-« redhat

The Need for Aynchronous, Zero-Copy
Network I/O

Ulrich Drepper

Red Hat, Inc.

Q, rednat
The Problem

Network hardware changed but the socket API
stayed the same

Transfer rates bigger (esp compared to bus and
memory speed)

New forms of NIC interfaces (RDMA, etc)
But:
sockets provide a byte stream

CPU speed kept (almost) up with NICs

Q, rednat
The Way Forward

Use asynchronous interfaces

To enable this:

Efficient event handling

And to support modern hardware:

Direct I/O from/to user buffers

Q, redhat.
State of the Art

POSIX asynchronous I/O interfaces

Not really for network 1/0O
O ASYNC sockets

Common problems:

Not really zero copy

Cumbersome and/or slow notification

Q, rednat.

Full Zero Copy

Computer

read(fd, buf, size)

Q, rednat.

Full Zero Copy

Computer

read(fd, buf, size)

Q, redhat
Memory Locking

Is a privileged operation
Is expensive

Only works with page size granularity

® Impractical to lock every 1/O buffer
individually

Q, redhat
Proposed Memory Interfaces

One possibility: add MAP DMA flag

Not very flexible

int dma alloc(dma mem t *handlep,
size t size, un51gned int flags);

int dma free(dma mem t handle, size t
size);

Q, rednat
Current Event Handling

Pretty efficient interface with epoll wait

Works only with file descriptors

Does not work with

Synchronization primitives

Message queues

Asynchronous I/O requests

Signals
Ideally: one interfaces to rule them all

Q, rednat.

Event Handling Solutions

SOCK SEQPACKET protocol PFEVENT
Uniform records of events (big union)
Kernel limits number of outstanding events
Ring buffer in memory provided by program
Uniform records of events (again)
Size controlled by application
Kernel can signal overflow out-of-band (signal, ...)

Better yet...

Q, rednat.

Event Handling Solutions

Abstract out the user interface:
ec_t ec create(unsigned flags);
int ec destroy(ec t ec);

int ec next event(ec t ec, event data t *d);

int ec_to fd(ec t ec);

or

int ec _delay(ec_t ec, struct timespec *tout);

Q, rednat.

Using Event Channels

Register file descriptors, message queue descriptors

No changes to existing interfaces

Descriptors can be used with multiple event
channels and poll/select simultaneously

Alternative: introduce separate interfaces specifying
event channel to report to

Q, rednat.

Asynchronous Network I/O, Part 1

Extend the POSIX asynchronous I/O interfaces

Add msghdr pointer to aiocb

Extend sigevent

Add event channel descriptor
Define SIGEV_EC to select event channel notification

New interfaces like

int aio_send(struct aiocb *aiocbp, int flags);

Q, rednat.

Asynchronous Network I/O, Part 2

POSIX AlO does not solve all problems

Not always zero copy

Memory locking privileges and expenses

Q, redhat.
Alternative Network AIO

Directly associate DMA area with socket

int dma assoc(int sock, dma mem t mem,size t size,
unsigned flags);

int dma disassoc(int sock, dma mem t, size t
size);

Get delivery and send data directly from that memory
region

Qredhat.
DMA Memory Handling

DMA areas need administration

Do not overwrite buffer with received data until
program is done with it

Do not write into buffer in preparation of sending
when incoming data could also be written

int sio reserve(dma mem t dma, void **memp off,
size t size);

int sio release(dma mem t dma, void *mem, size t
size);

Q, rednat.

New Network AlO Interfaces

int sio send(int sock, const void *buf, size t size, int flags);

int sio_sendto(int sock, const void *buf, size t size, int flags,
const struct sockaddr *to, socklen t tolen);

int sio_sendmsg(int sock, const void *buf, size t size, int flags);

int sio recv(int sock, void **buf, size t size, int flags);

int sio_recvfrom(int sock, const void **buf, size t size, int flags,
struct sockaddr *to, socklen t tolen);

int sio recvmsg(int sock, const void **buf, size t size, int flags);

Note: receive functions take pointer to a pointer !!!

Q, rednat.

Questions ?

