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An architecture is presented f o r  fas t  high-quality rendering o f  
complex images. All  objects are reduced to common world- 
space geometric entities called micropolygons, and all o f  the 
shading and visibility calculations operate on these micropo- 
lygons. Each type o f  calculation is performed in a coordinate 
system that is natural f o r  that type o f  calculation. Micropo- 
lygons are created and textured in the local coordinate system o f  
the object, with the result that texture filtering is simplified and 
improved. Visibility is calculated in screen space using stochas- 
tic point sampling with a z buffer. There are no clipping or 
inverse perspective calculations. Geometric and texture locality 
are exploited to minimize paging and to support models that 
contain arbitrarily many primitives. 
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1. Introduction 
Reyes is an image rendering system developed at Lucasfilm Ltd. 
and currently in use at Pixar. In designing Reyes, our goal was 
an architecture optimized for fast high-quality rendering of com- 
plex animated scenes. By fast we mean being able to compute a 
feature-length film in approximately a year; high-quality means 
virtually indistinguishable from live action motion picture pho- 
tography; and complex means as visually rich as real scenes. 

This goal was intended to be ambitious enough to force us to 
completely rethink the entire rendering process. We actively 
looked for new approaches to image synthesis and consciously 
tried to avoid limiting ourselves to thinking in terms of  tradi- 
tional solutions or particular computing environments. In the 
process, we combined some old methods with some new ideas. 

Some of the algorithms that were developed for the Reyes archi- 
tecture have already been discussed elsewhere; these include sto- 
chastic sampling [12], distributed ray tracing [10, 13], shade 
trees [11], and an antialiased depth map shadow algorithm [32]. 
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This paper includes short descriptions of these algorithms as 
necessary, but the emphasis in this paper is on the overall archi- 
tecture. 

Many of our design decisions are based on some specific 
assumptions about the types of  complex scenes that we want to 
render and what makes those scenes complex. Since this archi- 
tecture is optimized for these types of  scenes, we begin by exa- 
mining our assumptions and goals. 

• Model  complexity.  We are interested in making images 
that are visually rich, far more complex than any pictures 
rendered to date. This goal comes from noticing that even 
the most complex rendered images look simple when com- 
pared to real scenes and that most of the complexity in real 
scenes comes from rich shapes and textures. We expect 
that reaching this level of  richness will require scenes with 
hundreds of  thousands of geometric primitives, each one of 
which can be complex. 

• Model  diversity.  We want to support a large variety of 
geometric primitives, especially data amplification primi- 
tives such as procedural models, fractals [18], graftals [35], 
and particle systems [30, 31]. 

• Shading  complexity.  Because surface reflection charac- 
teristics are extremely varied and complex, we consider a 
programmable shader a necessity. Our experience with 
such a shader [ t l ]  is that realistic surfaces frequently 
require complex shading and a large number of textures. 
Textures can store many different types of data, including 
surface color [8], reflections (environment maps) [3], nor- 
mal perturbation (bump maps) [4], geometry perturbation 
(displacement maps) [111, shadows [32], and refraction 
[25]. 

• Min imal  ray  t racing.  Many non-local lighting effects can 
be approximated with texture maps. Few objects in natural 
scenes would seem to require ray tracing. Accordingly, we 
consider it more important to optimize the architecture for 
complex geometries and large models than for the non- 
local lighting effects accounted for by ray tracing or radios- 
ity. 

• Speed. We are interested in making animated images, and 
animation introduces severe demands on rendering speed. 
Assuming 24 frames per second, rendering a 2 hour movie 
in a year would require a rendering speed of about 3 
minutes per frame. Achieving this speed is especially chal- 
lenging for complex images. 

• Image  Quali ty.  We eschew aliasing and faceting artifacts, 
such as jagged edges, Moir6 patterns in textures, temporal 
strobing, and highlight aliasing. 

• Flexibility. Many new image rendering techniques will 
undoubtedly be discovered in the coming years. The archi- 
tecture should be flexible enough to incorporate many of  
these new techniques. 
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2. Design Principles  

These assumptions led us to a set of architectural design princi- 
ples. Some of  these principles are illustrated in the overview in 
Figure 1. 

1. Na tu ra l  coordinates .  Each calculation should be done in 
a coordinate system that is natural for that calculation. For 
example, texturing is most naturally done in the coordinate 
system of the local surface geometry (e.g., uv space for 
patches), while the visible surface calculations are most 
naturally done in pixel coordinates (screen space). 

2. Vector izat ion.  The architecture should be able to exploit 
vectorization, parallelism and pipelining. Calculations that 
are similar should be done together. For example, since 
the shading calculations are usually similar at all points on 
a surface, an entire surface should be shaded at the same 
time. 

3. C o m m o n  representa t ion .  Most of  the algorithm should 
work with a single type of  basic geometric object. We turn 
every geometric primitive i n to  micropolygons, which are 
flat-shaded subpixel-sized quadrilaterals. All of the shad- 
ing and visibility calculations are performed exclusively on 
micropolygons. 

4. Locality. Paging and data thrashing should be minimized. 

a. Geometr ic  locality. Calculations for a geometric 
primitive should be performed without reference to 
other geometric primitives. Procedural models 
should be computed only once and should not be kept 
in their expanded form any longer than necessary. 

b. Tex ture  locality. Only the textures currently needed 
should be in memory, and textures should be read off 
the disk only once. 

5. Linear i ty .  The rendering time should grow linearly with 
the size of the model. 

6. Large  models.  There should be no limit to the number of  
geometric primitives in a model. 

7. Back door.  There should be a back door in the architec- 
ture so that other programs can be used to render some of 
the objects. This give us a very general way to incorporate 
any new technique (though not necessarily efficiently). 

8. Texture  maps.  Texture map access should be efficient, as 
we expect to use several textures on every surface. Tex- 
tures are a powerful tool for defining complex shading 
characteristics, and displacement maps [11] can be used for 
model complexity. 

We now discuss some of these principles in detail. 

2.1. Geomet r ic  Locality.  

When ray tracing arbitrary surfaces that reflect or refract, a ray in 
any pixel on the screen might generate a secondary ray to any 
object in the model. The object hit by the secondary ray can be 
determined quickly [20,21,34],  but that object must then be 
accessed from the database. As models become more complex, 
the ability to access any part of the model at any time becomes 
more expensive; model and texture paging can dominate the 
rendering time. For this reason, we consider ray tracing algo- 
rithms poorly suited for rendering extremely complex environ- 
ments. 

In many instances, though, texture maps can be used to approxi- 
mate non-local calculations. A common example of  this is the 
use of environment maps [3] for reflection, a good approxima- 
tion in many cases. Textures have also been used for refractions 
[25] and shadows [32, 36]. Each of  these uses of texture maps 
represents some non-local calculations that we can avoid (princi- 
ples 4a and g). 

MODEL 

read model 

bound 
N 

on s c r e e n ? - ~  cull 

sp l i t  4-- d iceab le?  

dice 

TEXTURES --~ shade 

sample  

BACK DOOR --~ visib~il i ty 

f i l t e r  

PICTURE 

Figure 1. Overview of the algorithm. 

2.2. Point sampling. 
Point sampling algorithms have many advantages; they are sim- 
ple, powerful, and work easily with many different types of 
primitives. But unfortunately, they have been plagued by atias- 
ing artifacts that would make them incompatible with our image 
quality requirements. Our solution to this problem is a Monte 
Carlo method called stochastic sampling, which is described in 
detail elsewhere [12]. With stochastic sampling, aliasing is 
replaced with noise, a less objectionable artifact. 

We use a type of  stochastic sampling called tittering [ 12]. Pixeis 
are divided into a number  of  subpixels (typically 16). Each sub- 
pixel has exactly one sample point, and the exact location of  that 
sample point within the subpixel is determined by jittering, or 
adding a random displacement to the location of  the center of the 
subpixel. This jittered location is used to sample micropolygons 
that overlap the subpixel. The current visibility information for 
each sample point on the screen is kept in a z buffer [8]. 

The z buffer is important for two reasons. First, it permits 
objects to be sent through the rest of  the system one at a time 
(principles 2, 4, 5 and 6). Second, it provides a back door (prin- 
ciple 7); the z buffer can combine point samples from this algo- 
rithm with point samples from other algorithms that have capa* 
bilities such as ray tracing and radiosity. This is a form of  3-D 
eompositing; it differs from Duff 's  method [15] in that the corn- 
positing is done before filtering the visible samples. 
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Glossary  

CAT 

CSG 

depth complexity 

dicing 

displacement maps 

plane 

eye space 

,,rid 

eometrle locality 

hither plane 

ltter 

nlcropolygon 

RAT 

s and  t 

screen space  

shade  tree  

splitting 

stochastic sampling 

texture locality 

u and  v 

wor ld  space  

yon plane 

a coherent access texture, in which s is a Linear function 
of u and t is a linear function of v. 

constructive solid geometry. Defines objects as the un- 
ion, intersection, or difference of other objects. 

the average number of surfaces (visible or noO at each 
sample point 

the process of taming geometric primitives into grids ol 
micropolygons. 

texture maps used to change the location of points in 
grid. 

a plane parallel to the hither plane that is slightly in fro~ 
of the eye. The perspective calculation may be unreli- 
able for points not beyond this plane. 

the world space coordinate system rotated and translated 
so that the eye is at the origin looking down the +z axis. 
+x is to the right, +y is down, 

a two<limensional array of micropolygons. 

the principle that all of the calculations for a geometric 
primitive should be performed without reference to oth- 
er geometric primitives. 

the z=min plane that is the front of the viewing frustum. 

the random perturbation of regularly spaced points for 
stochastic sampling 

the basic geometric object for most of the algorithm, 
flat-shaded quadrilateral with an area of about IA pixel. 

a random access texture. Any texture that is not a CAT 

parameters used to index a texture map. 

the perspective space in which the x and y values 
correspond to pixel locations. 

a method for describing shading calculations [11 ]. 

the process of turning a geometric primitive into one or 
more new geometric primitives. 

a Monte Carin point-sampling method used for antialias- 
ing [12]. 

the principle that each texture should be read off the disk 
only once. 

coordinates of a parametric representation of a surface. 

the global right-handed nonperspective coordinate sys- 
tem. 

the z=max plane that is the back of the viewing frustum. 

2 . 3 .  M i c r o p o l y g o n s .  

Micropolygons are the common  basic geometric unit o f  the algo- 
rithm (principle 3). They are flat-shaded quadrilaterals that a r e  
approximately 1/2 pixel on a side. Since half  a pixel is the 
Nyquist  limit for an image [6, 26], surface shading can be ade- 
quately represented with a single color per micropolygon. 

Turning a geometric primitive into micropolygons is called dic- 
ing. Every primitive is diced along boundaries that are in the 
natural coordinate system o f  the primitive (principle 1). For  

example,  in the case o f  patches, micropolygon boundaries are 
parallel to u and v. The result o f  dicing is a two-dimensional  
array o f  micropolygons called a grid (principle 2). Micropo- 
lygons require less storage in grid form because vertices shared 
by adjacent micropolygons are represented only once. 

Dicing is done in eye space, with no knowledge o f  screen space 
except  for an estimate o f  the primit ive 's  size on the screen. This 
estimate is used to determine how finely to dice, i.e., how many 
micropolygons to create. Primitives are diced so that micropo- 
lygons are approximately half  a pixel on a side in screen space. 
This adaptive approach is similar to the Lane-Carpenter  patch 
algorithm [22]. 

The details o f  dicing depend on the type o f  primitive. For the 
example o f  bicubic patches, screen-space parametric derivatives 
can be used to determine how finely to dice, and forward dif- 
ferencing techniques can be used for the actual dicing. 

All o f  the micropolygons in a grid are shaded together. Because 
this shading occurs before the visible surface calculation, at a 
minimum every piece o f  every forward-facing on-screen object  
must  be shaded. Thus  many shading calculations are performed 
that are never used. The extra work we do is related to the depth 
complexity of  the scene, which is the average number  o f  surfaces 
at each sample point. We  expect  pathological cases to be 
unusual, however,  because o f  the effort required to model  a 
scene. Computer  graphics models  are like movie  sets in that 
usually only the parts that will be seen are actually built. 

There are advantages that offset  the cost  o f  this extra shading; 
the t radeoff  depends on the particular scene being rendered. 
These are some o f  the advantages to using micropolygons and to 
shading them before determining visibility: 

• Vec to r i zab le  shading .  If  an entire surface is shaded at 
once,  and the shading calculations for each point on the 
surface are similar, the shading operations can be vector- 
ized (principle 2). 

• Tex tu re  locality.  Texture requests can be made for large, 
contiguous blocks o f  texture that are accessed sequentially. 
Because shading can be done in object order, the texture 
map  thrashing that occurs in many other algorithms is 
avoided (principle 4b). This thrashing occurs when texture 
requests come in small pieces and alternate between 
several different texture maps.  For extremely complex 
models  with lots o f  textures, this can quickly make a 
renderer unusable. 

• Tex tu re  f i l ter ing.  Many o f  the texture requests are for 
rectilinear regions o f  the texture map (principle 1). This is 
discussed in detail in the next section. 

• S u b d i v i s i o n  c o h e r e n c e .  Since an entire surface can be 
subdivided at once, we can take advantage o f  efficient 
techniques such as forward differencing for patch subdivi- 
sion (principles 1 and 2). 

• Cl ipping .  Objects never  need to be clipped along pixel 
boundaries, as required by some algorithms. 

• D i sp l acemen t  m a p s  [11]. Displacement maps are like 
bump maps [4] except  that the location o f  a surface can be 
changed as well as its normal, making texture maps a 
means o f  modeling surfaces or storing the results o f  model-  
ing programs. Because displacement maps can change the 
surface location, they must  be computed before the hidden 
surface calculation. We have no experience with the 
effects o f  large displacements on dicing. 

• No perspec t ive .  Because micropolygons are small, there 
is no need to correct  for the perspective distortion o f  inter- 
polation [24]. Because shading occurs before the perspec- 
tive transformation, no inverse perspective transformations 
are required. 
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2.4. Texture Locality. 

For  rich, comp lex  images ,  textures  are an impor tan t  source  o f  
in format ion  for shad ing  calcula t ions  [3, g]. Tex tu res  are usua l ly  
indexed  u s ing  two parameters  cal led u and v. Because  u and v 
are also u sed  for pa tch  parameters ,  we will call the texture 
parameters  s and t to avoid  confus ion.  Surfaces  o ther  than  
pa tches  m a y  also have  a natural  coordinate  sys tem;  we will u se  u 
and  v for those  sur face  coordinates  too. 

For  m a n y  textures,  s and t depend  only  on the u and  v o f  the 
pa tch  and  can  be  de te rmined  wi thout  knowing  the details  o f  the 
shad ing  calculat ions.  Other  textures  are accessed  wi th  an  s and t 
that  are de te rmined  by s o m e  more  compl ex  calculat ion.  For  
example ,  the s and  t for  an  e n v i r o n m e n t  m a p  depend  o n  the  nor-  
ma l  to the surface  ( though  that  normal  m i gh t  in turn depend  on  a 
b u m p  m a p  that  is  indexed  by u and v). 

W e  accordingly  divide textures  into two classes:  coherent access 
textures (CATs)  and  random access textures (RATs) .  C A T s  are 
textures  for  w h i c h  s = a u + b  and t=ev+d,  where  a,  b, c, and  d are 
constants .  All  o ther  textures  are R AT s .  M a n y  C A T s  have  s=u 
and t=v, bu t  we have  genera l ized  this re la t ionship to al low for  
s ingle tex tures  that  s t retch over  more  than one patch or  repeat  
mul t ip le  t imes  ove r  one  patch.  

W e  make  this  dis t inct ion because  C A T s  can  be hand led  m u c h  
more  easi ly and  of ten  s ignif icant ly  faster  than  R AT s .  Because  st 
order  is the  s ame  as uv order  for  C AT s ,  we can  access  the texture 
m a p  sequent ia l ly  i f  we do our  shad ing  calculat ions in uv order  
(principles 1 and  4b). Fur thermore ,  i f  m ic ropo lygons  are created 
so  that  their  vert ices  have  s and  t va lues  that are integer  mul t ip les  
o f  powers  o f  l/z, and  if  the tex tures  are prefi l tered and  prescaled 
and  stored as resolut ion py ramids  [36], t hen  no fi l tering calcula-  
t ions are required at r un  t ime,  s ince  the pixels  in the texture line 
up  exac t ly  wi th  the  mic ropo lygons  in the  grid (principle 1). Fig- 
ure  2 s h o w s  a pr imi t ive  diced into a 4x4 grid and  the  correspond-  
ing texture map;  notice how the marked  mic ropo lygon  
cor responds  exact ly  to the marked  texture region because  we are 
d ic ing  a long u and  v, the t ex tu re ' s  natural  coordinate  sys tem.  

o   , 0oy0 ooo 

diced .primit ive ~ t e x t u r e  map 
in 

screen space 

Figure 2. With CATs, micropolygons map exactly to texture map 
pixels. With the inverse pixel method, pixels map to quadrila- 
teral areas of  texture that require.filtering. 

By contrast ,  in the  more  traditional pixel  texture access ,  the  pixel  
boundary  is mapped  to texture space,  where  f i h e d n g  is required. 
Fil tering wi thout  a resolu t ion  pyramid  gives  good  resul ts  bu t  can  
be expens ive  [17]. U s i n g  a resolut ion py ramid  requires  interpo- 
la t ing be tween  two levels  o f  the pyramid ,  and the fi l tering is 
poor  [19]. S u m m e d  area tables [14] give s o m e w h a t  bet ter  filter- 
ing but  can  have  pag ing  problems.  

R A T s  are m o r e  general  than  C A T s ,  but  R A T  access  is slower.  
R A T s  can  s igni f icant ly  reduce  the  need for ray tracing. For  
example ,  ref lect ions and  refract ions can f requent ly  be  textured 
onto a surface  wi th  e n v i r o n m e n t  maps .  Env i ronmen t  m a p s  are 
R A T s  because  they are indexed  according to the ref lect ion direc- 
tion. Ano the r  e x a m p l e  o f  a R A T  is a decal  [2], wh ich  is a 
wor ld-space  parallel project ion o f  a texture  onto a surface,  so 
that  s and  t depend  on  x, y and z ins tead o f  on  u and  v. 

Initialize the z buffer. 
For each geometric primitive in the model, 

Read the primitive from the model file 
I f  the primitive can be bounded, 

Bound the primitive in eye space. 
If  the primitive is completely outside of the hither-you 2 range, cull it. 
If the primitive spans the e plane and can be split, 

Mark  the primitive undieeable. 
Else 

Convert the bounds to screen space. 
If  the bounds are completely outside the viewing frustum, cull the primitive. 

I f  the primitive can be diced, 
Dicethe primitive into a grid of micropolygons. 
Compute normais and tangent vectors for the micropolygons in the grid. 
Shade the micropolygons in the grid. 
Break the grid into micropolygons. 
For each mleropolygon, 

Bound the micropolygon in eye space. 
If the micropolygon is outside the hither-yon range, cull it. 
Convert the mieropolygon to screen space. 
Bound the micropolygon in screen space. 
For each sample point inside the screen space bound, 

If the sample point is inside the mlcropolygon, 
Calculate the z of the micropolygon at the sample point by interpolation. 
If the z at the sample point is less than the z in the buffer, 

Replace the sample in the buffer with this sample. 
Else 

Split the primitive into other geometric primitives. 
Put the n e w  primitives at the head of the unread portion of the model file. 

Filter the visible sample hits to  p r o d u c e  ptxels. 
Output the pixels. 

Figure 3. Summary o f  the algorithm. 
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pixels 

micropolygon 

Figure 4a. A sphere is split into patches, and one of  the patches 
is diced into a 8×8 grid of  micropolygons. 

grid 
litte 
samples 

Figure 4b. The micropolygons in the grid are transformed to 
screen space, where they are stochastically sampled. 

3. Description of the Algorithm 
The algorithm is summarized in Figure 3. In order to emphasize 
the basic structure, this description does not include tran- 
sparency, constructive solid geometry, motion blur, or depth of 
field. These topics are discussed later. 

Each object is turned into micropolygons as it is read in. These 
mietopolygons are shaded, sampled, and compared against the 
values currently in the z buffer. Since only one object is pro- 
cessed at a time, the amount of  data needed at any one time is 
limited and the model can contain arbitrarily many objects. 

Primitives are subdivided only in uv space, never in screen 
space. The first part of  the algorithm is done in uv space and 
world space, and the second half is done in screen space. After 
the transformation to screen space, there is never any need to go 
back to world space or uv space, so there are no inverse transfor- 
mations. 

Each type of  geometric primitive has the following routines: 

• Bound.  The primitive computes its eye-space bound; its 
screen-space bound is computed from the eye-space bound. 
A primitive must be guaranteed to lie inside its bound, and 
any primitives it is split into must have bounds that also lie 
inside its bound. The bound does not have to be tight, 
however. For example, a fractal surface can be bounded if  
the maximum value of  its random number table is known 
[7, 18]. The fraetal will be guaranteed to lie within this 
bound, but the bound probably will not be v e ~  tight. The 
effect of  displacement maps must be considered in the cal- 
culation of  the bound. 

• Dice. Not all types of primitives need to be dieeable. The 
only requirement is that each primitive be able to split 
itself into other primitives, and that this splitting eventually 
leads to primitives that can all be diced. 

• Split. A primitive may split itself into one or more primi- 
rives of  the same type or of  different types. 

• Diceable test. This test determines whether the primitive 
should be diced or split and returns "d iceable"  or "no t  
dieeable" accordingly. Primitives should be considered 
not diceable if  dicing them would produce a grid with too 
many micropolygons or a large range of  micropolygon 
sizes. 

The bound, split, and dice routines are optional. If  the diceable 
routine ever returns "d iceab le" ,  the dice routine must exist; if 
the diceable routine ever returns "no t  diceable",  the split routine 
must exist. I f  the bound routine exists, it is used for culling and 
for determining how finely a primitive should be diced in order 
to produce micropolygons of the correct size on the screen. 

For example, consider one possible set of routines for a sphere. 
The sphere diceable routine returns "d iceable"  for small spheres 
and "no t  diceable"  for large spheres. The sphere dice routine 
turns a sphere directly into mieropolygons. The sphere split rou- 
tine turns the sphere into 32 patches [16]. The patch dice routine 
creates a rectangular grid of  micropolygons so that the vertices 
differ in u and v by integer multiples of  powers of  1/2. This is 
done to obviate CAT filtering, but in this case it is also necessary 
for the prevention of  patch cracks [9]. Figure 4a shows a sphere 
being split into patches and one of those patches being diced into 
an 8x8 grid of  mieropolygons. Figure 413 shows tiffs grid in 
screen space with jittered sample locations in one of  the pixels. 
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Figure 5. A geometric primitive that spans the C and hither planes is split 
until its pieces can be culled or processed. The culled pieces are marked. 

This algorithm does not require clipping. The viewing frustum 
consists o f  a screen space xy range and an eye space hither-yon z 
range. Objects that are known to be completely outside of  this 
region are culled. Objects that are partly inside the frustum and 
partly outside are kept, shaded and sampled. Regions of  these 
objects that are outside of  the viewing frustum in the x o ry  direc- 
tions are never sampled. Regions that are in front of  or behind 
the viewing frustum may be sampled, but their hits are rejected if 
the sampled surface point lies outside the hither-yon z range. 
Note that if the filter that is used to sample the z buffer to pro- 
duce pixels is wider than a pixel, the viewing frustum must be 
expanded accordingly because objects that are just off  screen can 
affect pixels on the screen. 

Sometimes an object extends from behind the eye to inside the 
viewing frustum, so that part of  the object has an invalid per- 
spective calculation and another pax is visible. This situation is 
traditionally handled by clipping to the hither plane. To avoid 
clipping, we introduce the e plane, a plane of constant z that lies 
slightly in front of  the eye as shown in Figure 5. Points on the 
z<e side of  this plane can have an invalid perspective calculation 
or an unmanageably large screen space x and y because of  the 
perspective divide. If a primitive spans both the c plane and the 
hither plane, it is considered "no t  diceable" and is split. The 
resulting pieces are culled if they are entirely outside of  the 
viewing frustum, diced if they lie completely on the z>c side of  
the e plane, and split again if they span both the e plane and the 
hither ~lane. As long as every primitive can be split, and the 
splits eventually result in primitives with smaller bounds, then 
this procedure is guaranteed to terminate successfully. This 
split-until-cullable procedure obviates clipping. Objects that 
cannot be bounded can still be protected against bad perspective 
situations, since micropolygons are created in eye space. Their 
micropolygons can be culled or be run through a split-until- 
cullable procedure. 

4. Extensions 
Since this algorithm was first developed, we have found it easy 
to add a number of  features that were not specifically considered 
in the original design. These features include motion blur, depth 
of  field, CSG (constructive solid geometry) [ 1, 33], shadows [32] 
and a variety of  new types of  models. The main modification for 
transparency and CSG'calculations is that each sample location 
in the z buffer stores multiple hits. The hits at each sample point 
are sorted in z for the transparency and CSG calculations. 
Motion blur and depth of  field are discussed elsewhere in detail 
[10, 12, 13]. In the case of  motion blur, micropolygons are 
moved for each sample point to a jittered time associated with 

that sample. For depth of  field, they are moved in x and y 
according to a jittered lens location. Both motion blur and depth 
of  field affect the bound calculations; the details are described 
elsewhere [13]. 

5. Implementation 
We had to make some compromises to implement this algorithm 
on a general purpose computer, since the algorithm as described 
so far can require a considerable amount of  z buffer memory. 
The screen is divided into rectangular buckets, which may be 
kept in memory or on disk. In an initial pass, each primitive is 
bounded and put into the bucket corresponding to the upper left 
corner of  its screen space bound. For the rest of  the calculations, 
the buckets are processed in order, left-to-right and top-to- 
bottom. First all of  the primitives in the bucket are either split or 
diced; as primitives are diced, their micropolygons are shaded 
and put into every bucket they overlap. After all of  the primi- 
fives in a bucket have been split or diced, the micropolygons in 
that bucket are sampled. Once a bucket is empty, it remains 
empty, so we only need enough z buffer memory for one bucket. 
The number of  micropolygons in memory at any one time can be 
kept manageable by setting a maximum grid size and forcing 
primitives to be considered "not  diceable" if dicing them would 
produce too large a grid. 

We have implemented this revised version of  the algorithm in C 
and have used it to make a number of  animated films, including 
The Adventures o f  Andre  and Wally B. [27], the stained glass 
man sequence in Young Sherlock Holmes [25], Luxo Jr. [28], and 
Red's Dream [29]. The implementation performs reasonably 
well, considering that the algorithm was designed as a testbed, 
without any requirement that it would run efficiently in C. For a 
given shading complexity, the rendering time is proportional to 
the number of  micropolygons (and thus to screen size and to the 
number of  objects). 

An example of  a image rendered with this program is shown in 
Figure 6. It is motion blurred, with environment maps for the 
reflections and shadow depth maps for the shadows [32]. The 
picture is by John Lasseter and Eben Ostby. It was rendered at 
1024x614 pixels, contains 6.8 million micropolygons, has 4 light 
sources, uses 15 channels of  texture, and took about 8 hours of  
CPU time to compute. Frames in Andre  were 512x488 pixels 
and took less than ½ hour per frame. Sherlock frames were 
1024x614" and took an hour per frame; Luxo frames were 
724x434 and took 1½ hours per frame. Statistics on Red's 
Dream frames are not available yet. All of  these CPU times are 
for a CCI 6/32, which is 4-6 times faster than a VAX 11/780. 
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Figure 6. 1986 Pixar Christmas Card by John Lasseter and Eben Ostby. 

6. Discussion 
This approach has certain disadvantages. Because shading 
occurs before sampling, the shading cannot be calculated for the 
specific time of each sample and thus cannot be motion blurred 
correctly. Shading after sampling would have advantages if the 
coherency features could be retained; this is an area of future 
research. Although any primitive that can be scan-converted can 
be turned into micropolygons, this process is more difficult for 
some primitives, such as blobs [5]. The bucket-sort version 
requires bounds on the primitives to perform well, and some 
primitives such as particle systems are difficult to bound. No 
attempt is made to take advantage of coherence for large 
simply-shaded surfaces; every object is turned into micropo- 
lygons. Polygons in general do not have a natural coordinate 
system for dicing. This is fine in our case, because bicubic 
patches are our most common primitive, and we hardly ever use 
polygons. 

On the other hand, our approach also has a number of advan- 
tages. Much of the calculation in traditional approaches goes 
away completely. There are no inversion calculations, such as 
projecting pixel comers onto a patch to find normals and texture 
values. There are no clipping calculations. Many of the calcula- 
tions can be vectorized, such as the the shading and surface nor- 
mal calculations. Texture thrashing is avoided, and in many 
instances textures require no run time filtering. Most of the cal- 
culations are done on a simple common representation (micropo- 
lygons). 

• This architecture is designed for rendering exceedingly complex 
models, and the disadvantages and advantages listed above 
reflect the tradeoffs made with this goal in mind. 
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