

Headquarters: +1 (866) 645-1119
EU Office: +370 (5) 203-1571

Russian Office: +7 (495) 713-9900
www.auriga.com pr@auriga.com

 - 1 -

Thread synchronization in Linux
and Windows systems

Author: Eduard Trunov, Software Engineer, Auriga, Inc.

Introduction

In modern operating systems, each process has its own address space and one thread of control.

However, in practice we often face situations requiring several concurrent tasks within a single

process and with access to the same process components: structures, open file descriptors, etc.

Organization of a multi-threading model under any circumstances requires simultaneous access to

the same resources. This article provides general information about threads in Windows and Linux

OSs, and then presents synchronization mechanisms1 preventing access to shared resources.

This article will be of interest for those who deal with applications porting from one system to

another or who create multi-threaded applications in one system and want to know how it is

practically realized in the other system. This article will also be useful for those who have never

programmed applications with multiple threads but plan to do so in the future.

Thread concept

What are these threads needed for? Why can’t we just create processes? The latter paradigm has

been working over the course of many years, but process creation has some disadvantages, with

the following just a few examples:

• Process creation operation is resource-intensive.

• Processes require complicated mechanisms to access the same resources (named or

unnamed pipes, message queues, sockets, etc.), while threads automatically gain access to

the same address space.

• Performance of multi-threaded processes is higher than single-threaded.

Multithreading allows several threads to be executed as part of one process. A programming model

with threads provides developers with a comfortable abstraction of simultaneous execution. One

of the advantages of a programme with threads is that it works faster on computers with a multicore

processor. Threads use almost no resources when created, or additional plugins such as resource

1 For Linux, this article presents the threads interface defined by the POSIX.1-2001 standard

(known as “pthreads”).

Headquarters: +1 (866) 645-1119
EU Office: +370 (5) 203-1571

Russian Office: +7 (495) 713-9900
www.auriga.com pr@auriga.com

 - 2 -

access mechanisms; besides, performance and application interactivity of threads are higher. Apart

from address space, all threads use:

• Process regulations,

• Signal handlers (settings for working with signals),

• Current directory,

• User and group identifier.

At the same time, each thread has its own:

• Thread identifier,

• Stack,

• Set of registers,

• Signal mask,

• Priority.

Main functions for working with threads

At program startup by exec call, a main thread (initial thread) is created. Secondary threads are

created by calling pthread_create for Linux or _beginthread(ex) for Windows.

Let’s look more closely at threads creation for Linux:

#include <pthread.h>
int pthread_create(

pthread_t *tid,
const pthread_attr_t *attr,
void *(*func)(void *),
void *arg

);
/* Returns 0 in case of a successful completion, positive value in case of an error*/

Each thread has its identifier – pthread_t – and attributes: priority, initial stack size, daemon

feature. When creating a thread, it is necessary to indicate the function address that will be executed

(func), and also the single pointer argument (arg). Threads in Linux shall be exited either explicitly

– by calling pthread_exit function – or inexplicitly – by returning from this function2. If under the

conditions of the problem it is required to pass several arguments to a thread, it is necessary to use

the address of the structure with arguments.

In Windows, threads are created with the help of _beginthread(ex) or CreateThread functions.

Both are С-runtime calls, and the main difference between them is that CreateThread is a “raw”

2 Threads exit will be covered later in this article.

Headquarters: +1 (866) 645-1119
EU Office: +370 (5) 203-1571

Russian Office: +7 (495) 713-9900
www.auriga.com pr@auriga.com

 - 3 -

Win32 API, and _beginthread(ex) in its turn calls CreateThread inside of itself. In this article, we

will discuss _beginthread(ex) functions. The syntax of _beginthreadex is as follows:

uintptr_t _beginthreadex(

void *security,
 unsigned stack_size,
 unsigned(__stdcall *start_address)(void *),
 void *arglist,
 unsigned initflag,
 unsigned *thrdaddr
);

It can be observed that between pthread_create and _beginthreadex calls there is some vague

similarity; however, there are also differences. Тhus, in Windows: security – pointer to the

structure SECURITY_ATTRIBUTES, thrdaddr – points to 32-bit variable that receives the thread

identifier.

Let’s consider the following example of threads creation3:

#include <stdio.h>

#ifdef __PL_WINDOWS__
 #include <windows.h>
#endif //__PL_WINDOWS__
#ifdef __PL_LINUX__
 #include <pthread.h>
#endif //__PL_LINUX__

#define STACK_SIZE_IN_BYTES (2097152) //2MB

#ifdef __PL_WINDOWS__
unsigned int __stdcall process_command_thread(void) {
#endif //__PL_WINDOWS__
#if defined (__PL_LINUX__) || (__PL_SOLARIS__) || (__PL_MACOSX__)
void *process_command_thread(void *p) {
#endif //(__PL_LINUX__) || (__PL_SOLARIS__) || (__PL_MACOSX__)
 printf("Hello from process command thread\n");

3 In this example, as in other examples in this article, code base will be single for both Linux and

Windows. The difference will be in the compilation condition:
#ifdef __PL_WINDOWS__

//Windows code
#endif //__PL_WINDOWS__
#ifdef __PL_LINUX__

//Code for UNIX OS systems
#endif //__PL_LINUX__

Headquarters: +1 (866) 645-1119
EU Office: +370 (5) 203-1571

Russian Office: +7 (495) 713-9900
www.auriga.com pr@auriga.com

 - 4 -

 return 0;
}

int main(int argc, char *argv[])
{
#ifdef __PL_WINDOWS__
 DWORD process_command_thread_id;
 HANDLE h_process_command_thread;
 h_process_command_thread = (HANDLE)_beginthreadex(
 NULL,
 STACK_SIZE_IN_BYTES,
 process_command_thread,
 NULL,
 0,
 (unsigned long *)&process_command_thread_id
);
 if (h_process_command_thread == NULL)
 return -1;
#endif //__PL_WINDOWS__
#ifdef __PL_LINUX__
 pthread_t h_process_command_thread;

int h_process_command_thread_initialized;
 int ret;
 ret = pthread_create(
 &h_process_command_thread,
 NULL,
 process_command_thread,
 NULL
);
 if (ret != 0)
 return -1;
 h_process_command_thread_initialized = 1;
#endif // __PL_LINUX__
 printf("Hello from main thread\n");
 return 0;
}

The output will be the following:

LINUX WINDOWS

[root@localhost ~]# ./process

Hello from main thread

[root@localhost ~]#

C:\>process.exe
Hello from main thread
C:\>

It is easy to notice that process_command_thread was not run visually. When internal structures

used for threads management are initialized by pthread_create or _beginthreadex function, the

main thread finishes executing. We can expect a thread exit after calling pthread_join for Linux.

int pthread_join(pthread_t tid, void **retval);

Headquarters: +1 (866) 645-1119
EU Office: +370 (5) 203-1571

Russian Office: +7 (495) 713-9900
www.auriga.com pr@auriga.com

 - 5 -

A thread may be either joinable (by default) or detached. When a joinable thread is terminated,

information (identifier, termination status, thread counter, etc.) is kept until pthread_join is called.

In the Windows OS, one of the wait-functions may be considered analogous to pthread_join. The

wait functions family allows a thread to interrupt its execution and wait for a resource to be

released. Let’s take a look at an analogue of pthread_join, which is WaitForSingleObject:

DWORD WaitForSingleObject(HANDLE hObject, DWORD dwMilliseconds);

When this function is called, the first parameter, hObject, identifies the kernel object. This object

may be in one of two states: «free» or «busy».

The second parameter, dwMilliseconds, indicates how many milliseconds a thread is ready to wait

for the object to be released.

The following example illustrates pthread_join\WaitForSingleObject call:

#ifdef __PL_WINDOWS__

DWORD status = WaitForSingleObject(
h_process_command_thread,
INFINITE

);
 switch (status) {
 case WAIT_OBJECT_0:
 // The process terminated
 break;
 case WAIT_TIMEOUT:
 // The process did not terminate within timeout
 break;
 case WAIT_FAILED:
 // Bad call to function
 break;
 }
#endif //__PL_WINDOWS__
#ifdef __PL_LINUX__

int status = pthread_join(
h_process_command_thread,
NULL

);
switch (status) {

 case 0:
 // The process terminated
 break;
 case default:
 // Bad call to function
 break;
 }
#endif //__PL_LINUX__

Headquarters: +1 (866) 645-1119
EU Office: +370 (5) 203-1571

Russian Office: +7 (495) 713-9900
www.auriga.com pr@auriga.com

 - 6 -

In Windows code base, there is a constant INFINITE, which is passed by the second parameter.

This constant indicates that a thread waits for an event infinitely. The constant is declared in

WinBase.h and is defined as 0xFFFFFFFF (or -1).

In addition, Windows code includes WAIT_TIMEOUT. This condition is not represented in Linux.

In practice, this restriction is bypassed with the help of the following functions:

int pthread_tryjoin_np(pthread_t thread, void **retval) 4;

int pthread_timedjoin_np(
 pthread_t thread,
 void **retval,
 const struct timespec *abstime
);

If you refer to the pthread_tryjoin_np help page, you can see that EBUSY may be an error, and

WaitForSingleObject cannot inform us about it. To know state of the thread and identify its exit

code, it is necessary to call the function:

BOOL GetExitCodeThread(HANDLE hThread, PDWORD pdwExitCode);

The exit code is returned as a variable that pdwExitCode points to. If the thread has not terminated

when the function is called, then STILL_ACTIVE identifier is filled as the variable. If the call is

successful, then the function returns TRUE.

Let’s consider a case of pthread_tryjoin_np function usage for Linux and

GetExitCodeThread\WaitForSingleObject function for Windows.

#ifdef __PL_WINDOWS__
 DWORD dwret;
 BOOL bret;
 DWORD h_process_command_thread_exit_code;
 if (h_process_command_thread != NULL) {
 bret = GetExitCodeThread(
 h_process_command_thread,
 &h_process_command_thread_exit_code
);
 if (h_process_command_thread_exit_code == STILL_ACTIVE) {
 dwret = WaitForSingleObject(
 h_process_command_thread,
 5000 // 5000ms
);
 switch (dwret) {
 case WAIT_OBJECT_0:

4 Based on reference description, this function is a nonstandard GNU-extension, which requires a

“_np” (nonportable) suffix.

Headquarters: +1 (866) 645-1119
EU Office: +370 (5) 203-1571

Russian Office: +7 (495) 713-9900
www.auriga.com pr@auriga.com

 - 7 -

 // everything from this point on is good
 break;
 case WAIT_TIMEOUT:
 case WAIT_FAILED:
 default:
 SetLastError(dwret);
 break;
 }
 }
 }
#endif //__PL_WINDOWS__
#ifdef __PL_LINUX__
 int iret;
 struct timespec wait_time = { 0 };
 if (h_process_command_thread_initialized == 1) {
 iret = pthread_tryjoin_np(
 h_process_command_thread,
 NULL
);
 if ((iret != 0) && (iret != EBUSY)) {
 //TODO: process the error
 }
 if (iret == EBUSY) {
 clock_gettime(CLOCK_REALTIME, &wait_time);
 ADD_MS_TO_TIMESPEC(wait_time, 5000);
 iret = pthread_timedjoin_np(

h_process_command_thread,
NULL,
&wait_time

);
 switch (iret) {
 case 0:
 // everything from this point on is good
 break;
 case ETIMEDOUT:
 case EINVAL:
 default:
 break;
 }
 }
 }
#endif //__PL_LINUX__

An attentive reader will notice that ADD_MS_TO_TIMESPEC is a macro that is not represented

in Linux OS. Macros are added to wait_time 5000 ms, but macros implementation falls outside the

scope of this article. It also should be mentioned that in Linux we need to introduce a separate

variable, h_process_command_thread_initialized, because pthread_t is unsigned long (in

general), and we cannot verify it.

Headquarters: +1 (866) 645-1119
EU Office: +370 (5) 203-1571

Russian Office: +7 (495) 713-9900
www.auriga.com pr@auriga.com

 - 8 -

Let’s sum up the results. Linux and Windows OSs provide an opportunity to create threads inside

of an application. In Windows OS the type is HANDLE, and in Linux – pthread_t. In case of

creating a joinable thread in Linux OS it is necessary to write pthread_join, even if we are sure

that the thread has terminated. This practice will help us to avoid system resources leakage.

Discussed functions are recorded in Table 1.

Linux functions Windows functions

pthread_create beginthreadex

pthread_join WaitForSingleObject(.., INFINITE)

pthread_timedjoin_np GetExitCodeThread\WaitForSingleObject

pthread_tryjoin_np GetExitCodeThread

Table 1. Functions for thread synchronization in Windows and Linux OSs.

Events

Events are instances of kernel objects variation. Events inform about an operation termination and

are normally used when a thread performs initialization and then signals to another thread that it

can continue working. The initializing thread transforms the «event» object into unsignaled state,

after which it proceeds with its operations. When completed, it releases the event to signaled state.

In its turn, the other thread that has been waiting for the event to change its state to signaled,

resumes, and again becomes scheduled.

Let’s take a look at functions for working with «event» objects in Windows and Linux OSs.

In Windows OS an «event» object is created with the CreateEvent function:

HANDLE CreateEvent(
 PSECURITY_ATTRIBUTES psa,
 BOOL fManualReset,
 BOOL fInitialState,
 PCSTR pszName
);

Let’s bring to a sharper focus fManualReset and fInitialState parameters. FManualReset parameter

of BOOL type informs the system about a need to create a manual-reset event (TRUE) or an auto-

reset event (FALSE). The fInitialState parameter determines the initial state of the event: signaled

(TRUE) or unsignaled (FALSE).

After the event is created, there is a possibility to manage the state. To transit an event to a signaled

state, you need to call:

BOOL SetEvent(HANDLE hEvent);

To change the event state to unsignaled, you need to call:

BOOL ResetEvent(HANDLE hEvent);

Headquarters: +1 (866) 645-1119
EU Office: +370 (5) 203-1571

Russian Office: +7 (495) 713-9900
www.auriga.com pr@auriga.com

 - 9 -

To wait for an event signal, you need to use the already-familiar-to-us WaitForSingleObject

function.

In Linux OS, an «event» object represents an integer descriptor. An integer «event» object is

created with the eventfd function:

int eventfd(unsigned int initval, int flags);

The initval parameter is a kernel serviced counter. The flags parameter is required for eventfd

behavior modification, which may be EFD_CLOEXEC, EFD_NONBLOCK, or

EFD_SEMAPHORE. If terminated successfully, eventfd returns a new file descriptor, which can

be used to link the eventfd object.

Analogous to SetEvent, we can use a eventfd_write call:

ssize_t eventfd_write(int fd, const void *buf, size_t count);

When write is called from the buffer, an 8-byte integer value is added to the counter. The maximum

counter value can be a 64-bit unsigned minus 1. In case of a successful function call, the written

number of bytes is returned.

Before we discuss a ResetEvent analogue, let’s take a look at the poll function.

#include <poll.h>
int poll(struct pollfd fdarray[], nfds_t nfds, int timeout);

The poll function allows an application to simultaneously block several descriptors and receive

notifications as soon as any of them is ready for reading or writing. Work of poll (generally) can

be described as follows:

1. Notify when any of the descriptors is ready for an input–output operation.

2. If none of the descriptors is ready, go to sleep mode until one or more descriptors are ready.

3. In case there are available descriptors ready for input–output, handle them without

blocking.

4. Go back to step 1.

Linux OS offers three entities for multiplexed input–output: interface for selection (select), polling

(poll), extended polling (epoll).

Those who have experience working with select might appreciate the advantage of poll, which

uses a more effective method with three groups of descriptors based on bit masks. Poll call works

with a single array of nfds pollfd structures that file descriptors point to.

Headquarters: +1 (866) 645-1119
EU Office: +370 (5) 203-1571

Russian Office: +7 (495) 713-9900
www.auriga.com pr@auriga.com

 - 10 -

Let’s take a look at the pollfd structure definition:

struct pollfd {
 int fd; /* file descriptor */
 short events; /* requested events */
 short revents; /* returned events */
};

There is indicated a file descriptor in each pollfd structure that will be tracked. Several file

descriptors may be passed to the poll function (pollfd array of structures). The number of elements

in an fdarray array is determined by the nfds argument.

To communicate what events we are interested in to the kernel, it is necessary to write one or more

values from Table 2 in the events field for each element from the array. After returning from poll

functions, the kernel specifies what events occurred for each of the descriptors.

Name Events Revents Description
POLLIN + + Data is available for reading (except for high priority)

POLLRDNORM + + Regular data (priority 0) is available for reading

POLLRDBAND + + Data with non-zero priority is available for reading

POLLPRI + + High priority data is available for reading

POLLOUT + + Data is available for writing

POLLWRNORM + + Analogous to POLLOUT

POLLWRBAND + + Data with non-zero priority is available for writing

POLLERR + Error occurred

POLLHUP + Connection lost

POLLNVAL + There is a mismatch between the descriptor and the open file

Table 2. Possible values of events and revents flags of poll function.

Argument timeout defines the wait time for occurrence of specified events. There are three possible

values for timeout.

• timeout = -1: The wait time is infinite (INFINITE in WaitForSingleObject).

• timeout = 0: The wait time is equal to 0, which indicates that it is necessary to inspect all

specified descriptors and give the control back to the calling program.

• timeout > 0: Wait for no longer than timeout milliseconds.

Having reviewed the poll function, we can draw a conclusion that there is an analogy to

WaitForSingleObject for “event” objects in Windows OS.

Headquarters: +1 (866) 645-1119
EU Office: +370 (5) 203-1571

Russian Office: +7 (495) 713-9900
www.auriga.com pr@auriga.com

 - 11 -

Let’s move to the ResetEvent analogue for Linux.

#ifdef __PL_LINUX__
 struct pollfd wait_object;
 uint64_t event_value;
 int ret;
 if (eventfd_descriptor > 0) { // Descriptor created by eventfd(0,0)

wait_object.fd = eventfd_descriptor;
 wait_object.events = POLLIN;
 wait_object.revents = 0;
 ret = poll(&wait_object, 1, 0); // Do not wait
 if (ret < 0) { // Error
 } else {
 if ((wait_object.revents & POLLIN) != 0) {
 iret = eventfd_read(eventfd_descriptor, &event_value);
 if (iret != 0) { // Error }
 }
 }
 }
#endif //__PL_LINUX__

Initially we check that eventfd_descriptor is greater than zero5 (really, this was originally created

by eventfd function without errors). After that, we initialize the pollfd function and run poll.

Execution of poll is required to check if there is available data for reading. If such data is available,

we will read it.

Through the lens of all of the above-described, let’s reflect the outcome in Table 3:

Windows functions Linux functions

CreateEvent eventfd
SetEvent eventfd_write
ResetEvent poll/eventfd_read
WaitForSingleObject poll

Table 3. Main functions for working with events in Windows and their analogues in Linux.

Multithreaded applications parallelism

Typically, there are two interrelated but different phenomena in multi-threaded applications:

concurrency and parallelism.

Concurrency is the ability of two and more threads to overlap in execution.

Parallelism is the ability to execute two and more threads at the same time.

5 As it is a file descriptor, it will be the least unusable positive numeric value. It is supposed that an

application does not close STDIN_FILENO, elsewise it requires a different verification.

Headquarters: +1 (866) 645-1119
EU Office: +370 (5) 203-1571

Russian Office: +7 (495) 713-9900
www.auriga.com pr@auriga.com

 - 12 -

It is concurrency that causes the majority of complications in streaming – threads can be executed

in unpredictable order relative to each other. In case of sharing resources by the threads, this will

undoubtedly lead to race conditions.

The term race condition commonly refers to a situation when unsynchronized access to a shared

resource for two and more threads leads to erroneous program behavior.

Let’s take a look at an example of a race.

Nowadays it is hard to imagine our life without plastic cards. ATM cash withdrawal became a

daily routine long ago: insert a card, enter PIN-code and desired sum. If completed successfully

we receive the planned amount of cash. The bank in its turn needs to verify if the money is available

by the following algorithm:

1. Is there available a minimum of X units of money on the bank account?

2. If yes, reduce the balance of the account by X value, dispense X money units to the

user.

3. Elsewise, generate an error message.

An example of code with race conditions:

int cash_out(struct account *ac, int amount) {
 const int balance = ac->balance;
 if (balance < amount)
 return -1;
 ac->balance = balance - amount;
 discard_money_routine(amount);
 return 0;
}

 Race can emerge in a situation when a purchase is paid for online and cash is withdrawn from an

ATM “concurrently”.

To avoid a race, it is necessary to introduce the following update to the code:

int cash_out(struct account *ac, int amount) {
 lock();
 const int balance = ac->balance;
 if (balance < amount)
 return -1;
 ac->balance = balance - amount;
 unlock();
 discard_money_routine(amount);
 return 0;
}

Headquarters: +1 (866) 645-1119
EU Office: +370 (5) 203-1571

Russian Office: +7 (495) 713-9900
www.auriga.com pr@auriga.com

 - 13 -

In Windows OS, the code area requiring exclusive access to some shared data is called a «critical

section».

The structure type for working with critical sections is CRITICAL_SECTION. Let’s review its

fields:

typedef struct _RTL_CRITICAL_SECTION {
 PRTL_CRITICAL_SECTION_DEBUG DebugInfo;

 //
 // The following three fields control entering and exiting the critical
 // section for the resource
 //

 LONG LockCount;
 LONG RecursionCount;
 HANDLE OwningThread; // from the thread's ClientId->UniqueThread
 HANDLE LockSemaphore;
 ULONG_PTR SpinCount; // force size on 64-bit systems when packed
} RTL_CRITICAL_SECTION, *PRTL_CRITICAL_SECTION;

Though CRITICAL_SECTION formally does not belong to undocumented structures, Microsoft,

nevertheless, believe that there is no need for users to know its organization. In practice, it is a sort

of black box. To work with this structure, there is no need to use its field directly, but only through

Windows functions, passing to them the address of a corresponding instance of this structure.

The CRITICAL_SECTION structure is initialized by the following call:

void InitializeCriticalSection(PCRITICAL_SECTION pcs);

If we know that CRITICAL_SECTION structure will no longer be needed, then we can delete it

with the help of the following call:

void DeleteCriticalSection(PCRITICAL_SECTION pcs);

The code area working with a shared resource shall be preceded by the following call:

void EnterCriticalSection(PCRITICAL_SECTION pcs);

Instead of EnterCriticalSection we can use:

bool TryEnterCriticalSection(PCRITICAL_SECTION pcs);

TryEnterCriticalSection allows a thread to check the resource accessibility and engage in another

activity in cases when it is not accessible. In the case of success (the function returned TRUE), it

is clear that structure elements are updated and the resource is locked.

At the end of the code area using a shared resource, there shall always be the following call:

Headquarters: +1 (866) 645-1119
EU Office: +370 (5) 203-1571

Russian Office: +7 (495) 713-9900
www.auriga.com pr@auriga.com

 - 14 -

void LeaveCriticalSection(PCRITICAL_SECTION pcs);

LeaveCriticalSection inspects CRITICAL_SECTION structure elements and decreases resource

locking counter (LockCount) by 1.

Analogous to CRITICAL_SECTION in Linux OS is the variable mutex pthread_mutex_t. Before

using, this variable needs to be initialized – write the value of the constant

PTHREAD_MUTEX_INITIALIZER or call to pthread_mutex_init function.

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t *restrict attr);

To initialize a mutex with default attribute values, it is necessary to pass NULL to attr attribute.

Specific mutex attribute values can be located on the help page.

A mutex can be deleted with the help of the following call:

int pthread_mutex_destroy(pthread_mutex_t *mutex);

A mutex is locked by calling to the pthread_mutex_lock function:

int pthread_mutex_lock(pthread_mutex_t *mutex);

If a mutex is already locked, the calling thread will be blocked until the mutex is released. The

mutex is unlocked with the help of the pthread_mutex_unlock function:

int pthread_mutex_unlock(pthread_mutex_t *mutex);

If we want to check a resource’s accessibility, then we can use the pthread_mutex_trylock function:

int pthread_mutex_trylock(pthread_mutex_t *mutex);

The above-mentioned function will return EBUSY if a mutex is locked.

All functions for working with a mutex return 0 in the case of success and an error code in the case

of failure.

Let’s sum it up. In Windows OS, to work with a shared resource it is necessary to use a critical

section and a special type CRITICAL_SECTION. In Linux OS, we can use mutexes of

pthread_mutex_t type for the same purpose.

Synchronization functions are recorded in Table 4.

Headquarters: +1 (866) 645-1119
EU Office: +370 (5) 203-1571

Russian Office: +7 (495) 713-9900
www.auriga.com pr@auriga.com

 - 15 -

Windows functions Linux functions

InitializeCriticalSection pthread_mutex_init()

EnterCriticalSection pthread_mutex_lock()

LeaveCriticalSection pthread_mutex_unlock()

TryEnterCriticalSection pthread_mutex_trylock()

DeleteCriticalSection pthread_mutex_destroy()

Table 4. Synchronization functions for shared resources.

Thread termination

One of the cases when it is necessary to write a thread termination in practice is mass data

processing. A situation is possible when the main thread signals to all threads to exit but one of

them is still processing information. If promptitude is a higher priority factor for application

performance in comparison to information loss, then the thread needs to be exited and release

system resources. This section will cover ways to exit a thread.

A thread can exit in the following ways:

• The thread function returns;

• The thread calls the ExitThread function;

• Any thread of the process calls the TerminateThread function;

• Any thread of the process calls the ExitProcess function.

Let’s take a closer look at each of these.

The thread function returns.

A good example of clean code is considered designing a thread function so that the thread is

terminated only after the function returns. In Windows OS, this way of thread termination

guarantees correct clean-up of resources owned by the thread. In Linux OS, it is necessary to call

to one of the join functions in cases where a thread is joinable. In the general case, the following

happens:

• The system correctly releases resources taken by the thread.

• The system sets a thread exit code.

• Users counter for this kernel object «thread» is reduced by 1.

In Windows OS, a thread can be forcefully terminated by calling to:

void ExitThread(DWORD dwExitCode);6

6 ExitThread is a function that kills a thread. In practice, it is best to use the _endthreadex function.

Headquarters: +1 (866) 645-1119
EU Office: +370 (5) 203-1571

Russian Office: +7 (495) 713-9900
www.auriga.com pr@auriga.com

 - 16 -

The thread exit code value will be added to the dwExitCode parameter. It is easy to notice that the

function does not have return value, because after the function is called the thread ceases to exist.

In Linux OS, there is a complete analogue for ExitThread:

void pthread_exit(void *rval_ptr);

Argument rval_ptr represents an untyped pointer, containing a return value. This pointer can be

obtained by other process threads calling to the pthread_join function.

The function call pthread_join takes the thread to a detached state. This state allows the thread

resources to be won back. In case if the thread has already been in detached state, the thread calling

to pthread_join will get the ESRCH error code. Sometimes when pthread_join is recalled with the

second non- NULL parameter, Segmentation Fault error output is possible.

 Any thread of the process calls the TerminateThread function.

One thread can pass a request to forcefully terminate another thread within the same process. In

Windows OS, this is organized with the help of the following function:

bool TerminateThread(
 HANDLE hThread,
 DWORD dwExitCode
);

The above-mentioned function terminated the hThread thread from any other thread. You can add

to dwExitCode parameter a value that the system will consider as the thread exit code. After the

thread is killed, users counter for this kernel object «thread» will be reduced by 1.

In Linux OS, a similar capability is implemented when one thread can pass a request for forceful

termination of another thread within the same process by calling to the pthread_cancel function:

int pthread_cancel(pthread_t tid);

This function needs to be used in conjunction with pthread_setcancelstate and

pthread_setcanceltype functions. In case of using pthread_cancel, rval_ptr will be

PTHREAD_CANCELED.

Let’s take a closer look at erminateThread and analogous actions in Linux OS:

#ifdef __PL_WINDOWS__
 BOOL bret = FALSE;
 bret = TerminateThread(h, x);
#endif //__PL_WINDOWS__
#ifdef __PL_LINUX__
 int iret = 0, bret;
 iret = syscall(SYS_tkill,tid, 0);

Headquarters: +1 (866) 645-1119
EU Office: +370 (5) 203-1571

Russian Office: +7 (495) 713-9900
www.auriga.com pr@auriga.com

 - 17 -

 if (iret == 0) {
 iret = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS,NULL);
 if (iret != 0) {
 bret = FALSE;
 }
 else {
 iret = pthread_cancel(h);
 if (iret == 0 || iret == ESRCH) {
 bret = TRUE;
 } else {
wait_thread:
 clock_gettime(CLOCK_REALTIME, &wait_time);
 ADD_MS_TO_TIMESPEC(wait_time, 1000); //1000 ms
 iret = pthread_timedjoin_np(h, NULL, &wait_time);
 switch (iret) {
 case 0:
 bret = TRUE;
 break;
 case ETIMEDOUT:
 if (retries_count++ < 5) // 5 Attempts

 {
 goto wait_thread;
 }
 bret = FALSE;
 break;
 default:
 bret = FALSE;
 break;
 }
 }
 (void)pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED,NULL);
 }
 }
 else {
 bret = TRUE;
 }
#endif //__PL_LINUX__

In Windows OS, TerminateThread returns TRUE in case of successful termination. Starting out

from this logic, let’s try to organize analogous functionality in Linux.

To start with, we will check if the thread is alive. To do so, we will send a zero signal. If a thread

exists in the process and is being executed, then tkill will return 0. After that, we will call to the

pthread_setcanceltype function with the PTHREAD_CANCEL_ASYNCHRONOUS parameter, and

only after this we will try to terminate the thread by calling to the pthread_cancel function. There

is a possible situation when the thread will still be executing for some time, and for this we will

use the timed wait function pthread_timedjoin_np (there are 5 attempts in the example; each takes

1000 ms). After the thread is terminated, we will call to pthread_setcanceltype again with the

Headquarters: +1 (866) 645-1119
EU Office: +370 (5) 203-1571

Russian Office: +7 (495) 713-9900
www.auriga.com pr@auriga.com

 - 18 -

PTHREAD_CANCEL_DEFERRED parameter. In case there are any errors, there will always be

returned FALSE.

Any thread of the process calls the ExitProcess function.

If one of the threads calls to exit function (for Linux OS), or either ExitProcess or

TerminateProcess (for Windows OS), then the whole process will be terminated. Likewise, if a

thread receives a signal which action consists in process termination, this signal will terminate the

whole process.

Let’s summarize it all. A correctly designed application shall not call to forceful thread termination

functions. A recommended way is when the thread function returns. In case of a thread termination

in Linux OS, there shall be called a join to release links and system resources owned by the process.

Proper allowance must be made for the fact that calling to join functions twice is incorrect (at its

best there will be an error). If a thread is forcefully terminated for Windows OS, it is important to

note that all nonsystem resources shall be cleaned up in any way. In Linux, there are

pthread_cleanup_push and pthread_cleanup_pop functions for that.

Thread termination functions are recorded in Table 5.

Windows functions Linux functions

ExitThread pthread_exit

TerminateThread pthread_setcanceltype, pthread_cancel,
pthread_setcanceltype

Table 5. Thread termination functions.

Conclusion

To mitigate influence of interrupts, an OS provides a model that consists of in-parallel running

processes. However, this model has its weak points related to interaction, availability of own

address space, etc.

On the other hand, it might be advantageous for applications to have several control threads within

one process. As these threads belong to the same process, they use the shared address space but

their own stack.

Threads may interact with each other using primitives such as semaphores, messages, etc. These

primitives are necessary to make it impossible for simultaneous execution of two and more threads

in critical sections. A thread can be in one of the following states: runnable or executing blocked.

A thread can also interact with another thread using interaction primitives. Keep in mind that while

using interaction primitives one should exercise caution to avoid errors and deadlocks.

Headquarters: +1 (866) 645-1119
EU Office: +370 (5) 203-1571

Russian Office: +7 (495) 713-9900
www.auriga.com pr@auriga.com

 - 19 -

In this article, we analyzed streaming API for Windows and Linux OS; presented event-based

thread creation and synchronization interfaces; discussed functions for working with shared

resources; and detailed thread termination ways.

List of references

1. Stevens, W. Richard. Advanced Programming in the UNIX Environment, 3rd Edition. / W.

Richard Steven, Stephen A. Rago. - Spb.: Piter, 2018. –944 p.

2. Russinovich, M. Windows Internals. 7th Edition. / M. Russinovich, D. Solomon, А.

Ionescu, P. Yosifovich. - Spb.: Piter, 2018. - 944 p.

3. Tanenbaum A. Modern Operating Systems. 4th Edition./ A. Tanenbaum , H. Bos. - Spb.:

Piter, 2015. –1120 p.

4. Love, R. Linux System Programming. 2nd Edition./ R. Love. - Spb.: Piter, 2014. –448 p.

5. Richter J. Programming Applications for Microsoft Windows: Master the critical building

blocks of 32-bit and 64-bit Windows-based applications. 4th Edition. / J. Richter. - М.:

Publishing company «Russian editorship»; 2008. –720 p.

6. Stevens, W. Richard. Unix Network Programming: Interprocess Communications. / W.

Richard Stevens. - Spb.: Piter, 2003. –576 p.

7. Linux man pages online [Electronic resource]. – URL: http://man7.org/linux/man-pages/

8. Microsoft Docs [Electronic resource]. – URL: https://docs.microsoft.com/

http://man7.org/linux/man-pages/
http://man7.org/linux/man-pages/
https://docs.microsoft.com/
https://docs.microsoft.com/

