, which is returned in a reply message.

In our hardware configuration we have two disks that we use as identical replicas.
One of the disks is the main disk on which the file server reads. Disk writes are per-
formed on both disks. If the main disk fails, the file server can proceed uninterruptedly
by using the other disk. Recovery is simply done by copying the complete disk. The P-

FACTOR in the create operation is used to determine where in the execution to send a
reply back to the client.
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Deleting a file involves checking the capability, freeing an inode by zeroing it and
writing it back to the disk. If the file is in the cache, the space in the cache can be freed.
The disk free list in RAM has to be updated to include the part previously occupied by
the file.

At first glance, it appears that storing files contiguously in memory and on disk is
very wasteful due to the external fragmentation problem (gaps between files). However,
the fragmentation in memory can be alleviated by compacting part or all of the RAM
cache from time to time. The disk fragmentation can also be relieved by compaction
every morning at say 3 am when the system is lightly loaded.

However, it is our belief that this trade-off is not unreasonable. In effect, the cons-
cious choice of using contiguous file may requiring buying, say, an 800 MB disk to store
500 MB worth of files (the rest being lost to fragmentation unless compaction is done).
Since our scheme gives an increased performance of a factor of 3 (as described in the
next section) and disk prices rise only very slowly with disk capacity, a relatively small
increment in total file server cost gives a major gain in speed.

The complete code of the file server is less than 30 pages of C. The MC68020
object size of the server, including all library routines, is 23 Kbytes. This small and sim-
ple implementation has resulted in a file server that has been operational flawlessly for
over a year. The most vulnerable component of the server is the disk, but because of its
replication, the complete file server is highly reliable.

4. PERFORMANCE AND COMPARISON

Figure 1 gives the performance of the Bullet file server. In the first column the
delay and bandwidth for read operations are shown. The measurements have been done
on a normally loaded Ethernet from a 16 MHz 68020 processor. In all cases the test file
will be completely in memory, and no disk accesses are necessary. In the second column
a create and a delete operation together is measured, and the file is written to both disks.
Note that both creation and deletion involve requests to two disks.
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Bandwidth (Kbytes/sec)

File Size READ CREATE+DELiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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Fig. 2. Performance of the Bullet file server for read operations, and create and delete
operations together. The delay in msec (a) and bandwidth in Kbytes/sec (b) are given.

To compare this with the SUN NFS file system, we have measured reading and
creating files on a SUN 3/50 using a remote SUN 3/180 file server (using 16.7 MHz
68020s and SUN OS 3.5), equipped with a 3 Mbyte buffer cache. The measurements
were made on an otherwise idle processor on a normally loaded Ethernet. To disable
local caching on the SUN 3/50, we have locked the file using the SUN UNIX lockf primi-
tive. The read test consisted of an lseek followed by a read system call. The write test
consisted of consecutively executing creat , write , and close . The SUN NFS file server
uses a write-through cache, but writes the file to one disk only. The results are depicted
in Fig. 2.
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File Size READ CREATEiiiiiiiiiiiiiiiiiiiiiii
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Bandwidth (Kbytes/sec)

File Size READ CREATEiiiiiiiiiiiiiiiiiiiiiii

1 byte 0.1 0.004iiiiiiiiiiiiiiiiiiiiiii

16 bytes 1.5 0.067iiiiiiiiiiiiiiiiiiiiiii
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Fig. 3. Performance of the SUN NFS file server for read and create operations. The
delay in msec (a) and bandwidth in Kbytes/sec (b) are given.

These measurements include both the communication time and the file server time.
Since Amoeba uses a dedicated processor for the file server, it is impossible to separate
communication and file server performance. Observe that reading and creating 1 Mbyte
NFS files result in lower bandwidths than reading and creating 64 Kbyte NFS files. The
Bullet file server performs read operations three to six times better than the SUN NFS file
server for all file sizes. Although the Bullet file server stores the files on two disks, for
large files the bandwidth is ten times that of SUN NFS. For very large files (> 64
Kbytes) the Bullet server even achieves a higher bandwidth for writing than SUN NFS
achieves for reading files.

5. DISCUSSION AND CONCLUSIONS

The simple architectural model of immutable files that are kept contiguous on disk,
in memory, and on the network, results in a major performance boost. Whole file
transfer minimizes the load on the file server and on the network, allowing the service to
be used on a larger scale [5]. Replication for availability is relatively easy. The simple
implementation of the server also renders high availability. Immutability turned out to
be a satisfactory model for most of our storage requirements. Recently we have imple-
mented a UNIX emulation on top of the Bullet service supporting a wealth of existing
software.

Client caching of immutable files is straightforward. Checking if a cached copy of a
file is still current is simply done by looking up its capability in the directory service, and
comparing it to the capability on which the copy is based.

Currently we are investigating how the Bullet file server and the Amoeba directory
service can cooperate in providing a general purpose storage system. Goals of this
research are high availability, consistency, performance, scalability, and minimal trade-
offs between these goals. We have extended the interface to allow generating a new file
based on an existing file, such that for a small modification it is not necessary any longer
to transfer the whole file, while it also allows processors with small memories to handle
large files. Files still have to fit completely in the file server’s memory such that perfor-
mance is not affected.
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