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Abstract
One of the most important contributions of A. Church to logic is his invention
of the lambda calculus. We present the genesis of this theory and its two major
areas of application: the representation of computations and the resulting
functional programming languages on the one hand and the representation of
reasoning and the resulting systems of computer mathematics on the other
hand.
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1. Introduction

This paper is written to honor Church’s great invention: the lambda calculus. The
best way to do this—I think—is to give a description of its genesis (§2) and its
impact on two areas of mathematical logic: the representation of computations (§3)
and of reasoning (§4). In both cases technological applications have emerged.

The very notion of computability was first formalized in terms of definability on
numerals represented in the lambda calculus. Church’s Thesis, stating that this is
the correct formalization of the notion of computability, has for more than 60 years
never seriously been challenged. One of the recent advances in lambda calculus is
that computations on other data types, like trees and syntactic structures (e.g. for
parsing), can be done by representing these data types directly as lambda terms
and not via a coding as Gédel numbers that are then represented as numerals. This
resulted in a much more efficient representation of functions defined on these data
types.

The notion of lambda definability is conceptually the basis for the discipline of
functional programming. Recent progress in this area has been the construction



of very efficient compilers for functional languages and the capturing of interactive
programs (like e.g. text editors) within the functional programming paradigm.

As to the representation of proofs, one of Church’s original goals had been to
construct a formal system for the foundations of mathematics by having a system
of functions together with a set of logical notions. When the resulting system
turned out to be inconsistent, this program was abandoned by him. Church then
separated out the consistent subsystem that is now called the lambda calculus and
concentrated on computability’. It turned out later that there are nevertheless
consistent ways to represent logical notions in (typed and untyped) lambda calculus
so that a foundation for mathematics is obtained. Some of the resulting systems
are used in recently developed systems for computer mathematics, i.e., programs
for the interactive development and automated verification of mathematical proofs.

We restrict attention to applications of the lambda calculus to the fields of
mathematical logic and computer science. Other applications like several forms of
grammars studied in linguistics (e.g., Montague (see Gamut [1992]) and categorial
grammars (see Benthem [1991])) are not treated in this paper.

We end this introduction by telling what seems to be the story how the letter ‘\’
was chosen to denote function abstraction. In Russell and Whitehead’s [1910-13]
Principia Mathematica the notation for the function f with f(z) =2z +11is 22 +1.
Church originally intended to use the notation £.2x + 1. The typesetter could not
position the hat on top of the z and placed it in front of it, resulting in .x.2z + 1.
Then another typesetter changed it into Ax.2x + 1.

Preliminaries

This short subsection with preliminaries is given for readers not familiar with the
lambda calculus. For more information see e.g. Barendregt [1984] (referred to as
B[84]), chapters 2,3 and 6, or Barendregt [1992] (B[92]), sections 2 (untyped lambda
calculus) and 3 (simply typed lambda calculus). Topics outside these chapters or
sections needed in this paper will be explicitly mentioned.

Untyped lambda calculus

1.1. DEFINITION. The sets of variables and terms of the lambda calculus are defined
by the following abstract syntax. (This means that no mention is made of necessary
partentheses in order to warrant unique readability; one thinks about trees instead
of strings being generated.)

var = alvar’

term = var|termterm|\ var term

The syntactic category var is for the collection of variables. Examples of variables
are a,a’,a”. The letters z,y, z,... range over arbitrary variables. The syntactic
category term is for the collection of lambda terms, notation A.

NOTATION. (i) M Nj...Ny stands for (..((MN7)Ny)...Ny).
(ii) Dually, Az ...z M stands for (Az;(Az2(... (Azg(M))..))).

Examples of lambda terms are x, zy, \z.zy, z(Az.zy), Azy.z(Az.zy) and
Mzy.z(Az.zy)) (ww)yz.

A term of the form MN is called an application, with the intended interpre-
tation ‘the function M applied to the argument N’; a term of the form Az.M is

1Church had been considerably helped by his students in the early development of the lambda
calculus, notably by Kleene, see Kleene [1981] and Rosser [1982]. Other important influences came
from Curry [1930] and Curry [1934].



called an abstraction, with the intended interpretation ‘the function that assigns to
x the value M’. In this interpretation the notion of function is to be taken inten-
sional, i.e. as an algorithm. Scott [1972] succeeded to give lambda calculus also an
extensional interpretation by interpreting lambda terms as (continuous) functions
on some topological space D having its space of continuous functions [D—D] as a
retract.

In a lambda term like Azy.zz the variable x is said to occur as a bound variable
and z occurs as a free variable. In z(\z.z) the variable occurs both as free (the
first occurrence) and as bound (the second occurrence) variable. The statement
M = N stands for syntactic equality modulo a renaming of the bound variables. E.g.
Az.z = \y.y or x(Az.x) = z(Ay.y), but Az.xy Z Ay.yy because the free occurrence
of y in the LHS becomes bound in the RHS.

The lambda calculus is the study of the set A modulo so called 3-convertibility
which is the least congruence relation =4 axiomatized by

(Az.M)N =g M[z:=N].

Here M[z:=N] stands for the result of substituting N for the free variables of M.
In this notation the free variables of N are not allowed to become bound after
substitution; for example (Ay.z)[z:=yy] # (A\y.yy). By changing the names of
bound variables one may obtain

(Ay.x)[z:=yy] = (A\z.z)[z:=yy] = Az.yy.

The notion of B-convertibility is an equivalence relation compatible with the
syntactic operations of application and abstraction. That is, C[(Az.M)N] =g
C[M]z:=N]] holds for arbitrary contexts C[].

The notion of B-reduction is the least compatible reflexive and transitive relation
—»3 axiomatized by

(Az.M)N —»g M[z:=N].

The difference with (-conversion is that one has e.g. a = (Az.z)a, but a /g
(Az.z)a: there is a direction involved in reduction, while conversion is bidirectional.

The reason for the notational convention introduced above can be understood
by realizing that e.g.

(Azyz.2(y2)y) XY Z g X(YZ)Y.

A term MeA is called in B-normal form (B-nf) if M has no part of the form
(Az.M)N. Such part is called a B-redex. A term M is said to have a B-normal
form N if N is in B-normal form and M =g N.

1.2. THEOREM (Church-Rosser theorem). Let M, N€A. Then
M=3N & 3Z[M -5 Z& N —» Z).

It follows from the Church-Rosser theorem that a term can have at most one
B-normal form. Indeed, if M has M' and M" as B-nf’s, then M' =5 M" and so
M' —g Z g4 M". But since M' and M" are in -nf, there are no redexes to
contract. Therefore M' = Z = M".

Simply typed lambda calculus
Simple types are defined by the abstract syntax

tvar = atvar’

type = tvar|type—type



We use a, 3,7, ... for type variables and A, B,C, ... for types. The set of types is
denoted by T. A statement is of the form M : A with MeA and A€T; M is called
the subject of the statement. A basis is a set of statements with only variables
as subjects. T, A,... range over bases. (For more complicated versions of typed
lambda calculus, a basis needs to be ordered and then is called a contert. This is
unfortunately a different notion with the same name as the notion ‘context’ defined
earlier, but that is how it is.)

1.3. DEFINITION. We say that from basis I' we can prove M : A, notation I' - M :
A, if it can be derived from the following production system.

(z:A)el’ = Thax:A4
'HM:(A-»B),TFN:A = TH+F(MN):B;
Nez:A-M:B = TF(\xM):(A-B).

1.4. EXAMPLE. (i) z:(A>A—B), y:AF zyy : B.
(ii) F Azy.zyy : (A>A—B)—(A->B).

This version of the simply typed lambda calculus has implicit types at each
abstraction Az and is studied by Curry [1934]. In Church [1940] a variant with
explicit types at abstractions is introduced. In this theory the rule for introducing
abstractions is

Le:AFM:B = T'F (Az:A.M) : (A-B).

An essential difference between the two approaches is that in the explicit case the
unique type of a term always can be found easily. In the implicit case types are not
unique. For the simply typed lambda calculus the types can be reconstructed even
in the implicit case, but for more complicated systems this is not the case.

Inductive types and recursion

Because inductive types are convenient to represent data, both in theories and in
programs, some type systems allow the axiomatic introduction of so-called inductive
types. The following is a simple example.

nat:: = zero | succ nat

Given this definition one has (axiomatically) b zero : nat, |- succ : nat—nat and
F succ(succ zero) : nat. Inductive types come with natural primitive recursive
operators. For example, given a type A and assuming a : A,b : nat—»A— A, we may
define F' : nat—A as follows.

F zero —, a;
F (succz) —, bz (Fz).

This F' depends uniformly on a,b. To make this dependence explicit, we write
F = R a b and postulate the following.

Rabzero —, a;
Rab(succz) —, bz (Rabux).

With this operator one can represent primitive recursive functions. Because of the
presence of higher types one can even represent the Ackermann function using R.



2. Formalizing the notion ‘computable’

Church introduced a formal theory, let us call it T, based on the notion of function.
This system was intended to be a foundation of mathematics. Predicates were rep-
resented as characteristic functions. There were many axioms to deal with logical
notions. The system 7 turned out to be inconsistent, as was shown by Church’s
students Kleene and Rosser [1935] using a tour de force argument involving all the
techniques needed to prove Gdodel’s incompleteness theorem?. Then Church [1936]
isolated the (untyped) lambda calculus from the system 7 by deleting the part
dealing with logic and keeping the essence of the part dealing with functions. This
system was proved consistent by Church and Rosser [1936], who showed the conflu-
ence of B-reduction. Curry, who also wanted to build a foundation for mathematics
based on functions (in his case in the form of combinators that do not mention free
or bound variables), found a paradox for a system with a similar aim as 7, that is
very easy to derive, see e.g. B[84], Appendix B2.

Church introduced the notion of lambda definability for functions f : IN¥—IN in
order to capture the notion of computability?. At first only very elementary func-
tions like addition and multiplication were proved to be lambda definable. Even
for a function as simple as the predecessor (pred(0) = 0, pred(n + 1) = n) lambda
definability remained an open problem for a while. From our present knowledge
it is tempting to explain this as follows. Although the lambda calculus was con-
ceived as an untyped theory, typeable terms are more intuitive. Now the functions
addition and multiplication are definable by typeable terms, while Schwichtenberg
[1976] and Statman [1979] have characterized the lambda definable functions in the
(simply) typed lambda calculus and the predecessor is not among them. Be this
as it may, Kleene did find a way to lambda define the predecessor function in the
untyped lambda calculus, by using an appropriate data type (pairs of integers) as
auxiliary device. In Kleene [1975], he described how he found the solution while be-
ing anesthetized by laughing gas (N5O) for the removal of four wisdom teeth. After
Kleene showed the solution to his teacher, Church remarked something like: “But
then all intuitively computable functions must be lambda definable. In fact, lambda
definability must coincide with intuitive computability.” Many years later—it was
at the occasion of Robin Gandy’s 70-th birthday, I believe—I heard Kleene say: “I
would like to be able to say that, at the moment of discovering how to lambda define
the predecessor function, I got the idea of Church’s Thesis. But I did not, Church
did.” Later, in Kleene [1936], he gave some important evidence for Church’s Thesis
by showing that the lambda definable functions coincide with the p-recursive ones.

Independently of Church, an alternative formalization (in terms of (Turing)
machines) of the notion ‘computable’ was given in Turing [1936]. In Turing [1937]
it was proved that the notions of lambda definability and Turing computability are
equivalent, thereby enlarging the credibility of Church’s Thesis.

Church’s Thesis is plausible but cannot be proved, nor even stated in (classical)
mathematical terms, since it refers to the undefined notion of intuitive computabil-
ity. On the other hand, Church’s Thesis can be refuted. If ever a function will

2@Godel just had given a series of lectures in Princeton at which Kleene and Rosser were present.

3Consistent theories based on functions for the foundations of mathematics have been described
by von Neumann [1925] (simplified by Robinson [1937]). With a similar aim are the theories in
Grue [1992] and Kuper [1993]. In all these theories the paradoxes have been avoided by having
a partial application. Feferman [1975], [1995] and Beeson [1980] also discuss formal theories
with partial application; they aim at constructive foundations and come close to lambda calculus
(partial combinatory algebras).

41 remember a story stating that Church started to work on the problem of trying to show that
the sequence of Betti numbers for a given algebraic variety is computable. He did not succeed in
this enterprise, but came up with the proposal to capture the notion of intuitive computability. I
have not been able to verify this story. Readers who can confirm or refute it are kindly requested
to inform the author.



be found that is intuitively computable but (demonstrably) not lambda definable,
then Church’s Thesis is false. For more than 60 years this has not happened. This
failure to find a counterexample is given as an argument in favor of Church’s The-
sis. I think that it is fair to say that most logicians do believe Church’s Thesis.
One may wonder why doubting Church’s Thesis is not a completely academic ques-
tion. This becomes clear by realizing that Skolem [1923] had introduced the class of
primitive recursive functions that for some time was thought to coincide with that
of the intuitively computable ones. But then Ackermann [1928] showed that there
is a function that is intuitively computable but not primitive recursive. See also
the paper of Gandy [1980] for arguments in favor of Church’s Thesis and Kreisel
[1970a], [1970b] for ones casting some doubts.

Church’s Thesis is actually used for negative computability results: if a function
is shown to be not lambda definable (or Turing computable) then, by Church’s
Thesis, one can state that it is not intuitively computable. Church and Turing gave
examples of undecidable predicates, i.e., ones with non-computable characteristic
functions: the questions whether a lambda term has a normal form (the norma-
lization problem) and whether a machine with program p and input x terminates
(the halting problem), respectively. Both concluded that provability in arithmetic is
undecidable. In fact, the undecidability of many mathematical problems has been
established by translating the halting problem into a given problem. A famous
example is Matijasevi¢’s [1971] result that Hilbert’s tenth problem® is unsolvable.

Finally it is worth mentioning that in intuitionistic mathematics, say in Heyt-
ing’s arithmetic HA, one can precisely formulate Church’s Thesis as a formal state-

ment; this in contrast to the situation in the classical theory. This statement is
called CT and is

Vz[P(z) V-P(z)] = FeVz[[P(z) ¢ pc(z)=1]
& [pe(z) =0V @e(z) = 1]],

where () =y <« Jz[T(e,z,2) & U(z) = y] states that the e-th partial recur-
sive function with input z terminates with y as value (T is Kleene’s computation
predicate and U is the value extracting function, see Kleene [1952]). In this form
CT states that if P is a decidable predicate (i.e., the excluded middle holds for
P), then P has a recursive characteristic function. See Troelstra [1973] for formal
consequences, models, counter-models and an extension of CT.

3. Computing

Lambda calculi are prototype programming languages. As is the case with imper-
ative programming languages, where several examples are untyped (machine code,
assembler, Basic) and several are typed (Algol-68, Pascal), systems of lambda cal-
culi exist in untyped and typed versions. There are also other differences in the
various lambda calculi. The lambda calculus introduced in Church [1936] is the un-
typed Al-calculus in which an abstraction Az.M is only allowed if z occurs among
the free variables of M. Nowadays, “lambda calculus” refers to the AK-calculus
developed under the influence of Curry, in which Az.M is allowed even if x does
not occur in M. There are also typed versions of the lambda calculus. Of these,
the most elementary are two versions of the simply typed lambda calculus A—.
One version is due to Curry [1934] and has implicit types. Simply typed lambda
calculus with explicit types is introduced in Church [1940] (this system is inspired
by the theory of types of Russell and Whitehead [1910-13] as simplified by Ramsey
[1925]). In order to make a distinction between the two versions of simply typed

5«Is it decidable whether a given Diophantine equation has a solution in the integers?”



lambda calculus, the version with explicit types is sometimes called the Church
version and the one with implicit types the Curry version. The difference is that in
the Church version one explicitly types a variable when it is bound after a lambda,
whereas in the Curry version one does not. So for example in Church’s version one
has I4 = (A\z:A.z) : A=A and similarly 14,5 : (A—B)—(A—B), while in Curry’s
system one has | = (Az.z) : A—»A but also | : (A—B)—(A—B) for the same term
I. See B[92] for more information about these and other typed lambda calculi. Par-
ticularly interesting are the second and higher order calculi A2 and Aw introduced
by Girard [1972] (under the names ‘system F’ and ‘system Fw’) for applications to
proof theory and the calculi with dependent types introduced by de Bruijn [1970)
for proof verification.

3.1. Computing on data types

In this subsection we explain how it is possible to represent data types in a very
direct manner in the various lambda calculi.

Lambda definability was introduced for functions on the set of natural numbers
IN. In the resulting mathematical theory of computation (recursion theory) other
domains of input or output have been treated as second class citizens by coding
them as natural numbers. In more practical computer science, algorithms are also
directly defined on other data types like trees or lists.

Instead of coding such data types as numbers one can treat them as first class
citizens by coding them directly as lambda terms while preserving their structure.
Indeed, lambda calculus is strong enough to do this, as was emphasized in Bohm
[1963] and Bohm and Gross [1966]. As a result, a much more efficient representation
of algorithms on these data types can be given, than when these types were repre-
sented via numbers. This methodology was perfected in two different ways in Bohm
and Berarducci [1985] and Bohm et al. [1994] or Berarducci and Bohm [1993]. The
first paper does the representation in a way that can be typed; the other papers in
an essentially stronger way, but one that cannot be typed. We present the methods
of these papers by treating labeled trees as an example.

Let the (inductive) data-type of labeled trees be defined by the following abstract
syntax.

tree = eo|leaf nat|tree+ tree

nat = O0|succnat

We see that a label can be either a bud (e) or a leaf with a number written on it.
A typical such tree is (leaf 3) + ((leaf 5) + o). This tree together with its mirror
image look as follows.

VN N\,
VA NV

Operation on such trees can be defined by recursion. For example the action of
mirroring can be defined by

fuix (.) = e
fuir(leaf n)
fmir(tl + t2)

leaf n;

fmir(tZ) + fmir(tl)-



Then one has for example that
fuir((Leaf 3) + ((leaf 5) + o)) = ((® + leaf 5) + leaf 3).

We will now show in two different ways how trees can be represented as lambda
terms and how operations like fu;- on these objects become lambda definable. The
first method is from Bohm and Berarducci [1985]. The resulting data objects and
functions can be represented by lambda terms typeable in the second order lambda
calculus A2, see Girard et al. [1989] or B[92].

3.1. DEFINITION. (i) Let b,l, p be variables (used as mnemonics for bud, leaf and
plus). Define ¢ = %P : tree — term, where term is the collection of untyped
lambda terms, as follows.

(o) = b
p(leafn) = I'n';
ot +t2) = pe(t)e(tz).

Here n = Afz.f"z is Church’s numeral representing n as lambda term.
(ii) Define 1); : tree — term as follows.

P1(t) = Ablp.p(t).

3.2. PROPOSITION. Define

Bi = Mblpb;
L = Anblp.n;
P1 = )\tl to blp.p (tl blp) (tz blp)

Then one has

(i) ¢1(e) = By.
(11) ’(/}1 (lea:f TL) = L1 TL‘.

(i) Pr(ts +1t2) = Pr g (ta)¢n(8)-
ProoF. (i) Trivial.
(ii) We have
1(leaf n) = Ablp.p(leaf n)
= Xblpln
= (Anblp.In) n
= Ll n .

(iii) Similarly, using that v (¢)blp = ¢(t). B

This proposition states that the trees we considered are representable as lambda
terms in such a way that the constructors (e,leaf and +) are lambda definable.
In fact, the lambda terms involved can be typed in A2. A nice connection between
these terms and proofs in second order logic is given in Leivant [1983].

Now we will show that iterative functions over these trees, like fnir, are lambda
definable.

3.3. PROPOSITION (Iteration). Given lambda terms Ag, A1, Ao there exists a lambda
term F' such that (for variables n,t1,ts)

FBy = A
F(Ll TL) = A1 n;
F(Pitits) = Ay(Ft1)(Fts).



ProOOF. Take F' = )\’w.onAlAz. |

As is well known, primitive recursive functions can be obtained from iterative func-
tions.
There is a way of coding a finite sequence of lambda terms Mj, ..., My as one

lambda term
<M1,...7Mk> = /\zle Mk

such that the components can be recovered. Indeed, take
Ulz = )\.’171 oo L Tj,y

then .
(My, ..., MU, = M,.

3.4. COROLLARY (Primitive recursion). Given lambda terms Cy,Cy,Cy there exists
a lambda term H such that

HB, = Cy;
H(L1 TL) = Cl n;
H(Pltth) = CQtltg(Htl)(th).

PrOOF. Define the auxiliary function F' = At.(t, Ht). Then by the proposition F
can be defined using iteration. Indeed,

F(Pitits) = (Ptity, H(Ptits)) = As(Fty)(Ft),

with
Ay = ity (P(t.U3) (t2U3), Co(t1Uy) (82U5 ) (01 U35) (£2U3)).-

Now take H = A\t.F'tUZ. [This was the trick Kleene found at the dentist.] B

Now we will present the method of Béhm et al. [1994] and Berarducci and Bohm
[1993] to represent data types. Again we consider the example of labeled trees.

3.5. DEFINITION. Define 1), : tree — term as follows.

Po(e) = MeelUse;
Yo(leat n) = Me.eUsine;
Pa (tl + t2) = )\€.€U33¢2 (t1)2/)2 (t2)e.

Then the basic constructors for labeled trees are definable by

By, = /\e.eU?}e;
Ly = /\n)\e.eUgne;
PQ = Atltzx\e.eUgtthe.

3.6. PROPOSITION. Given lambda terms Ag, A1, As there exists a term F such that

FBZ = A()F;
F(Lyn) = AjnF;
F(Pyzy) = AsxyF.



Proor. Try F = ({X,, X1, X5)), the 1-tuple of a triple. Then we must have

FBy = By(Xo,X1,X5)

Us XoX1X2(Xo, X1, Xa)
Xo{Xo, X1, X3)

= Ao{(Xo, X1, X2))

= AoF,

provided Xo = Az.Ao{z). Similarly one can find X;,X>. B

This second representation is essentially untypeable, at least in typed lambda cal-
culi in which all typeable terms are normalizing. This follows from the following
consequence of a result similar to proposition 3.6. Let K = Azy.z,K, = Azy.y
represent, true and false respectively. Then writing

if bool then X else Y fi

for
bool XY,

the usual behavior of the conditional is obtained. Now if we represent the natural
numbers as a data type in the style of the second representation, we immediately
get that the lambda definable functions are closed under minimalization. Indeed,
let

x(z) = pylg(z,y) = 0],

and suppose that g is lambda defined by G. Then there exists a lambda term H
such that

Hzxy = if zeros (Gry) then y else (Hz(succ y)) fi.

Indeed, we can write this as Hr = AzH and apply proposition 3.6, but now for-
mulated for the inductively defined type num. Then F = Az.Hz 0 does represent
Xx- Here succ represents the successor function and zero, a test for zero; both are
lambda definable, again by the analogon to proposition 3.6. Since minimalization
anables us to define all partial recursive functions, the terms involved cannot be
typed in a normalizing system.

Self-interpretation

A lambda term M can be represented internally as a lambda term M . This repre-
sentation should be such that, for example, one has lambda terms P;, P, satisfying
P,'X;: X>' = X;. Kleene [1936] already showed that there is a (‘meta-circular’) self-
interpreter E such that, for closed terms M one has E M = M. The fact that data
types can be represented directly in the lambda calculus was exploited by Mogensen
[1992] to find a simpler representation for M and E.

The difficulty of representing lambda terms internally is that they do not form
a first order algebraic data type due to the binding effect of the lambda. Mogensen
solved this problem as follows. Consider the data type with signature

const, app, abs

where const and abs are unary constructors and app a binary constructor. Let
const, app and abs be a representation of these in lambda calculus (according to
definition 3.5).

10



3.7. PROPOSITION (Mogensen [1992]). Define

r = constr;
PQ' = app P Q}
Az.P! = abs(\z. P).

Then there exists a self-interpreter E such that for all lambda terms M (possibly
containing variables) one has
EM =M.

PRrOOF. By an analogon to proposition 3.6 there exists a lambda term E such that

E(const ) = ux;
E(apppg) = (Ep)(Eg);
E(abs 2) = Mz.E(zz).

Then by an easy induction one can show that E M = M for all terms M. m

Following the construction of proposition 3.6 in Bohm et al. [1994], this term E is
given the following very simple form:

E=(K,S,C)),

where S = Azyz.zz(yz) and C = A\zxyz.x(zy). This is a good improvement over
Kleene [1936] or B[84]. See also Barendregt [1991], [1994] and [1995] for more about
self-interpreters.

3.2. Functional programming

In this subsection a short history is presented of how lambda calculi (untyped
and typed) inspired (either consciously or unconsciously) the creation of functional
programming.

Imperative versus functional programming

While Church had captured the notion of computability via the lambda calculus,
Turing had done the same via his model of computation based on Turing machines.
When in the second world war computational power was needed for military pur-
poses, the first electronic devices were built basically as Turing machines with ran-
dom access memory. Statements in the instruction set for these machines, like
x: = x + 1, are directly related to the instructions of a Turing machine. Such state-
ments are much more easily interpreted by hardware than the act of substitution
fundamental to the lambda calculus. In the beginning, the hardware of the early
computers was modified each time a different computational job had to be done.
Then von Neumann, who must have known® Turing’s concept of a universal Tu-
ring machine, suggested building one machine that could be programmed to do all
possible computational jobs using software. In the resulting computer revolution,
almost all machines are based on this so called von Neumann computer, consisting
of a programmable universal machine. It would have been more appropriate to call
it the Turing computer.

The model of computability introduced by Church (lambda definability)—al-
though equivalent to that of Turing—was harder to interpret in hardware. Therefore
the emergence of the paradigm of functional programming, that is based essentially

6Church had invited Turing to the United States in the mid 1930’s. After his first year it was
von Neumann who invited Turing to stay for a second year. See Hodges [1983].
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on lambda definability, took much more time. Because functional programs are
closer to the specification of computational problems than imperative ones, this
paradigm is more convenient than the traditional imperative one. Another im-
portant feature of functional programs is that parallelism is much more naturally
expressed in them, than in imperative programs. See Turner [1981] and Hughes
[1989] for some evidence for the elegance of the functional paradigm. The imple-
mentation difficulties for functional programming have to do with memory usage,
compilation time and actual run time of functional programs. In the contemporary
state of the art of implementing functional languages, these problems have been
solved satisfactorily.”

Classes of functional languages

Let us describe some languages that have been—and in some cases still are—
influential in the expansion of functional programming. These languages come in
several classes.

Lambda calculus by itself is not yet a complete model of computation, since
an expression M may be evaluated by different so-called reduction strategies that
indicate which sub-term of M is evaluated first (see B[84], CH. 12). By the Church-
Rosser theorem this order of evaluation is not important for the final result: the
normal form of a lambda term is unique if it exists. But the order of evaluation
makes a difference for efficiency (both time and space) and also for the question
whether or not a normal form is obtained at all.

So called ‘eager’ functional languages have a reduction strategy that evaluates
an expression like F'A by first evaluating F' and A (in no particular order) to, say,
F'=MXa. ---a---a---and A’ and then contracting F'A" to ... A’ ... A’ .... This
evaluation strategy has definite advantages for the efficiency of the implementation.
The main reason for this is that if A is large, but its normal form A’ is small, then
it is advantageous both for time and space efficiency to perform the reduction in
this order. Indeed, evaluating F'A directly to

A A

takes more space and if A is now evaluated twice, it also takes more time.

Eager evaluation, however, is not a normalizing reduction strategy in the sense
of B[84], CH. 12. For example, if F' = Az.| and A does not have a normal form,
then evaluating F'A eagerly diverges, while

FA=(azA=I,

if it is evaluated leftmost outermost (roughly ‘from left to right’). This kind of
reduction is called ‘lazy evaluation’.

It turns out that eager languages are, nevertheless, computationally complete,
as we will soon see. The implementation of these languages was the first milestone
in the development of functional programming. The second milestone consisted of
the efficient implementation of lazy languages.

In addition to the distinction between eager and lazy functional languages there
is another one of equal importance. This is the difference between untyped and
typed languages. The difference comes directly from the difference between the
untyped lambda calculus and the various typed lambda calculi, see B[92]. Typing is
useful, because many programming bugs (errors) result in a typing error that can be
detected automatically prior to running one’s program. On the other hand, typing

"Logical programming languages also have the mentioned advantages. But so far pure logical
languages of industrial quality have not been developed. (Prolog is not pure and A-Prolog, see
Nadathur and Miller [1988], although pure, is presently a prototype.)

12



is not too cumbersome, since in many cases the types need not be given explicitly.
The reason for this is that, by the type reconstruction algorithm of Curry [1969)
and Hindley [1969] (later rediscovered by Milner [1978]), one can automatically find
the type (in a certain context) of an untyped but typeable expression. Therefore,
the typed versions of functional programming languages are often based on the
implicitly typed lambda calculi ¢ la Curry. Types also play an important role in
making implementations of lazy languages more efficient, see below.

Besides the functional languages that will be treated below, the languages APL
and FP have been important historically. The language APL, introduced in Iverson
[1962], has been, and still is, relatively widespread. The language FP was designed
by Backus, who gave, in his lecture (Backus [1978]) at the occasion of receiving his
Turing award (for his work on imperative languages) a strong and influential plea
for the use of functional languages. Both APL and FP programs consist of a set of
basic functions that can be combined to define operations on data structures. The
language APL has, for example, many functions for matrix operations. In both
languages composition is the only way to obtain new functions and, therefore, they
are less complete than a full functional language in which user defined functions can
be created. As a consequence, these two languages are essentially limited in their
ease of expressing algorithms.

Eager functional languages

Let us first give the promised argument that eager functional languages are com-
putationally complete. Every computable (recursive) function is lambda definable
in the Al-calculus (see Church [1941] or B[84], theorem 9.2.16). In the Al-calculus a
term having a normal form is strongly normalizing (see Church and Rosser [1936] or
BJ[84], theorem 9.1.5). Therefore an eager evaluation strategy will find the required
normal form.

The first functional language, LISP, was designed and implemented by J. Mc-
Carthy et al. [1962]. The evaluation of expressions in this language is eager. LISP
had (and still has) considerable impact on the art of programming. Since it has
a good programming environment, many skillful programmers were attracted to it
and produced interesting programs (so called ‘artificial intelligence’). LISP is not a
pure functional language for several reasons. Assignment is possible in it; there is a
confusion between local and global variables® (‘dynamic binding’; some LISP users
even like it); LISP uses the ‘Quote’, where (Quote M) is like "M". In later versions
of LISP, Common LISP (see Steele Jr. [1984]) and Scheme (see Clinger and Rees
[1991]), dynamic binding is no longer present. The ‘Quote’ operator, however, is
still present in these languages. Since la = a but 'la # 'a adding ‘Quote’ to the
lambda calculus is inconsistent. As one may not reduce in LISP within the scope
of a ‘Quote’, however, having a ‘Quote’ in LIPS is not inconsistent. ‘Quote’ is not
an available function but only a constructor. That is, if M is a well-formed expres-

8This means substitution of an expression with a free variable into a context in which that
variable becomes bound. The originators of LISP were in good company: in Hilbert and Ack-
ermann [1928] the same was done, as was noticed by von Neumann in his review of that book.
Church may have known von Neumann’s review and avoided confusing local and global variables
by introducing a-conversion.
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sion, so is (Quote M)°. Also, LISP has a primitive fixed-point operator ‘LABEL’
(implemented as a cycle) that is also found in later functional languages.

In the meantime, Landin [1964] developed an abstract machine—the SECD
machine—for the implementation of reduction. Many implementations of eager
functional languages, including some versions of LISP, have used, or are still us-
ing, this computational model. (The SECD machine also can be modelled for lazy
functional languages, see Henderson [1980].) Another way of implementing func-
tional languages is based on the so called CPS-translation. This was introduced in
Reynolds [1972] and used in a compilers by Steele Jr. [1978] and Appel [1992]. See
also Plotkin [1975] and Reynolds [1993].

The first important typed functional language with an eager evaluation strategy
is Standard ML, see Milner [1978]. This language is based on the Curry variant of
A—, the simply typed lambda calculus with implicit typing, see B[92]. Expressions
are type-free, but are only legal if a type can be derived for them. By the algorithm
of Curry and Hindley cited above, it is decidable whether an expression does have
a type and, moreover, its most general type can be computed. Milner added two
features to A—. The first is the addition of new primitives. One has the fixed-point
combinator Y as primitive, with essentially all types of the form (A—A)— A, with
A = (B—C), assigned to it. Indeed, if f : A—A, then Y f is of type A so that both
sides of

FYH=Yf

have type A. Primitives for basic arithmetic operations are also added. With these
additions, ML becomes a universal programming language, while A— is not (since
all its terms are normalizing). The second addition to ML is the ‘let’ construction

let £ be N in M end. 1)
This language construct has as its intended interpretation
Mlz: = NJ, (2)

so that one may think that the let construction is not necessary. If, however, N is
large, then this translation of (1) becomes space inefficient. Another interpretation
of (1) is

(Ax.M)N. (3)
But this interpretation has its limitations, as N has to be given one fixed type,
whereas in (2) the various occurrences of N may have different types. The expression
(1) is a way to make use of both the space reduction (‘sharing’) of the expression

(3) and the ‘implicit polymorphism’ in which N can have more than one type of
(2). An example of the let expression is

let id be Az.z in Afz.(id f)(id z) end.

This is typeable by
(A= A)—>(A—A),

if the second occurrence of id gets type (A—A)—(A—A) and the third (A—A).

9Using ‘Quote’ as a function would violate the Church-Rosser property. An example is
(Az.z(la)) Quote

that then would reduce to both
Quote (la) — la’
and to
(Az.za) Quote — Quote a — a

and there is no common reduct for these two expressions la' and a .
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Because of its relatively efficient implementation and the possibility of type
checking at compile time (for finding errors), the language ML has evolved into
important industrial variants (like Standard ML of New Jersey).

Although not widely used in industry, a more efficient implementation of ML is
based on the abstract machine CAML, see Cousineau et al. [1987]. CAML was in-
spired by the categorical foundations of the lambda calculus, see Smyth and Plotkin
[1982], Koymans [1982] and Curien [1986]. All of these papers have been inspired
by the work on denotational semantics of Scott, see Scott [1972] and Gunter and
Scott [1990].

Lazy functional languages

Although all computable functions can be represented in an eager functional pro-
gramming language, not all reductions in the full AK-calculus can be performed
using eager evaluation. We already saw that if FF = Az.l and A does not have a
normal form, then eager evaluation of F'A does not terminate, while this term does
have a normal form. In ‘azy’ functional programming languages the reduction of
F A to | is possible, because the reduction strategy for these languages is essentially
leftmost outermost reduction which is normalizing.

One of the advantages of having lazy evaluation is that one can work with
‘infinite’ objects. For example there is a legal expression for the potentially infinite
lists of primes

2,3,5,7,11,13,17 .. .],

of which one can take the n-th projection in order to get the n-th prime. See Turner
[1981] and Hughes [1989] for interesting uses of the lazy programming style.

Above we explained why eager evaluation can be implemented more efficiently
than lazy evaluation: copying large expressions is expensive because of space and
time costs. In Wadsworth [1971] the idea of graph reduction was introduced in order
to also do lazy evaluation efficiently. In this model of computation, an expression like
(M.---x---z---)A does not reduce to ---A---A---but to ---@---@---; @Q: A,
where the first two occurrences of @ are pointers referring to the A behind the
third occurrence. In this way lambda expressions become dags (directed acyclic
graphs).'?

Based on the idea of graph reduction, using carefully chosen combinators as
primitives, the experimental language SASL, see Turner [1976] and [1971], was one
of the first implemented lazy functional languages. The notion of graph reduction
was extended by Turner by implementing the fixed-point combinator (one of the
primitives) as a cyclic graph. (Cyclic graphs were already described in Wadsworth
[1971] but were not used there.) Like LISP, the language SASL is untyped. It is
fair to say that—unlike programs written in the eager languages such as LISP and
Standard ML—the execution of SASL programs was orders of magnitude slower
than that of imperative programs in spite of the use of graph reduction.

In the 1980s typed versions of lazy functional languages did emerge, as well as a
considerable speed-up of their performance. A lazy version of ML, called Lazy ML
(LML), was implemented efficiently by a group at Chalmers University, see Johnsson
[1984]. As underlying computational model they used the so called G-machine, that
avoids building graphs whenever efficient. For example, if an expression is purely
arithmetical (this can be seen from type information), then the evaluation can be
done more efficiently than by using graphs. Another implementation feature of the

10Robin Gandy mentioned at a meeting for the celebration of his seventieth birthday that already
in the early 1950s Turing had told him that he wanted to evaluate lambda terms using graphs.
In Turing’s description of the evaluation mechanism he made the common oversight of confusing
free and bound variables. Gandy pointed this out to Turing, who then said: “Ah, this remark is
worth 100 pounds a month!”
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LML is the compilation into super-combinators, see Hughes [1984], that do not form
a fixed set, but are created on demand depending on the expression to be evaluated.
Emerging from SASL, the first fully developed typed lazy functional language called
Miranda™ was developed by Turner [1985]. Special mention should be made of its
elegance and its functional I/O interface (see below).

Notably, the ideas in the G-machine made lazy functional programming much
more efficient. In the late 1980s very efficient implementations of two typed lazy
functional languages appeared that we will discuss below: Clean, see Eekelen and
Plasmeijer [1993], and Haskell, see Jones and Wadler [1993], Hudak et al. [1992].
These languages, with their implementations, execute functional programs in a way
that is comparable to the speed of contemporary imperative languages such as C.

Interactive functional languages

The versions of functional programming that we have considered so far could be
called ‘autistic’. A program consists of an expression M, its execution of the re-
duction of M and its output of the normal form M™t (if it exists). Although this
is quite useful for many purposes, no interaction with the outside world is made.
Even just dealing with input and output (I/O) requires interaction.

We need the concept of a ‘process’ as opposed to a function. Intuitively a process
is something that (in general) is geared towards continuation while a function is
geared towards termination. Processes have an input channel on which an input
stream (a potentially infinite sequence of tokens) is coming in and an output channel
on which an output stream is coming out. A typical process is the control of a traffic
light system: it is geared towards continuation, there is an input stream (coming
from the pushbuttons for pedestrians) and an output stream (regulating the traffic
lights). Text editing is also a process. In fact, even the most simple form of I/O is
already a process.

A primitive way to deal with I/O in a functional language is used in some
versions of ML. There is an input stream and an output stream. Suppose one wants
to perform the following process P:

read the first two numbers z,y of the input stream;
put their difference z — y onto the output stream

Then one can write in ML the following program

write (read — read).

This is not very satisfactory, since it relies on a fixed order of evaluation of the
expression ‘read — read’.

A more satisfactory way consists of so-called continuations, see Gordon [1994].
To the lambda, calculus one adds primitives Read, Write and Stop. The operational
semantics of an expression is now as follows:

M = M"™, where M™* is the head normal form!'! of M;
Read M = M a, where a is taken off the input stream;
WritebM = M, and b is put into the output stream;
Stop = i.e., do nothing,.

Now the process P above can be written as

P = Read (Az.Read (\y.Write (z — y) Stop)).

1A head nf in lambda calculus is of the form AZ.yM; ... M,, with the M ... M, possibly not
in nf.
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If, instead, one wants a process () that continuously takes two elements of the input
stream and put the difference on the output stream, then one can write as a program
the following extended lambda term

Q =Read (\z.Read (\y.Write (z — y) Q)),

which can be found using the fixed-point combinator.

Now, every interactive program can be written in this way, provided that special
commands written on the output stream are interpreted. For example one can
imagine that writing

‘echo’ 7 or ‘print’7

on the output channel will put 7 on the screen or print it out respectively. The
use of continuations is equivalent to that of monads in programming languages like
Haskell, as shown in Gordon [1994]. (The present version of Haskell I/O is more
refined than this; we will not consider this issue.)

If Ag, A1, As, ... is an effective sequence of terms (i.e., A, = F 'n' for some
F), then this infinite list can be represented as a lambda term

[Ao, A1, Az, ...] = [Ao,[A1, [Az, ... ]]]
H'0',
where [M,N] = Az.zMN and
H™n'=[F'n',H™mn+1].

This H can be defined using the fixed-point combinator.
Now the operations Read, Write and Stop can be made explicitly lambda de-
finable if we use

In = [Ao,Al,AQ,...],
Out = [...,By,B,By],

where In is a representation of the potentially infinite input stream given by ‘the
world’ (i.e., the user and the external operating system) and Out of the potentially
infinite output stream given by the machine running the interactive functional lan-
guage. Every interactive program M should be acting on [In, Out] as argument. So
M in the continuation language becomes

M [In,Out].
The following definition then matches the operational semantics.

Read F' [[A,In'],0ut] = F A [In,0ut];
(1) Write F' B [In,0Out] F [In,[B,0ut]]
Stop [In,0ut] = [Imn,Out].

In this way [In, Out] acts as a dynamic state. An operating system should take care
that the actions on [In,Out] are actually performed to the I/O channels. Also we
have to take care that statements like ‘echo’ 7 are being interpreted. It is easy to
find pure lambda terms Read, Write and Stop satisfying (1). This seems to be a
good implementation of the continuations and therefore a good way to deal with
interactive programs.

There is, however, a serious problem. Define

M = Ap.[Write b, Stop p,Write by Stop p).
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Now consider the evaluation

M [In,0ut] = [Write by Stop [In,Out],Write by Stop [In,Out]]
= [[In, [b1, Out]], [In,[b2, Out]].

Now what will happen to the actual output channel: should b; be added to it, or
perhaps by?

The dilemma is caused by the duplication of the I/O channels [In,Out]. One
solution is not to explicitly mention the I/O channels, as in the lambda calculus
with continuations. This is essentially what happens in the method of monads in
the interactive functional programming language Haskell. If one writes something
like

Main fio...0 f,

the intended interpretation is (f1 o ... o f,)[In,Dut].

The solution put forward in the functional language Clean is to use a typing
system that guarantees that the I/O channels are never duplicated. For this purpose
a so-called ‘uniqueness’ typing system is designed, see Barendsen and Smetsers
[1993],[1997], that is related to linear logic (see Girard [1995]). Once this is done, one
can improve the way in which parts of the world are used explicitly. A representation
of all aspects of the world can be incorporated in lambda calculus. Instead of having
just [In,0ut], the world can now be extended to include (a representation of) the
screen, the printer, the mouse, the keyboard and whatever gadgets one would like
to add to the computer periphery (e.g., other computers to form a network). So
interpreting

‘print’ 7

now becomes simply something like
put 7 printer.

This has the advantage that if one wants to echo a 7 and to print a 3, but
the order in which this happens is immaterial, then one is not forced to make an
over-specification, like sending first ‘print’ 3 and then ‘echo’ 7 to the output
channel:

[..., ‘echo’ 7, ‘print’ 3]

By representing inside the lambda calculus with uniqueness types as many gadgets
of the world as one would like, one can write something like

F [keybord, mouse, screen, printer] =

= [keybord, mouse, put 3 screen, put 7 printer].

What happens first depends on the operating system and parameters, that we do
not know (for example on how long the printing queue is). But we are not interested
in this. The system satisfies the Church-Rosser theorem and the eventual result (7
is printed and 3 is echoed) is unambiguous. This makes Clean somewhat more
natural than Haskell (also in its present version) and definitely more appropriate
for an implementation on parallel hardware.

Both Clean and Haskell are state of the art functional programming languages
producing efficient code; as to compiling time Clean belongs to the class of fast
compilers (including those for imperative languages). Many serious applications
are written in these languages. The interactive aspect of both languages is made
possible by lazy evaluation and the use of higher type'? functions, two themes that

121n the functional programming community these are called ‘higher order functions’. We prefer
to use the more logically correct expression ‘higher type’, since ‘higher order’ refers to quantification
over types (like in the system A2).
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are at the core of the lambda calculus (MK, that is). It is to be expected that they
will have a significant impact on the production of modern (interactive window
based) software.

4. Reasoning

Computer Mathematics

Modern systems for computer algebra (CA) are able to represent mathematical
notions on a machine and compute with them. These objects can be integers,
real or complex numbers, polynomials, integrals and the like. The computations
are usually symbolic, but can also be numerical to a virtually arbitrary degree
of precision. It is fair to say—as is sometimes done—that “a system for CA can
represent /2 exactly”. In spite of the fact that this number has an infinite decimal
expansion, this is not a miracle. The number 1/2 is represented in a computer just
as a symbol (as we do on paper or in our mind), and the machine knows how to
manipulate it. The common feature of these kind of notions represented in systems
for CA is that in some sense or another they are all computable. Systems for
CA have reached a high level of sophistication and efficiency and are commercially
available. Scientists and both pure and applied mathematicians have made good
use of them for their research.

There is now emerging a new technology, namely that of systems for Computer
Mathematics (CM). In these systems virtually all mathematical notions can be
represented exactly, including those that do not have a computational nature. How
is this possible? Suppose, for example, that we want to represent a non-computable
object like the co-Diophantine set

X = {n€lN|—-3% D(&,n) = 0}.

Then we can do as before and represent it by a special symbol. But now the
computer in general cannot operate on it because the object may be of a non-
computational nature.

Before answering the question in the previous paragraph, let us first analyze
where non-computability comes from. It is always the case that this comes from
the quantifiers V (for all) and 3 (exists). Indeed, these quantifiers usually range over
an infinite set and therefore one loses decidability.

Nevertheless, for ages mathematicians have been able to obtain interesting in-
formation about these non-computable objects. This is because there is a notion of
proof. Using proofs one can state with confidence that e.g.

3€X, ie., -3% D(Z,3) = 0.

Aristotle had already remarked that it is often hard to find proofs, but the verifica-
tion of a putative one can be done in a relatively easy way. Another contribution of
Aristotle was his quest for the formalization of logic. After about 2300 years, when
Frege had found the right formulation of predicate logic and Gdédel had proved that
it is complete, this quest was fulfilled. Mathematical proofs can now be completely
formalized and verified by computers. This is the underlying basis for the systems
for CM.

Present day prototypes of systems for CM are able to help a user to develop from
primitive notions and axioms many theories, consisting of defined concepts, theo-
rems and proofs.!®> All the systems of CM have been inspired by the AUTOMATH
project of de Bruijn (see de Bruijn [1970] and [1990] and Nederpelt et al. [1994]) for
the automated verification of mathematical proofs.

13This way of doing mathematics, the axiomatic method, was also described by Aristotle. It
was Euclid [-325] who first used this method very successfully in his Elements.
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Representing proofs as lambda terms

Now that mathematical proofs can be fully formalized, the question arises how
this can be done best (for efficiency reasons concerning the machine and pragmatic
reasons concerning the human user). Hilbert represented a proof of statement A
from a set of axioms I' as a finite sequence Ay, Ay ..., A, such that A = A,, and
each A;, for 0 < i < m, is either in T’ or follows from previous statements using the
rules of logic.

A more efficient way to represent proofs employs typed lambda terms and is
called the propositions-as-types interpretation discovered by Curry, Howard and
de Bruijn. This interpretation maps propositions into types and proofs into the
corresponding inhabitants. The method is as follows. A statement A is transformed
into the type (i.e., collection)

[A] = the set of proofs of A.

So A is provable if and only if [A] is ‘inhabited’ by a proof p. Now a proof of
A = B consists (according to the Brouwer-Heyting interpretation of implication)
of a function having as argument a proof of A and as value a proof of B. In symbols

[A = B] =[4] - [B].

Similarly
[VeeX.Px] = Ilz: X [Px],

where [Iz: A.[Pz] is the Cartesian product of the [Pz], because a proof of Vz€A.Px
consists of a function that assigns to each element x€ A a proof of Pz. In this way
proof-objects become isomorphic with the intuitionistic natural deduction proofs of
Gentzen [1969]. Using this interpretation, a proof of Vy€ A.Py = Py is A\y:AAzx:Py.x.
Here \z:A.B(z) denotes the function that assigns to input z€A the output B(x).
A proof of
(A=>A=B)=>A=1B

is

Ap:(A = A = B)Ag:A.pgq.
A description of the typed lambda calculi in which these types and inhabitants can
be formulated is given in B[92], which also gives an example of a large proof object.
Verifying whether p is a proof of A boils down to verifying whether, in the given
context, the type of p is equal (convertible) to [A]. The method can be extended by
also representing connectives like & and - in the right type system. Translating
propositions as types has as default intuitionistic logic. Classical logic can be dealt
with by adding the excluded middle as an axiom.

If a complicated computer system claims that a certain mathematical statement
is correct, then one may wonder whether this is indeed the case. For example,
there may be software errors in the system. A satisfactory methodological answer
has been given by de Bruijn. Proof-objects should be public and written in such
a formalism that a reasonably simple proof-checker can verify them. One should
be able to verify the program for this proof-checker ‘by hand’. We call this the de
Bruijn criterion. The proof-development systems Lego (see Luo and Pollack [1992])
and Coq (see Coquand and Huet [1988]) satisfy this criterion.

A way to keep proof-objects from growing too large is to employ the so-called
Poincaré principle. Poincaré [1902], p. 12, stated that an argument showing that
242 =4 “is not a proof in the strict sense, it is a verification” (actually he claimed
that an arbitrary mathematician will make this remark). In the AUTOMATH
project of de Bruijn the following interpretation of the Poincaré principle was given.
If p is a proof of A(t) and ¢t =g ¢', then the same p is also a proof of A(¢'). Here R
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is a notion of reduction consisting of ordinary 3 reduction and §-reduction in order
to deal with the unfolding of definitions. Since Bdé-reduction is not too complicated
to be programmed, the type systems enjoying this interpretation of the Poincaré
principle still satisfy the de Bruijn criterion'4.

In spite of the compact representation in typed lambda calculi and the use of the
Poincaré principle, proof-objects become large, something like 10 to 30 times the
length of a complete informal proof. Large proof-objects are tiresome to generate
by hand. With the necessary persistence Jutting [1977] has written lambda after
lambda to obtain the proof-objects showing that all proofs (but one) in Landau
[1960] are correct. Using a modern system for CM one can do better. The user
introduces the context consisting of the primitive notions and axioms. Then nec-
essary definitions are given to formulate a theorem to be proved (the goal). The
proof is developed in an interactive session with the machine. Thereby the user only
needs to give certain ‘tactics’ to the machine. (The interpretation of these tactics by
the machine does nothing mathematically sophisticated, only the necessary book-
keeping. The sophistication comes from giving the right tactics.) The final goal
of this research is that the necessary effort to interactively generate formal proofs
is not more complicated than producing a text in, say, IAXTEX. This goal has not
been reached yet. See Barendregt [1996] for references, including those about other
approaches to computer mathematics. (These include the systems NuPrl, HOL,
Otter, Mizar and the Boyer-Moore theorem prover. These systems do not satisfy
the de Bruijn criterion, but some of them probably can be modified easily so that
they do.)

Computations in proofs

The following is taken from Barendregt and Barendsen [1997]. There are several
computations that are needed in proofs. This happens, for example, if we want to
prove formal versions of the following intuitive statements.

(1) [V45] = 6, where [r] is the integer part of a real;
(2) Prime(61);
3) (z+)(z+1) = 2 +22+1.

A way to handle (1) is to use the Poincaré principle extended to the reduction
relation —, for primitive recursion on the natural numbers. Operations like f(n) =
[v/n] are primitive recursive and hence are lambda definable (using —»3,) by a term,
say F', in the lambda calculus extended by an operation for primitive recursion R
satisfying

RABzero —, A
RAB(succz) —, Bz(RABz).
Then, writing 0 = zero, 1 = succ zero,..., as
’6’ — FGT

is formally derivable, it follows from the Poincaré principle that the same is true for

F45 = 6
14The reductions may sometimes cause the proof-checking to be of an unacceptable time com-
plexity. We have that p is a proof of A iff type(p) =gs A. Because the proof is coming from a

human, the necessary conversion path is feasible, but to find it automatically may be hard. The
problem probably can be avoided by enhancing proof-objects with hints for a reduction strategy.
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(with the same proof-object), since F' 45 —»g, '6'. Usually, a proof obligation
arises that F' is adequately constructed. For example, in this case it could be

vn (Fn)? < n < ((Fn)+1)>%

Such a proof obligation needs to be formally proved, but only once; after that
reductions like
Fn —g f(n)'
can be used freely many times.
In a similar way, a statement like (2) can be formulated and proved by construct-

ing a lambda defining term Kp, i, for the characteristic function of the predicate
Prime. This term should satisfy the following statement

Vn [(Primen <> Kprinen ='1") &
(Kpl‘imen = ‘0‘ \ KPrimen = ]' )]

which is the proof obligation.

Statement (3) corresponds to a symbolic computation. This computation takes
place on the syntactic level of formal terms. There is a function g acting on syntactic
expressions satisfying

g((z+D)(z+1)) =2+ 22 +1,

that we want to lambda define. While z+1 : Nat (in context x:Nat), the expression
on a syntactic level represented internally satisfies ‘z + 1’ : term(Nat), for the
suitably defined inductive type term(Nat). After introducing a reduction relation
—», for primitive recursion over this data type, one can use techniques similar to
those of §3 to lambda define g, say by G, so that

Gz +1)(z+1) =g @+ 2z + 1.

Now in order to finish the proof of (3), one needs to construct a self-interpreter E,
such that for all expressions p : Nat one has

E cp) _»ﬁL P
and prove the proof obligation for G which is
Vt:term(Nat) E(Gt) = Et.

It follows that
EG(z+1)(z+1)") = E{z+1)(z+1);

now since

E(G(z+1)(z+1)") —»5 E2’+2x+1
g, ?+2z+1
E‘w+1)(z+1)" —p (¢+1)(z+1),

we have by the Poincaré principle
(x+1)(z+1) = 22+ 22 +1.

The use of inductive types like Nat and term(Nat) and the corresponding reduc-
tion relations for primitive reduction was suggested by Scott [1970] and the exten-
sion of the Poincaré principle for the corresponding reduction relations of primitive
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recursion by Martin-Lof [1984]. Since such reductions are not too hard to program,
the resulting proof checking still satisfies the de Bruijn criterion.

In Oostdijk [1996] a program is presented that, for every primitive recursive
predicate P, constructs the lambda term Kp defining its characteristic function
and the proof of the adequacy of Kp. The resulting computations for P = Prime
are not efficient, because a straightforward (non-optimized) translation of primitive
recursion is given and the numerals (represented numbers) used are in a unary
(rather than n-ary) representation; but the method is promising. In Elbers [1996],
a more efficient ad hoc lambda definition of the characteristic function of Prime
is given, using Fermat’s small theorem about primality. Also the required proof
obligation has been given.

Choice of formal systems

There are several possibilities for the choice of a formal system to be used for the
representation of theories in systems of computer mathematics. Since, in construct-
ing proof-objects, cooperation between researchers is desirable, this choice has to
be made with some care in order to reach an international standard. As a first step
towards this, one may restrict attention to systems of typed lambda calculi, since
they provide a compact representation and meet de Bruijn’s criterion of having a
simple proof-checker. In their simplest form, these systems can be described in a
uniform way as pure type systems (PTS’s) of different strength, see B[92]. The
PTS’s should be extended by a definition mechanism to become DPTS’s (PTS’s
with definitions), see Severi and Poll [1994]. The DPTS’s are good for describing
several variants of logic: many sorted predicate logic in its first, second or higher
order versions. As stated before, the default logic is intuitionistic, but can be made
classical by assuming the excluded middle.

The next step consists of adding inductive types (IT’s) and the corresponding
reduction relations in order to capture primitive recursion. We suggest that the
right formal systems to be used for computer mathematics are the type systems
(TS), consisting of DPTS’s extended by IT’s, as described e.g. in Paulin-Mohring
[1993]. TS’s come with two parameters. The first is the specification A of the
underlying PTS specifying its logical strength, see B[92]. The second is B the
collection of inductive types and their respective notions of reduction —», specifying
its mathematical and computational strength. In my opinion, a system for proof-
checking should be able to verify proof-objects written in all the systems TS(A, B)
(for a ‘reasonable’ choice spectrum of the parameters). If someone wants to use it for
only a subclass of the choice of parameters—dictated by that person’s foundational
views—then the proof-checker will do its work anyway. I believe that this generality
will not be too expensive in terms of the complexity of the checking.!®

Illative lambda calculus

Curry and his students continued to look for a way to represent functions and
logic into one adequate formal system. Some of the proposed systems turned out
to be inconsistent, other ones turned out to be incomplete. Research in TS’s for
the representation of logic has resulted in an unexpected side effect. By making a
modification inspired by the TS’s, it became possible, after all, to give an extension
of the untyped lambda calculus, called Illative Lambda Calculi (ILC; ‘illative’ from

157t may be argued that the following list of features is so important that they deserve to be
present in T'S’s as primitives and be implemented: quotient types (see Hofmann [1977]), subtypes
(see Aspinall and Compagnoni [1996]) and type inclusion (see Luo and Pollack [1992]). This is
an interesting question and experiments should be done to determine whether this is the case or
whether these can be translated into the more basic TS’s in a sufficiently efficient way (possibly
using some macros in the system for CM).
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the Latin word inferre which means to infer), such that first order logic can be
faithfully and completely embedded into it. The method can be extended for an
arbitrary PTS'®, so that higher order logic can be represented too.

The resulting ILC’s are in fact simpler than the TS’s. But doing computer
mathematics via ILC is probably not very practical, as it is not clear how to do
proof-checking for these systems.

One nice thing about the ILC is that the old dream of Church and Curry came
true, namely, there is one system based on untyped lambda calculus (or combina-
tors) on which logic, hence mathematics, can be based. More importantly there
is a ‘combinatory transformation’ between the ordinary interpretation of logic and
its propositions-as-types interpretation. Basically, the situation is as follows. The
interpretation of predicate logic in ILC is such that

l_logic A with pI‘OOfp & Vr ke [A]T[p]
< ke [A]i[p]
& ke [Aklp] = K[A]'1[p] = [4]",

where r ranges over untyped lambda terms. Now if r = I, then this translation
is the propositions-as-types interpretation; if, on the other hand, one has r = K,
then the interpretation becomes an isomorphic version of first order logic denoted
by [A]';. See Barendregt et al. [1993] and Dekkers et al. [1997] for these results.
A short introduction to ILC (in its combinatory version) can be found in B[84],
Appendix B.
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