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 Task: Given a large number (N in the millions or 
billions) of documents, find “near duplicates” 

 Applications: 
 Mirror websites, or approximate mirrors 
 Don’t want to show both in a single set of search results 

 Problems: 
 Many small pieces of one document can appear  

out of order in another 
 Too many documents to compare all pairs 
 Documents are so large or so many that they cannot  

fit in main memory 
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1. Shingling: Convert docs to sets of items 
 Document is a set of k-shingles 

 

2. Min-Hashing: Convert large sets into short 
signatures, while preserving similarity 
 Want hash func. that Pr[hπ(C1) = hπ(C2)] = sim(C1, C2)  
 For the Jaccard similarity Min-Hash has this property! 

 

3. Locality-sensitive hashing: Focus on pairs of 
signatures likely to be from similar documents 
 Split signatures into bands and hash them 
 Documents with similar signatures get hashed into 

same buckets: Candidate pairs  
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 A k-shingle (or k-gram) is a sequence of k 
tokens that appears in the document 
 Example: k=2; D1 = abcab 

Set of 2-shingles: C1 = S(D1) = {ab, bc, ca} 
 Represent a doc by a set of hash values of its 

k-shingles 
 A natural document similarity measure is then 

the Jaccard similarity: 
  sim(D1, D2) = |C1∩C2|/|C1∪C2| 

 Similarity of two documents is the Jaccard similarity of 
their shingles 
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 Prob. hπ(C1) = hπ(C2) is the same as sim(D1, D2): 
  Pr[hπ(C1) = hπ(C2)] = sim(D1, D2)  
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Similarities of columns and 
signatures (approx.) match! 
                   1-3      2-4    1-2   3-4 
Col/Col   0.75    0.75    0       0 
Sig/Sig   0.67    1.00    0       0 
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 Hash columns of the signature matrix M:   
Similar columns likely hash to same bucket 
 Divide matrix M into b bands of r rows (M=b·r) 
 Candidate column pairs are those that hash  

to the same bucket for ≥ 1 band 
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 The S-curve is where the “magic” happens 
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 Remember: b bands, r rows/band 
 Let sim(C1 , C2) = t 
 Pick some band (r rows) 
 Prob. that elements in a single row of  

columns C1 and C2 are equal = t 
 Prob. that all rows in a band are equal = tr  
 Prob. that some row in a band is not equal = 1 - tr  

 Prob. that all bands are not equal  = (1 - tr)b 

 Prob. that at least 1 band is equal = 1 - (1 - tr)b 
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P(C1, C2 is a candidate pair) = 1 - (1 - tr)b  
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r = 1, b = 1..10 

r = 5, b = 1..50 
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 We have used LSH to find similar documents 
 More generally, we found similar columns in large 

sparse matrices with high Jaccard similarity 
 For example, customer/item purchase histories 

 

 Can we use LSH for other distance measures? 
 e.g., Euclidean distances, Cosine distance  
 Let’s generalize what we’ve learned! 
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 For Min-Hashing signatures, we got a Min-Hash 
function for each permutation of rows 

 A “hash function” is any function that takes two  
elements and says whether they are “equal” 
 Shorthand: h(x) = h(y) means “h  says x and y are equal” 

 

 A family of hash functions is any set of hash 
functions from which we can pick one at 
random efficiently 
 Example: The set of Min-Hash functions generated 

from permutations of rows 
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 Suppose we have a space S of points with  
a distance measure d(x,y) 

 

 A family H of hash functions is said to be  
(d1, d2, p1, p2)-sensitive if for any x and y in S: 

 

1. If d(x, y) < d1, then the probability over all h∈ H,  
that h(x) = h(y) is at least p1 

 

2. If d(x, y) > d2, then the probability over all h∈ H,  
that h(x) = h(y) is at most p2 
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With a LS Family we can do LSH! 

Critical assumption 
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p1 

Small distance, 
high probability 

Large distance, 
low probability 
of hashing to  
the same value 
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 Let:  
 S = space of all sets,  
 d = Jaccard distance,  
 H is family of Min-Hash functions for all 

permutations of rows 
 Then for any hash function h∈ H: 

  Pr[h(x) = h(y)]  =  1 - d(x, y) 
 

 Simply restates theorem about Min-Hashing  
in terms of distances rather than similarities 
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 Claim: Min-hash H is a (1/3, 2/3, 2/3, 1/3)-
sensitive family for S and d. 

 
 
 
 

 For Jaccard similarity, Min-Hashing gives a 
(d1,d2,(1-d1),(1-d2))-sensitive family for any d1<d2 

 Theory leaves unknown what happens to  
pairs that are at distance between d1 and d2 
 Consequence: No guarantees about fraction of  

false positives in that range 

If distance < 1/3 
(so similarity ≥ 2/3) 

Then probability 
that Min-Hash values 
agree is > 2/3 
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 Can we reproduce the  
“S-curve” effect we saw  
before for any LS family? 

 

 The “bands” technique we learned for signature 
matrices carries over to this more general setting 
 So we can do LSH with any  

(d1, d2, p1, p2)-sensitive family 
 

 Two constructions: 
 AND construction like “rows in a band” 
 OR construction like “many bands” 
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 Given family H, construct family H’ consisting 
of r functions from H 

 

 For h = [h1,…,hr] in H’, we say 
h(x) = h(y) if and only if hi(x) = hi(y) for all i 
 Note this corresponds to creating a band of size r 

 

 Theorem: If H is (d1, d2, p1, p2)-sensitive,  
then H’ is (d1,d2, (p1)r, (p2)r)-sensitive 

 

 Proof: Use the fact that hi ’s are independent 
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1 ≤ i ≤ r 



 Independence of hash functions (HFs) really 
means that the prob. of two HFs saying “yes” 
is the product of each saying “yes” 
 But two hash functions could be highly correlated 
 For example, in Min-Hash if their permutations agree in 

the first one million entries 

 However, the probabilities in definition of a  
LSH-family are over all possible members of H, H’ 
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 Given family H, construct family H’ consisting  
of b functions from H 

 

 For h = [h1,…,hb] in H’,  
h(x) = h(y) if and only if hi(x) = hi(y) for at least 1  i 

 

 Theorem: If H is (d1, d2, p1, p2)-sensitive,  
then H’ is (d1, d2, 1-(1-p1)b, 1-(1-p2)b)-sensitive 
 

 Proof: Use the fact that hi’s are independent 
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 AND makes all probs. shrink, but by choosing r 
correctly, we can make the lower prob. approach 0 
while the higher does not 

 

 OR makes all probs. grow, but by choosing b correctly, 
we can make the upper prob. approach 1 while the 
lower does not 
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 r-way AND followed by b-way OR construction 
 Exactly what we did with Min-Hashing 
 If bands match in all r values hash to same bucket 
 Cols that are hashed into ≥ 1 common bucket  Candidate 

 

 Take points x and y  s.t.  Pr[h(x) = h(y)] = p 
 H will make (x,y) a candidate pair with prob. p 

 Construction makes (x,y) a candidate pair with 
probability 1-(1-pr)b                The S-Curve! 
 Example: Take H and construct H’ by the AND 

construction with r = 4.  Then, from H’, construct H’’ 
by the OR construction with b = 4 
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p 1-(1-p4)4 

.2 .0064 

.3 .0320 

.4 .0985 

.5 .2275 

.6 .4260 

.7 .6666 

.8 .8785 

.9 .9860 
r = 4, b = 4  transforms a 
(.2,.8,.8,.2)-sensitive family into a 
(.2,.8,.8785,.0064)-sensitive family. 
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 Picking r and b to get desired performance 
 50 hash-functions (r = 5, b = 10) 
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 Picking r and b to get desired performance 
 50 hash-functions (r * b = 50) 
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 Apply a b-way OR construction followed by  
an r-way AND construction 

 Transforms probability p into (1-(1-p)b)r 
 The same S-curve, mirrored horizontally and 

vertically 
 

 Example: Take H and construct H’ by the OR 
construction with b = 4.  Then, from H’, 
construct H’’ by the AND construction  
with r = 4 
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 Example: Apply the (4,4) OR-AND construction 
followed by the (4,4) AND-OR construction 

 

 Transforms a (.2, .8, .8, .2)-sensitive family into 
a (.2, .8, .9999996, .0008715)-sensitive family 

 

 Note this family uses 256 (=4*4*4*4) of the  
original hash functions 
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 Pick any two distances d1 < d2 
 

 Start with a (d1, d2, (1- d1), (1- d2))-sensitive 
family 

 

 Apply constructions to amplify 
(d1, d2, p1, p2)-sensitive family,  
where p1 is almost 1 and p2 is almost 0 

 

 The closer to 0 and 1 we get, the more  
hash functions must be used! 
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 LSH methods for other distance metrics: 
 Cosine distance: Random hyperplanes 
 Euclidean distance: Project on lines 
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Points 

Signatures: short 
integer signatures that 
reflect their similarity Locality- 

sensitive 
Hashing 

Candidate pairs: 
those pairs of 
signatures that 
we need to test 
for similarity 

Design a (d1, d2, p1, p2)-sensitive 
family of hash functions (for that 

particular distance metric) 

Amplify the family 
using AND and OR 

constructions 

Depends on the 
distance function used 
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Data 

Signatures: short 
integer signatures that 
reflect their similarity Locality- 

sensitive 
Hashing 

Candidate pairs: 
those pairs of 
signatures that 
we need to test 
for similarity 

MinHash 1 5 1 5 
2 3 1 3 
6 4 6 4 
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Hyperplanes -1 +1 -1 -1 

+1 +1 +1 -1 
-1 -1 -1 -1 

0 1 0 0 
1 1 1 0 
0 0 0 1 
0 1 0 1 
0 0 1 0 
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 Cosine distance = angle between vectors  
from the origin to the points in question 
d(A, B) = θ = arccos(A⋅B / ǁAǁ·ǁBǁ) 
 Has range 𝟎𝟎…𝝅𝝅  (equivalently 0...180°) 
 Can divide θ by 𝝅𝝅 to have distance in range 0…1 

 Cosine similarity = 1-d(A,B) 
 But often defined as cosine sim: cos(𝜃𝜃) = 𝐴𝐴⋅𝐵𝐵

𝐴𝐴 𝐵𝐵
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- Has range -1…1 for  
general vectors 
- Range 0..1 for  
non-negative vectors 
(angles up to 90°) 
 



 For cosine distance, there is a technique 
called Random Hyperplanes 
 Technique similar to Min-Hashing  

 

 Random Hyperplanes method is a  
(d1, d2, (1-d1/𝝅𝝅), (1-d2/𝝅𝝅))-sensitive family for 
any d1 and d2 

 

 Reminder: (d1, d2, p1, p2)-sensitive 
1. If d(x,y) < d1, then prob. that h(x) = h(y) is at least p1 
2. If d(x,y) > d2, then prob. that h(x) = h(y) is at most p2 
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 Pick a random vector v, which determines a 
hash function hv with two buckets 

 

 hv(x) = +1 if v⋅x ≥ 0;  = -1 if v⋅x < 0 
 

 LS-family H = set of all functions derived  
from any vector 

 

 Claim: For points x and y,  
 Pr[h(x) = h(y)]  =  1 – d(x,y) / 𝝅𝝅 
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Look in the 
plane of x 
and y. 

θ 
Hyperplane 
normal to v’. 
Here h(x) ≠ h(y) 

v’ 

Hyperplane 
normal to v. 
Here h(x) = h(y) 

v 
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So: Prob[Red case] = θ / 𝝅𝝅 
So: P[h(x)=h(y)] = 1- θ/𝜋𝜋 = 1-d(x,y) 



 Pick some number of random vectors, and 
hash your data for each vector 

 

 The result is a signature (sketch) of  
+1’s and –1’s for each data point 

 

 Can be used for LSH like we used the  
Min-Hash signatures for Jaccard distance 

 

 Amplify using AND/OR constructions 
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 Expensive to pick a random vector in M 
dimensions for large M 
 Would have to generate M random numbers 

 

 A more efficient approach 
 It suffices to consider only vectors v 

consisting of +1 and –1 components 
 Why is this more efficient? 
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 Simple idea: Hash functions correspond to lines 
 

 Partition the line into buckets of size a 
 

 Hash each point to the bucket containing its 
projection onto the line 

 

 Nearby points are always close;  
distant points are rarely in same bucket 
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 “Lucky” case: 
 Points that are close 

hash in the same bucket 
 Distant points end up in 

different buckets 

 Two “unlucky” cases: 
 Top: unlucky 

quantization 
 Bottom: unlucky 

projection 
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Bucket 
width a 

Randomly 
chosen line 

Points at 
distance d If d  << a, then 

the chance the 
points are in the 
same bucket is 
at least 1 – d/a. 
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Bucket 
width a 

Points at 
distance d 

θ 

d cos θ 

If d  >> a, θ must 
be close to 90o 

for there to be 
any chance points 
go to the same 
bucket. 
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Randomly 
chosen line 



 If points are distance  d < a/2, prob.  
they are in same bucket  ≥ 1- d/a = ½ 

 If points are distance d > 2a apart, then they 
can be in the same bucket only if  d cos θ ≤ a  
 cos θ ≤ ½  
 60 < θ < 90, i.e., at most 1/3 probability 

 

 Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of  
hash functions for any a 

 Amplify using AND-OR cascades 
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50 

 Projection method yields a (a/2, 2a, 1/2, 
1/3)-sensitive family of hash functions 

 

 For previous distance measures, we could 
start with an (d1, d2, p1, p2)-sensitive family 
for any d1 < d2, and drive p1 and p2  to 1 and 0 
by AND/OR constructions 

 

 Note: Here, we seem to need d1 ≤  4 d2 
 In the calculation on the previous slide we only 

considered cases d < a/2 and d > 2a  
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 But as long as d1 < d2, the probability of points 
at distance d1  falling in the same bucket is 
greater than the probability of points at 
distance d2 doing so 

 

 Thus, the hash family formed by projecting 
onto lines is an (d1, d2, p1, p2)-sensitive family  
for some p1 > p2 
 Then, amplify by AND/OR constructions 
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Data 

Signatures: short 
integer signatures that 
reflect their similarity Locality- 

sensitive 
Hashing 

Candidate pairs: 
those pairs of 
signatures that 
we need to test 
for similarity 

Design a (d1, d2, p1, p2)-sensitive 
family of hash functions (for that 

particular distance metric) 

Amplify the family 
using AND and OR 

constructions 

MinHash 1 5 1 5 
2 3 1 3 
6 4 6 4 

0 1 0 0 
1 1 1 0 
0 0 0 1 
0 1 0 1 
0 0 1 0 
1 0 0 1 

“Bands” technique 

Random 
Hyperplanes -1 +1 -1 -1 

+1 +1 +1 -1 
-1 -1 -1 -1 

0 1 0 0 
1 1 1 0 
0 0 0 1 
0 1 0 1 
0 0 1 0 

    

“Bands” technique 

D
oc

um
en

ts
 

D
at

a 
po

in
ts

 

Candidate pairs 

Candidate pairs 



 Property P(h(C1)=h(C2))=sim(C1,C2) of 
hash function h is the essential part of 
LSH, without it we can’t do anything 
 

 LS-hash functions transform data to 
signatures so that the bands technique 
(AND, OR constructions) can then be 
applied 
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