
To Search or to Crawl?
Towards a Query Optimizer for Text-Centric Tasks

Panagiotis G. Ipeirotis
New York University

panos@nyu.edu

Eugene Agichtein
Microsoft Research

eugeneag@microsoft.com

Pranay Jain
Columbia University

pranay.jain@columbia.edu

Luis Gravano
Columbia University

gravano@cs.columbia.edu

ABSTRACT
Text is ubiquitous and, not surprisingly, many important applications
rely on textual data for a variety of tasks. As a notable example, in-
formation extraction applications derive structured relations from un-
structured text; as another example, focused crawlers explore the web
to locate pages about specific topics. Execution plans for text-centric
tasks follow two general paradigms for processing a text database: ei-
ther we can scan, or “crawl,” the text database or, alternatively, we can
exploit search engine indexes and retrieve the documents of interest
via carefully crafted queries constructed in task-specific ways. The
choice between crawl- and query-based execution plans can have a
substantial impact on both execution time and output “completeness”
(e.g., in terms of recall). Nevertheless, this choice is typically ad-hoc
and based on heuristics or plain intuition. In this paper, we present
fundamental building blocks to make the choice of execution plans
for text-centric tasks in an informed, cost-based way. Towards this
goal, we show how to analyze query- and crawl-based plans in terms
of both execution time and output completeness. We adapt results
from random-graph theory and statistics to develop a rigorous cost
model for the execution plans. Our cost model reflects the fact that
the performance of the plans depends on fundamental task-specific
properties of the underlying text databases. We identify these prop-
erties and present efficient techniques for estimating the associated
parameters of the cost model. Overall, our approach helps predict the
most appropriate execution plans for a task, resulting in significant
efficiency and output completeness benefits. We complement our re-
sults with a large-scale experimental evaluation for three important
text-centric tasks and over multiple real-life data sets.

1. INTRODUCTION
Text is ubiquitous and, not surprisingly, many applications rely on

textual data for a variety of tasks. For example, information extrac-
tion applications retrieve documents and extract structured relations
from the unstructured text in the documents. Reputation management
systems download web pages to track the “buzz” around companies
and products. Comparative shopping agents locate e-commerce web
sites and add the products offered in the pages to their own index.

To process a text-centric task over a text database (or the web), we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006, June 27–29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

can retrieve the relevant database documents in different ways. One
approach is to scan or crawl the database to retrieve its documents
and process them as required by the task. While this approach guar-
antees that we cover all documents that are potentially relevant for the
task, it might be unnecessarily expensive in terms of execution time.
For example, consider the task of extracting information on disease
outbreaks (e.g., the name of the disease, the location and date of the
outbreak, and the number of affected people) as reported in news ar-
ticles. This task does not require that we scan and process, say, the
articles about sports in a newspaper archive. In fact, only a small
fraction of the archive is of relevance to the task. For tasks such as
this one, a natural alternative to crawling is to exploit a search engine
index on the database to retrieve –via careful querying– the useful
documents. In our example, we can use keywords that are strongly
associated with disease outbreaks (e.g., “World Health Organization,”
“case fatality rate”) and turn these keywords into queries to find news
articles that are appropriate for the task.

The choice between a crawl- and a query-based execution strategy
for a text-centric task is analogous to the choice between a scan- and
an index-based execution plan for a selection query over a relation.
Just as in the relational model, the choice of execution strategy can
substantially affect the execution time of the task. In contrast to the
relational world, however, this choice might also affect the quality
of the output that is produced: while a crawl-based execution of a
text-centric task guarantees that all documents are processed, a query-
based execution might miss some relevant documents, hence produc-
ing potentially incomplete output, with less-than-perfect recall. The
choice between crawl- and query-based execution plans can then have
a substantial impact on both execution time and output recall. Never-
theless, this important choice is typically left to simplistic heuristics
or plain intuition.

In this paper, we introduce fundamental building blocks for the op-
timization of text-centric tasks. Towards this goal, we show how to
rigorously analyze query- and crawl-based plans for a task in terms of
both execution time and output recall. To analyze crawl-based plans,
we apply techniques from statistics to model crawling as a document
sampling process; to analyze query-based plans, we first abstract the
querying process as a random walk on a querying graph, and then ap-
ply results for the theory of random graphs to discover relevant prop-
erties of the querying process. Our cost model reflects the fact that
the performance of the execution plans depends on fundamental task-
specific properties of the underlying text databases. We identify these
properties and present efficient techniques for estimating the associ-
ated parameters of the cost model.

In brief, the contributions and content of the paper are as follows:
• A novel framework for analyzing crawl- and query-based ex-

ecution plans for text-centric tasks in terms of execution time
and output recall (Section 3).

… … …
Cholera 1999 Nigeria
Yellow fever 2005 M ali
DiseaseName Date Country

From what we know, 28 fatal cases
of yel low fever were reported to
M al i’s national health authorities

within 2005 …

The New York Times
Archive

... from what we know, 28 fatal cases
of y el l ow fev er were reported to
M al i’s nat i onal heal th authori t i es

wi thi n 2005… .

... f rom what we know, 28 fatal cases
of y el l ow fev er were reported to
M al i’s nat i onal heal th authori t i es

wi thi n 2005….

... f rom what we know, 28 fatal cases
of y el l ow fev er were reported to
M al i’s nat i onal heal th authori t i es

wi thi n 2005… .

Chol era outbreaks occurred i n M ay
1999 i n Ni geri a (176 cases , 56
deaths). The outbreak i s now

... f rom what we know, 28 fatal cases
of y el l ow fev er were reported to
M al i’s nat i onal heal th authori t i es

wi thi n 2005….

Cholera outbreaks occurred in M ay
1999 in Nigeria (176 cases , 56

deaths). The outbreak is now under
control…

DiseaseOutbreaks in
The New York Times Archive

Figure 1: Extracting DiseaseOutbreaks tuples

• A description of four crawl- and query-based execution plans,
which underlie the implementation of many existing text-centric
tasks (Section 4).

• A rigorous analysis of each execution plan alternative in terms
of execution time and recall; this analysis relies on fundamental
task-specific properties of the underlying databases (Section 5).

• An optimization strategy that estimates the database properties
that affect the execution time and recall of each plan and selects
the best execution plan for the task description and target recall
requirements (Section 6).

• An extensive experimental evaluation showing that our opti-
mization strategy is accurate and results in significant perfor-
mance gains. Our experiments include three important text-
centric tasks and multiple real-life data sets (Sections 7 and 8).

Finally, Section 9 discusses related work, while Section 10 provides
further discussion and concludes the paper.

2. EXAMPLES OF TEXT-CENTRIC TASKS
In this section, we briefly review three important text-centric tasks

that we will use throughout the paper as running examples, to illus-
trate our framework and techniques.

2.1 Task 1: Information Extraction
Unstructured text (e.g., in newspaper articles) often embeds struc-

tured information that can be used for answering relational queries
or for data mining. The first task that we consider is the extraction
of structured information from text databases. An example of an in-
formation extraction task is the construction of a table DiseaseOut-
breaks(DiseaseName, Date, Country) of reported disease outbreaks
from a newspaper archive (see Figure 1). A tuple 〈yellow fever, 2005,
Mali〉 might then be extracted from the news articles in Figure 1.

Information extraction systems typically rely on patterns —either
manually created or learned from training examples— to extract the
structured information from the documents in a database. The extrac-
tion process is usually time consuming, since information extraction
systems might rely on a range of expensive text analysis functions,
such as parsing or named-entity tagging (e.g., to identify all person
names in a document). See [28] for an introductory survey on infor-
mation extraction.

A straightforward execution strategy for an information extraction
task is to retrieve and process every document in a database exhaus-
tively. As a refinement, an alternative strategy might use filters and do
the expensive processing of only “promising” documents; for exam-
ple, the Proteus system [29] ignores database documents that do not
include words such as “virus” and “vaccine” when extracting the Dis-
easeOutbreaks relation. As an alternative, query-based approaches
such as QXtract [2] have been proposed to avoid retrieving all doc-
uments in a database; instead, these approaches retrieve appropriate
documents via carefully crafted queries.

2.2 Task 2: Content Summary Construction
Many text databases have valuable contents “hidden” behind search

interfaces and are hence ignored by search engines such as Google.

….

M icrosoft 145
Word Frequency

….…. ….
….

….

Retailers prepare for
launch day of

M icrosoft’s Xbox 360

Best Buy takes to
the desert to

celebrate Xbox
launchSony BM G offers

M P3 files and disks
for unsafe CDs

Sony 96
Xbox 124

...

...
...
...

Content Summary of
Forbes .comForbes .com

Figure 2: Content summary of Forbes.com

London H otels

Encyclopedia of
Plants

Plant Physiology

Weather Information H epaticophyta

ok

x

ok

okx

www.plantphysiol.org
waynesword.palomar.edu/...
www.botanyworld.com
URL

Botany Documents on the WebWeb

...

Figure 3: Focused resource discovery for Botany pages

Metasearchers are helpful tools for searching over many databases at
once through a unified query interface. A critical step for a meta-
searcher to process a query efficiently and effectively is the selection
of the most promising databases for the query. This step typically re-
lies on statistical summaries of the database contents [11, 25]. The
second task that we consider is the construction of a content summary
of a text database. The content summary of a database generally lists
each word that appears in the database, together with its frequency.
For example, Figure 2 shows that the word “xbox” appears in 124
documents in the Forbes.com database. If we have access to the full
contents of a database (e.g., via crawling), it is straightforward to de-
rive these simple content summaries. If, in contrast, we only have
access to the database contents via a limited search interface (e.g., as
is the case for “hidden-web” databases [5]), then we need to resort to
query-based approaches for content summary construction [9, 31].

2.3 Task 3: Focused Resource Discovery
Text databases often contain documents on a variety of topics. Over

the years, a number of specialized search engines (as well as directo-
ries) that focus on a specific topic of interest have been proposed (e.g.,
FindLaw). The third task that we consider is the identification of the
database documents that are about the topic of a specialized search
engine, or focused resource discovery.

As an example of focused resource discovery, consider building a
search engine that specializes in documents on botany from the web
at large (see Figure 3). For this, an expensive strategy would crawl all
documents on the web and apply a document classifier [39] to each
crawled page to decide whether it is about botany (and hence should
be indexed) or not (and hence should be ignored). As an alternative
execution strategy, focused crawlers (e.g., [14, 13, 33]) concentrate
their effort on documents and hyperlinks that are on-topic, or likely to
lead to on-topic documents, as determined by a number of heuristics.
Focused crawlers can then address the focused resource discovery task
efficiently at the expense of potentially missing relevant documents.
As yet another alternative, Cohen and Singer [20] propose a query-
based approach for this task, where they exploit search engine indexes
and use queries derived from a document classifier to quickly identify
pages that are relevant to a given topic.

3. DESCRIBING TEXT-CENTRIC TASKS
While the text-centric examples of Section 2 might appear substan-

tially different on the surface, they all operate over a database of text
documents and also share other important underlying similarities.

Each task in Section 2 can be regarded as deriving “tokens” from
a database, where a token is a unit of information that we define in a
task-specific way. For Task 1, the tokens are the relation tuples that are

extracted from the documents. For Task 2, the tokens are the words in
the database (accompanied by the associated word frequencies). For
Task 3, the tokens are the documents (or web pages) in the database
that are about the topic of focus.

The execution strategies for the tasks in Section 2 rely on task-
specific document processors to derive the tokens associated with the
task. For Task 1, the document processor is the information extrac-
tion system of choice (e.g., Proteus [29], DIPRE [7], Snowball [1]):
given a document, the information extraction system extracts the to-
kens (i.e., the tuples) that are present in the document. For Task 2,
the document processor extracts the tokens (i.e., the words) that are
present in a given document, and the associated document frequen-
cies are updated accordingly in the content summary. For Task 3, the
document processor decides (e.g., via a document classifier such as
Naive Bayes [23] or Support Vector Machines [40]) whether a given
document is about the topic of focus; if the classifier deems the doc-
ument relevant, the document is added as a token to the output and is
discarded otherwise.

The alternate execution strategies for the Section 2 tasks differ in
how they retrieve the input documents for the document processors, as
we will discuss in Section 4. Some execution strategies fully process
every available database document, thus guaranteeing the extraction
of all the tokens that the underlying document processor can derive
from the database. In contrast, other execution strategies focus, for
efficiency, on a strict subset of the database documents, hence poten-
tially missing tokens that would have been derived from unexplored
documents. One subcategory applies a filter (e.g., derived in a training
stage) to each document to decide whether to fully process it or not.
Other strategies retrieve via querying the documents to be processed,
where the queries can be derived in a number of ways that we will
discuss. All these alternate execution strategies thus exhibit different
tradeoffs between execution time and output recall.

DEFINITION 3.1. [Execution Time] Consider a text-centric task,
a database of text documents D, and an execution strategy S for the
task, with an underlying document processor P . Then, we define the
execution time of S over D, Time(S, D), as

Time(S, D) =

tT (S)+
X

q∈Qsent

tQ(q)+
X

d∈Dretr

„
tR(d)+ tF (d)

«
+

X
d∈Dproc

tP (d)

where
• Qsent is the set of queries sent by S,

• Dretr is the set of documents retrieved by S (Dretr ⊆ D),

• Dproc is the set of documents that S processes with document
processor P (Dproc ⊆ D),

• tT (S) is the time for training the execution strategy S,

• tQ(q) is the time for evaluating a query q,

• tR(d) is the time for retrieving a document d,

• tF (d) is the time for filtering a retrieved document d, and

• tP (d) is the time for processing a document d with P .

Assuming that the time to evaluate a query is constant across queries
(i.e., tQ = tQ(q), for every q ∈ Qsent) and that the time to retrieve,
filter, or process a single document is constant across documents (i.e.,
tR = tR(d), tF = tF (d), tP = tP (d), for every d ∈ D), we have:

Time(S, D) = tT (S)+tQ·|Qsent |+
`
tR+tF

´
·|Dretr |+tP ·|Dproc |

2

DEFINITION 3.2. [Recall] Consider a text-centric task, a data-
base of text documents D, and an execution strategy S for the task,
with an underlying document processor P . Let Dproc be the set of

Input: database D, recall threshold τ , document processor P
Output: tokens Tokensretr

Tokensretr = ∅, Dretr = ∅, recall = 0
while recall < τ do

Retrieve an unprocessed document d and add d to Dretr

Process d using P and add extracted tokens to Tokensretr

recall = |Tokensretr |/|Tokens|
end
return Tokensretr

Figure 4: The Scan strategy

documents from D that S processes with P . Then, we define the re-
call of S over D, Recall(S, D), as

Recall(S, D) =
|Tokens(P, Dproc)|
|Tokens(P, D)| (1)

where Tokens(P,D) is the set of tokens that the document processor
P extracts from the set of documents D. 2

Our problem formulation is close, conceptually, to the evaluation of
a selection predicate in an RDBMS. In relational databases, the query
optimizer selects an access path (i.e., a sequential scan or a set of in-
dexes) that is expected to lead to an efficient execution. We follow
a similar structure in our work. In the next section, we describe the
alternate evaluation methods that are at the core of the execution strat-
egies for text-centric tasks that have been discussed in the literature.1

Then, in subsequent sections, we analyze these strategies to see how
their performance depends on the task and database characteristics.

4. EXECUTION STRATEGIES
In this section, we review the alternate execution plans that can be

used for the text-centric tasks described above, and discuss how we
can “instantiate” each generic plan for each task of Section 2. Our
discussion assumes that each task has a target recall value τ , 0 < τ ≤
1, that needs to be achieved (see Definition 3.2), and that the execution
can stop as soon as the target recall is reached.

4.1 Scan
The Scan (SC) strategy is a crawl-based strategy that processes each

document in a database D exhaustively until the number of tokens
extracted satisfies the target recall τ (see Figure 4).

The Scan execution strategy does not need training and does not
send any queries to the database. Hence, tT (SC) = 0 and |Qsent | =
0. Furthermore, Scan does not apply any filtering, hence tF = 0 and
|Dproc | = |Dretr |. Therefore, the execution time of Scan is:

Time(SC, D) = |Dretr | · (tR + tP) (2)

The Scan strategy is the basic evaluation strategy that many text-
centric algorithms use when there are no efficiency issues, or when
recall, which is guaranteed to be perfect according to Definition 3.2,
is important. We should stress, though, that |Dretr | for Scan is not
necessarily equal to |D|: when the target recall τ is low, or when
tokens appear redundantly in multiple documents, Scan may reach the
target recall without processing all the documents in D. In Section 5,
we show how to estimate the value of |Dretr | that is needed by Scan
to reach a target recall τ .

A basic version of Scan accesses documents in random order. Vari-
ations of Scan might impose a specific processing order and prioritize,
say, “promising” documents that are estimated to contribute many
new tokens. Another natural improvement of Scan is to avoid pro-
cessing altogether documents expected not to contribute any tokens;
this is the basic idea behind Filtered Scan, which we discuss next.
1While it is impossible to analyze all existing techniques within a single paper,
we believe that we offer valuable insight on how to formally analyze many
query- and crawl-based strategies, hence offering the ability to predict a-priori
the expected performance of an algorithm.

Input: database D, recall threshold τ , classifier C, document processor P
Output: tokens Tokensretr

Tokensretr = ∅ , Dretr = ∅, recall = 0
while recall < τ and |Dretr | < |D| do

Retrieve an unprocessed document d and add d to Dretr

Use C to classify d as useful for the task or not
if d is useful then

Process d using P and add extracted tokens to Tokensretr

end
recall = |Tokensretr |/|Tokens|

end
return Tokensretr

Figure 5: The Filtered Scan strategy

4.2 Filtered Scan
The Filtered Scan (FS) strategy is a variation of the basic Scan

strategy. While Scan indistinguishably processes all documents re-
trieved, Filtered Scan first uses a classifier C to decide whether a
document d is useful, i.e., whether d contributes at least one token
(see Figure 5). Given the potentially high cost of processing a doc-
ument with the document processor P , a quick rejection of useless
documents can speed up the overall execution considerably.

The training time tT (FS) for Filtered Scan is equal to the time re-
quired to build the classifier C for a specific task. Training represents
a one-time cost for a task, so in a repeated execution of the task (i.e.,
over a new database) the classifier will be available with tT (FS) = 0.
This is the case that we assume in the rest of the analysis. Since Fil-
tered Scan does not send any queries, |Qsent | = 0. While Filtered
Scan retrieves and classifies |Dretr | documents, it actually processes
only Cσ · |Dretr | documents, where Cσ is the “selectivity” of the clas-
sifier C, defined as the fraction of database documents that C judges
as useful. Therefore, according to Definition 3.1, the execution time
of Filtered Scan is:

Time(FS, D) = |Dretr | ·
`
tR + tF + Cσ · tP

´
(3)

In Section 5, we show how to estimate the value of |Dretr | that is
needed for Filtered Scan to reach the target recall τ .

Filtered Scan is used when tP is high and there are many database
documents that do not contribute any tokens to the task at hand. For
Task 1, Filtered Scan is used by Proteus [29], which uses a hand-built
set of inexpensive rules to discard useless documents. For Task 2, the
Filtered Scan strategy is typically not applicable, since all the docu-
ments are useful. For Task 3, the Filtered Scan strategy corresponds
to a “hard” focused crawler [14] that prunes the search space by only
considering documents that are pointed to by useful documents.

Both Scan and Filtered Scan are crawl-based strategies. Next, we
describe two query-based strategies, Iterative Set Expansion, which
emulates query-based strategies that rely on “bootstrapping” tech-
niques, and Automatic Query Generation, which generates queries
automatically, without using the database results.

4.3 Iterative Set Expansion
Iterative Set Expansion (ISE) is a query-based strategy that queries

a database with tokens as they are discovered, starting with a typically
small number of user-provided seed tokens Tokensseed . The intuition
behind this strategy is that known tokens might lead to unseen tokens
via documents that have both seen and unseen tokens (see Figure 6).
Queries are derived from the tokens in a task-specific way. For exam-
ple, a Task 1 tuple 〈Cholera, 1999,Nigeria〉 for DiseaseOutbreaks
might be turned into query [Cholera AND Nigeria]; this query, in turn,
might help retrieve documents that report other disease outbreaks,
such as 〈Cholera, 2005,Senegal〉 and 〈Measles, 2004,Nigeria〉.

Iterative Set Expansion has no training phase, hence tT (ISE) = 0.
We assume that Iterative Set Expansion has to send |Qsent | queries
to reach the target recall. In Section 5, we show how to estimate this
value of |Qsent |. Also, since Iterative Set Expansion processes all the

Input: database D, recall threshold τ , tokens Tokensseed , document
processor P

Output: tokens Tokensretr

Tokensretr = ∅, Dretr = ∅, recall = 0
while recall < τ and Tokensseed 6= ∅ do

Remove a token t from Tokensseed

Transform t into a query q and issue q to D
Retrieve up to maxD documents matching q
foreach newly retrieved document d do

Add d to Dretr

Process d using P and add newly extracted tokens to
Tokensretr and Tokensseed

recall = |Tokensretr |/|Tokens|
if recall ≥ τ then

return Tokensretr

end
end

end
return Tokensretr

Figure 6: The Iterative Set Expansion strategy

Input: database D, recall threshold τ , document processor P , queries Q
Output: tokens Tokensretr

Tokensretr = ∅, Dretr = ∅, recall = 0
foreach query q ∈ Q do

Retrieve up to maxD documents matching q
foreach newly retrieved document d do

Add d to Dretr

Process d using P and add extracted tokens to Tokensretr

recall = |Tokensretr |/|Tokens|
if recall ≥ τ then

return Tokensretr

end
end

end
return Tokensretr

Figure 7: The Automatic Query Generation strategy

documents that it retrieves, tF = 0 and |Dproc | = |Dretr |. Then,
according to Definition 3.1:

Time(ISE ,D) = |Qsent | · tQ + |Dretr | ·
`
tR + tP

´
(4)

Informally, we expect Iterative Set Expansion to be efficient when
tokens tend to co-occur in the database documents. In this case, we
can start from a few tokens and “reach” the remaining ones. (We
define reachability formally in Section 5.4.) In contrast, this strategy
might “stall” and lead to poor recall for scenarios when tokens occur
in isolation, as was analyzed in [3].

Iterative Set Expansion has been successfully applied in many tasks.
For Task 1, Iterative Set Expansion corresponds to the Tuples algo-
rithm for information extraction [2], which was shown to outperform
crawl-based strategies when |Duseful | � |D|, where Duseful is the set
of documents in D that “contribute” at least one token for the task. For
Task 2, Iterative Set Expansion corresponds to the query-based sam-
pling algorithm by Callan et al. [10], which creates a content summary
of a database from a document sample obtained via query words de-
rived (randomly) from the already retrieved documents. For Task 3,
Iterative Set Expansion is not directly applicable, since there is no
notion of “co-occurrence.” Instead, strategies that start with a set of
topic-specific queries are preferable. Next, we describe such a query-
based strategy.

4.4 Automatic Query Generation
Automatic Query Generation (AQG) is a query-based strategy for

retrieving useful documents for a task. Automatic Query Generation
works in two stages: query generation and execution. In the first stage,
Automatic Query Generation trains a classifier to categorize docu-
ments as useful or not for the task; then, rule-extraction algorithms

derive queries from the classifier. In the execution stage, Automatic
Query Generation searches a database using queries that are expected
to retrieve useful documents. For example, for Task 3 with botany
as the topic, Automatic Query Generation generates queries such as
[plant AND phylogeny] and [phycology]. (See Figure 7.)

The training time for Automatic Query Generation involves down-
loading a training set Dtrain of documents and processing them with
P , incurring a cost of |Dtrain | ·(tR + tP). Training time also includes
the time for the actual training of the classifier. This time depends
on the learning algorithm and is, typically, at least linear in the size
of Dtrain . Training represents a one-time cost for a task, so in a re-
peated execution of the task (i.e., over a new database) the classifier
will be available with tT (AQG) = 0. This is the case that we assume
in the rest of the analysis. During execution, the Automatic Query
Generation strategy sends |Qsent | queries and retrieves |Dretr | docu-
ments, which are then all processed by P , without any filtering2 (i.e.,
|Dproc | = |Dretr |). In Section 5, we show how to estimate the values
of |Qsent | and |Dretr | that are needed for Automatic Query Genera-
tion to reach a target recall τ . Then, according to Definition 3.1:

Time(AQG, D)= |Qsent | · tQ + |Dretr | ·
`
tR + tP

´
(5)

The Automatic Query Generation strategy was proposed under the
name QXtract for Task 1 [2]; it was also used for Task 2 in [31] and
for Task 3 in [20].

The description of the execution time has so far relied on parameters
(e.g., |Dretr |) that are not known before executing the strategies. In
the next section, we focus on the central issue of estimating these
parameters. In the process, we show that the performance of each
strategy depends heavily on task-specific properties of the underlying
database; then, in Section 6 we show how to characterize the required
database properties and select the best execution strategy for a task.

5. ESTIMATING EXECUTION PLAN COSTS
In the previous section, we presented four alternative execution plans

and described the execution cost for each plan. Our description fo-
cused on describing the main factors of the actual execution time of
each plan and did not provide any insight on how to estimate these
costs: many of the parameters that appear in the cost equations are
outcomes of the execution and cannot be used to estimate or predict
the execution cost. In this section, we show that the cost equations de-
scribed in Section 4 depend on a few fundamental task-specific prop-
erties of the underlying databases, such as the distribution of tokens
across documents. Our analysis reveals the strengths and weaknesses
of the execution plans and (most importantly) provides an easy way
to estimate the cost of each technique for reaching a target recall τ .
The rest of the section is structured as follows. First, Section 5.1 de-
scribes the notation and gives the necessary background. Then, Sec-
tions 5.2 and 5.3 analyze the two crawl-based techniques, Scan and
Filtered Scan, respectively. Finally, Sections 5.4 and 5.5 analyze the
two query-based techniques, Iterative Set Expansion and Automatic
Query Generation, respectively.

5.1 Preliminaries
In our analysis, we use some task-specific properties of the under-

lying databases, such as the distribution of tokens across documents.
We use g(d) to represent the “degree” of a document d for a docu-
ment processor P , which is defined as the number of distinct tokens
extracted from d using P . Similarly, we use g(t) to represent the “de-
gree” of a token t in a database D, which is defined as the number of
distinct documents that contain t in D. Finally, we use g(q) to repre-

2Note that we could also consider “filtered” versions of Iterative Set Expan-
sion and Automatic Query Generation, just as we do for Scan. For brevity,
we do not study such variations: filtering is less critical for the query-based
strategies than for Scan, because queries generally retrieve a reasonably small
fraction of the database documents.

t1 t2 tM

d1

d2

d3

dN

...

...

D

Tokens

Sampling
for t1

Sampling
for t2

Sampling
for tM

Figure 8: Modeling Scan as multiple sampling processes, one per
token, running in parallel over D

sent the “degree” of a query q in a database D, which is defined as the
number of documents from D retrieved by query q.

In general, we do not know a-priori the exact distribution of the
token, document, and query degrees for a given task and database.
However, we typically know the distribution family for these degrees,
and we just need to estimate a few parameters to identify the actual
distribution for the task and database. For Task 1, the document and
token degrees tend to follow a power-law distribution [3], as we will
see in Section 7. For Task 2, token degrees follow a power-law dis-
tribution [43] and document degrees follow roughly a lognormal dis-
tribution [34]; we provide further evidence in Section 7. For Task 3,
the document and token distributions are, by definition, uniform over
Duseful with g(t) = g(d) = 1. In Section 6, we describe how to
estimate the parameters of each distribution.

5.2 Cost of Scan
According to Equation 2, the cost of Scan is determined by the

size of the set Dretr , which is the number of documents retrieved to
achieve a target recall τ .3 To compute |Dretr |, we base our analysis
on the fact that Scan retrieves documents in no particular order and
does not retrieve the same document twice. This process is equivalent
to sampling from a finite population [38]. Conceptually, Scan sam-
ples for multiple tokens during execution. Therefore, we treat Scan as
performing multiple “sampling from a finite population” processes,
running in parallel over D (see Figure 8). Each sampling process
corresponds to a token t ∈ Tokens . According to probability the-
ory [38, page 56], the probability of observing a token t k times in a
sample of size S follows the hypergeometric distribution. For k = 0,
we get the probability that t does not appear in the sample, which is`|D|−g(t)

S

´
/
`|D|

S

´
. The complement of this value is the probability that

t appears in at least one document in the set of S retrieved documents.
So, after processing S documents, the expected number of retrieved
tokens for Scan is:

E[|Tokensretr |] =
X

t∈Tokens

1− (|D| − g(t))! (|D| − S)!

(|D| − g(t)− S)!|D|! (6)

Hence, we estimate the number of documents that Scan should re-
trieve to achieve a target recall τ as:

|̂Dretr | = min{S : E[|Tokensretr |] ≥ τ |Tokens|} (7)

The number of documents |Dretr | retrieved by Scan depends on the
token degree distribution. For many databases, the distribution of g(t)
is highly skewed and follows a power-law distribution: a few tokens
appear in many documents, while the majority of tokens can only be

3We assume that the values of tR and tP are known or that we can easily es-
timate them by repeatedly retrieving and processing a few sample documents.

extracted from only a few documents. For example, the Task 1 tuple
〈SARS , 2003, China〉 can be extracted from hundreds of documents
in the New York Times archive, while the tuple 〈Diphtheria, 2003,
Afghanistan〉 appears only in a handful of documents. By estimating
the parameters of the power-law distribution, we can then compute
the expected values of g(t) for the (unknown) tokens in D and use
Equations 6 and 7 to derive the expected cost of Scan. In Section 6,
we show how to perform such estimations on-the-fly.

The analysis above assumes a random retrieval of documents. If
the documents are retrieved in a special order, which is unlikely for
the task scenarios that we consider, then we should model Scan as
“stratified” sampling without replacement: instead of assuming a sin-
gle sampling pass, we decompose the analysis into multiple “strata”
(i.e., into multiple sampling phases), each one with its own g(·) dis-
tribution. A simple instance of such technique is Filtered Scan, which
(conceptually) samples useful documents first, as discussed next.

5.3 Cost of Filtered Scan
Filtered Scan is a variation of the basic Scan strategy, therefore the

analysis of both strategies is similar. The key difference between
these strategies is that Filtered Scan uses a classifier to filter docu-
ments, which Scan does not. The Filtered Scan classifier thus limits
the number of documents processed by the document processor P .
Two properties of the classifier C are of interest for our analysis:

• The classifier’s selectivity Cσ: if Dproc is the set of documents
in D deemed useful by the classifier (and then processed by P),
then Cσ =

|Dproc |
|D| .

• The classifier’s recall Cr: this is the fraction of useful docu-
ments in D that are also classified as useful by the classifier.
The value of Cr affects the effective token degree for each tu-
ple t: now each token appears, on average, Cr · g(t) times4 in
Dproc , the set of documents actually processed by P .

Using these observations and following the methodology that we used
for Scan, we have:

E[|Tokensretr |] =
X

t∈Tokens

1− (Cσ ·|D| − Cr ·g(t))! (Cσ ·|D| − S)!

(Cσ ·|D| − Cr ·g(t)− S)! (Cσ ·|D|)!
(8)

Again, similar to Scan, we have:

|̂Dretr | =
̂|Dproc |
Cσ

=
min{S : E[|Tokensretr |] ≥ τ |Tokens|}

Cσ
(9)

Equations 8 and 9 show the dependence of Filtered Scan on the per-
formance of the classifier. When Cσ is high, almost all documents
in D are processed by P , and the savings compared to Scan are min-
imal, if any. When a classifier has low recall Cr , then many useful
documents are rejected and the effective token degree decreases, in
turn increasing |Dretr |. We should also emphasize that if the recall of
the classifier is low, then Filtered Scan is not guaranteed to reach the
target recall τ . In this case, the maximum achievable recall might be
less than one and |Dretr | = |D|.

5.4 Cost of Iterative Set Expansion
So far, we have analyzed two crawling-based strategies. Before

moving to the analysis of the Iterative Set Expansion query-based
strategy, we define “queries” more formally as well as a graph-based
representation of the querying process, originally introduced in [3].

DEFINITION 5.1. [Querying Graph] Consider a database D
and a document processor P . We define the querying graph QG(D, P)

4We assume uniform recall across tokens, i.e., that the classifier’s errors are
not biased towards a specific set of tokens. This is a reasonable assumption
for most classifiers. Nevertheless, we can easily extend the analysis and model
any classifier bias by using a different classifier recall Cr(t) for each token t.

T D

t1

t3

t2

t4

d1

d3

d2

d4

t2

t1

t5

t
3

t4

t5 d5

Figure 9: Portion of the querying and reachability graphs of a
database

of D with respect to P as a bipartite graph containing the elements
of Tokens and D as nodes, where Tokens is the set of tokens that P
derives from D. A directed edge from a document node d to a token
node t means that P extracts t from d. An edge from a token node t
to document node d means that d is returned from D as a result to a
query derived from the token t. 2

For example, suppose that token t1, after being suitably converted
into a query, retrieves a document d1 and, in turn, that processor P
extracts the token t2 from d1. Then, we insert an edge into QG from
t1 to d1, and also an edge from d1 to t2. We consider an edge d → t,
originating from a document node d and pointing to a token node t, as
a “contains” edge, and an edge t → d, originating from a token node
t and pointing to a document node d, as a “retrieves” edge.

Using the querying graph, we analyze the cost and recall of Iterative
Set Expansion. As a simple example, consider the case where the ini-
tial Tokensseed set contains a single token, tseed . We start by querying
the database using the query derived by tseed . The cost at this stage is
a function of the number of documents retrieved by tseed : this is the
number of neighbors at distance one from tseed in the querying graph
QG. The recall of Iterative Set Expansion, at this stage, is determined
by the number of tokens derived from the retrieved documents, which
is equal to the number of neighbors at distance two from tseed . Fol-
lowing the same principle, the cost in the next stage (after querying
with the tokens in distance two) depends on the number of neighbors
at distance three and recall is determined by the number of neighbors
at distance four, and so on.

The previous example illustrates that the recall of Iterative Set Ex-
pansion is bounded by the number of tokens “reachable” from the
Tokensseed tokens; the execution time is also bounded by the number
of documents and tokens that are “reachable” from the Tokensseed

tokens. The structure of the querying graph thus defines the perfor-
mance of Iterative Set Expansion. To compute the interesting proper-
ties of the querying graph, we resort to the theory of random graphs:
our approach is based on the methodology suggested by Newman et
al. [35] and uses generating functions to describe the properties of
the querying graph QG. We define the generating functions Gd0(x)
and Gt0(x) to describe the degree distribution5 of a randomly chosen
document and token, respectively:

Gd0(x) =
X

k

pdk · xk, Gt0(x) =
X

k

ptk · xk (10)

where pdk is the probability that a randomly chosen document d con-
tains k tokens (i.e., pdk = Pr{g(d) = k}) and ptk is the prob-
ability that a randomly chosen token t retrieves k documents (i.e.,
ptk = Pr{g(t) = k}) when used as a query.
5We use undirected graph theory despite the fact that our querying graph is
directed. Using directed graph results would of course be preferable, but it
would require knowledge of the joint distribution of incoming and outgoing
degrees for all nodes of the querying graph, which would be challenging to
estimate. So we rely on undirected graph theory, which requires only knowl-
edge of the two marginal degree distributions, namely the token and document
degree distributions.

In our setting, we are also interested in the degree distribution for
a document (or token, respectively) chosen by following a random
edge. Using the methodology of Newman et al. [35], we define the
functions Gd1(x) and Gt1(x) that describe the degree distribution
for a document and token, respectively, chosen by following a random
edge:

Gd1(x) = x
Gd′0(x)

Gd′0(1)
, Gt1(x) = x

Gt′0(x)

Gt′0(1)
(11)

where Gd′0(x) is the first derivative of Gd0(x) and Gt′0(x) is the first
derivative of Gt0(x), respectively. (See [35] for the proof.)

For the rest of the analysis, we use the following useful properties
of generating functions [41]:

• Moments: The i-th moment of the probability distribution gen-
erated by a function G(x) is given by the i-th derivative of the
generating function G(x), evaluated at x = 1. We mainly use
this property to compute efficiently the mean of the distribution
described by G(x).

• Power: If X1, . . . , Xm are independent, identically distributed
random variables generated by the generating function G(x),
then the sum of these variables, Sm =

Pm
i=1 Xi, has generat-

ing function [G(x)]m.
• Composition: If X1, . . . , Xm are independent, identically dis-

tributed random variables generated by the generating function
G(x), and m is also an independent random variable generated
by the function F (x), then the sum Sm =

Pm
i=1 Xi has gener-

ating function F (G(x)).
Using these properties and Equations 10 and 11, we can proceed to

analyze the cost of Iterative Set Expansion. Assume that we are in the
stage where Iterative Set Expansion has sent a set Q of tokens as que-
ries. These tokens were discovered by following random edges on the
graph; therefore, the degree distribution of these tokens is described
by Gt1(x) (Equation 11). Then, by the Power property, the distribu-
tion of the total number of retrieved documents (which are pointed to
by these tokens) is given by the generating function:6

Gd2(x) = [Gt1(x)]|Q| (12)

Now, we know that Dretr in Equation 4 is a random variable and
its distribution is given by Gd2(x). We also know that we retrieve
documents by following random edges on the graph; therefore, the
degree distribution of these documents is described by Gd1(x) (Equa-
tion 11). Then, by the Composition property7, the distribution of the
total number of tokens |Tokensretr | retrieved by the Dretr documents
is given by the generating function:8

Gt2(x) = Gd2(Gd1(x)) = [Gt1(Gd1(x))]|Q| (13)

Finally, we use the Moments property to compute the expected val-
ues for |Dretr | and |Tokensretr |, after Iterative Set Expansion sends
Q queries.

E[|Dretr |] =

»
d

dx
[Gt1(x)]|Q|

–
x=1

(14)

E[|Tokensretr |] =

»
d

dx
[Gt1(Gd1(x))]|Q|

–
x=1

(15)

Hence, the number of queries |Qsent | sent by Iterative Set Expansion
to reach the target recall τ is:

̂|Qsent | = min{Q : E[|Tokensretr |] ≥ τ |Tokens|} (16)
6This is the number of non-distinct documents. To compute the number of
distinct documents, we use the sieve method. For details, see [41, page 110].
7We use the Composition property and not the Power property because |Dretr |
is a random variable.
8Again, this is the number of non-distinct tokens. To compute the number of
distinct tokens, we use the sieve method. For details, see [41, page 110].

Our analysis, so far, did not account for the fact that the tokens
in a database are not always “reachable” in the querying graph from
the tokens in Tokensseed . As we have briefly discussed, though, the
ability to reach all the tokens is necessary for Iterative Set Expansion
to achieve good recall. Before elaborating further on the subject, we
describe the concept of the reachability graph, which we originally
introduced in [3] and is fundamental for our analysis.

DEFINITION 5.2. [Reachability Graph] Consider a database
D, and an execution strategy S for a task with an underlying docu-
ment processor P and querying strategy R. We define the reachability
graph RG(D,S) of D with respect to S as a graph whose nodes are
the tokens that P derives from D, and whose edge set E is such that a
directed edge ti → tj means that P derives tj from a document that
R retrieves using ti. 2

Figure 9 shows the reachability graph derived from an underlying
querying graph, illustrating how edges are added to the reachability
graph. Since token t2 retrieves document d3 and d3 contains token
t3, the reachability graph contains the edge t2 → t3. Intuitively, a
path in the reachability graph from a token ti to a token tj means that
there is a set of queries that start with ti and lead to the retrieval of a
document that contains the token tj . In the example in Figure 9, there
is a path from t2 to t4, through t3. This means that query t2 can help
discover token t3, which in turn helps discover token t4. The absence
of a path from a token ti to a token tj in the reachability graph means
that we cannot discover tj starting from ti. This is the case for the
tokens t2 and t5 in Figure 9.

The reachability graph is a directed graph and its connectivity de-
fines the maximum achievable recall of Iterative Set Expansion: the
upper limit for the recall of Iterative Set Expansion is equal to the total
size of the connected components that include tokens in Tokensseed .
In random graphs, typically we observe two scenarios: either the
graph is disconnected and has a large number of disconnected compo-
nents, or we observe a giant component and a set of small connected
components. Chung and Lu [18] proved this for graphs with a power-
law degree distribution, and also provided the formulas for the com-
position of the size of the components. Newman et al. [35] provide
similar results for graphs with arbitrary degree distributions. Interest-
ingly for our problem, the size of the connected components can be
estimated for many degree distributions using only a small number of
parameters (e.g., for power-law graphs we only need an estimate of
the average node out-degree [18] to compute the size of the connected
component; in Section 6 we explain how we obtain such estimates).
By estimating only a small number of parameters, we can thus charac-
terize the performance limits of the Iterative Set Expansion strategy.

As discussed, Iterative Set Expansion relies on the discovery of new
tokens to derive new queries. Therefore, in sparse and “disconnected”
databases, Iterative Set Expansion can exhaust the available queries
and still miss a significant part of the database, leading to low re-
call. In such cases, if high recall is a requirement, different strategies
are preferable. The alternative query-based strategy that we examine
next, Automatic Query Generation, showcases a different querying
approach: instead of deriving new queries during execution, Auto-
matic Query Generation generates a set of queries offline and then
queries the database without using query results as feedback.

5.5 Cost of Automatic Query Generation
Section 4.4 showed that the cost of Automatic Query Generation

consists of two main components: the training cost and the query-
ing cost. Training represents a one-time cost for a task, as discussed
in Section 4.4, so we ignore it in our analysis. Therefore, the main
component that remains to be analyzed is the querying cost.

To estimate the querying cost of Automatic Query Generation, we
need to estimate recall after sending a set Q of queries and the number
of retrieved documents |Dretr | at that point. Each query q retrieves

g(q) documents, and a fraction p(q) of these documents is useful for
the task at hand. Assuming that the queries are biased only towards
retrieving useful documents and not towards any other particular set of
documents, the queries are conditionally independent9 within the set
of documents Duseful and within the rest of the documents, Duseless .
Therefore, the probability that a useful document is retrieved by a
query q is p(q)·g(q)

|Duseful |
. Hence, the probability that a useful document d

is retrieved by at least one query is:

1−Pr{d not retrieved by any query}=1−
|Q|Y
i=1

„
1− p(qi) · g(qi)

|Duseful |

«
So, given the values of p(qi) and g(qi), the expected number of useful
documents that are retrieved is:

E[|Duseful
retr |] = |Duseful | ·

0@1−
|Q|Y
i=1

„
1− p(qi) · g(qi)

|Duseful |

«1A (17)

and the number of useless documents retrieved is:

E[|Duseless
retr |]= |Duseless |·

0@1− |Q|Y
i=1

„
1− (1− p(qi)) · g(qi)

|Duseless |

«1A (18)

Assuming that the “precision” of a query q is independent of the num-
ber of documents that q retrieves,10 we get a simpler expression:

E[|Duseful
retr |]= |Duseful | ·

1−

„
1− E[p(q)] · E[g(q)]

|Duseful |

«|Q|
!

(19)

where E[p(q)] is the average precision of the queries and E[g(q)]
is the average number of retrieved documents per query. An analo-
gous expression follows for E[|Duseless

retr |]. The expected number of
retrieved documents is then:

E[|Dretr |] = E[|Duseful
retr |] + E[|Duseless

retr |] (20)

To compute the recall of Automatic Query Generation after issuing
Q queries, we use the same methodology that we used for Filtered
Scan. Specifically, Equation 19 reveals the total number of useful
documents retrieved, and these are the documents that contribute to
recall. These documents belong to Duseful . Hence, similarly to Scan
and Filtered Scan, we model Automatic Query Generation as sam-
pling without replacement; the essential difference now is that the
sampling is over the Duseful set. Therefore, we have an effective da-
tabase size |Duseful | and a sample size equal to |Duseful

retr |.11 By modi-
fying Equation 6 appropriately, we have:

E[|Tokensretr |] =
X

t∈Tokens

1− (|Duseful | − g(t))! (|Duseful | − S)!

(|Duseful | − g(t)− S)!|Duseful |!
(21)

where S = |Duseful
retr |. A good approximation of the average value

of |Tokensretr | can be derived by setting S to be the mean value of
the |Duseful

retr | distribution (Equation 19). Similarly to the analysis for
Iterative Set Expansion, we have:

̂|Qsent | = min{Q : E[|Tokensretr |] ≥ τ |Tokens|} (22)

In this section, we analyzed four alternate execution plans and we
showed how their execution time and recall depend on fundamental
task-specific properties of the underlying text databases. Next, we
show how to exploit the parameter estimation and our cost model to
significantly speed-up the execution of text-centric tasks.
9The conditional independence assumption implies that the queries are only
biased towards retrieving useful documents, and not towards any subset of
useful documents.

10We observed this assumption to be true in practice.
11The documents Duseless

retr increase the execution time but do not contribute
towards recall and we ignore them for recall computation.

6. PUTTING IT ALL TOGETHER
In Section 5, we examined how we can estimate the execution time

and the recall of each execution plan by using the values of a few
parameters, including the target recall τ and the token, document, and
query degree distributions. In this section, we summarize our overall
optimization approach, and show how we estimate —on-the-fly— the
parameters needed. As we will show in our experimental evaluation
in Section 8, our optimization approach leads to efficient executions
of the text-centric tasks for the target recall value.

Our cost model of Section 5 relies on a number of parameters. For
example, the value of |Tokens| (i.e., the number of tokens in the da-
tabase) is generally unknown before executing a task, and we need it
both (1) to decide when we reach the desired recall for the task, to
stop execution; and (2) to provide an “educated” estimate to bootstrap
our estimation techniques. A robust estimation method for a database
and a task is to retrieve multiple document samples from the data-
base and analyze the token overlap across the samples to determine a
|Tokens| estimate. Similar estimation methods have been proposed
for Task 2 [30] and for Task 3 [12, page 276]. In our experiments, we
do not rely on estimates but rather use the actual value of |Tokens|.

Some parameters of our cost model, such as classifier selectivity
and recall (Section 5.3), can be estimated accurately over a relatively
small sample of database documents. In fact, the classifier character-
istics for Filtered Scan and query degree and precision for Automatic
Query Generation can be easily estimated during classifier training
using cross-validation [16]. To estimate the token and document dis-
tributions, we rely on the fact that, for many tasks, we know the
general family of these distributions, as we discussed in Section 5.1.
Hence, our estimation task reduces to estimating a few parameters of
well-known distribution families,12 which we discuss below.

To estimate the parameters of a distribution family for a concrete
text-centric task and database, we could resort to a “preprocessing”
estimation phase before we start executing the actual task. For this,
we could follow Chaudhuri et al. [16], and continue to sample data-
base documents until cross-validation indicates that the estimates are
accurate enough. An interesting observation is that having a sepa-
rate preprocessing estimation phase is not necessary in our scenario,
since we can piggyback such estimation phase into the initial stages
of an actual execution of the task. In other words, instead of hav-
ing a preprocessing estimation phase, we can start processing the task
and exploit the retrieved documents for “on-the-fly” parameter esti-
mation. This estimation relies on an initial (manual) assignment of
tasks to distribution families, which are often natural for the tasks or
have been investigated in the literature, as we discussed in Section 5.1.

The basic challenge in this scenario is to guarantee that the pa-
rameter estimates that we obtain during execution are as accurate as
the estimates that we would derive through random sampling. This
is straightforward for Scan, since Scan effectively performs random
sampling over the databases. Automatic Query Generation performs
random sampling over the Duseful documents and is thus equivalent to
random sampling for the token degree distribution. For the document
degree distribution, Automatic Query Generation then underestimates
pd0, the probability that g(d) = 0, i.e., that a document d is useless
(see Section 5.4), and overestimates pdk for k ≥ 1. Filtered Scan has
a similar bias, introduced by the classifier: since the classifier is not
perfect, the observed token and document degrees are typically under-
estimates of the real values. Fortunately, for both Filtered Scan and
Automatic Query Generation, we can compensate for the introduced
bias using a confusion matrix adjustment [27], which we use for our

12Our current optimization framework follows a parametric approach, by as-
suming that we know the form of the document and token degree distributions
but not their exact parameters. Our framework can also be used in a completely
non-parametric setting, in which we make no assumptions on the degree dis-
tributions; however, the estimation phase would be more expensive in such a
setting. The development of an efficient, completely non-parametric frame-
work is a topic for interesting future research.

Input: database D, recall threshold τ , alternate strategies S1, . . .Sn

Output: tokens Tokensretr

statistics = ∅
while recall < τ and |Dretr | < |D| do

/* Locate best possible strategy */
estTime = +∞
foreach available execution strategy S do

Compute the Time(S, D) for reaching target recall τ using the
available statistics
if estTime ≥ Time(S, D) then

strategy = S
estTime = Time(S, D)

end
end
/* Execute strategy */
Continue execution using strategy , for a batch of documents
Update statistics using Dretr and Tokensretr

end
return Tokensretr

Figure 10: Choosing execution strategies adaptively

experiments. (Due to space restrictions, we omit the details.) Fi-
nally, for Iterative Set Expansion, we should notice that the execution
plan samples the distributions generated by the functions Gt1(x) and
Gd1(x) (see Section 5.4), while unbiased random sampling samples
from the distributions generated by the functions Gt0(x) and Gd0(x).
Equations 10 and 11 show how to convert the observed estimates to
the real ones. Again, due to space restrictions, we omit the details.

Using the observations above, we can now describe our overall op-
timization approach. The optimization starts by choosing one of the
execution plans described in Section 4, based on some “prior knowl-
edge” about the token and document distributions (e.g., that the token
and document degrees follow a power-law distribution for Task 1).
Then, during execution, the adaptive strategy keeps updating the es-
timates for the token and document distributions and checks for their
robustness using cross-validation. At any point in time, if the esti-
mated execution time for reaching the target recall, Time(S, D), of
a competing strategy S is smaller than that of the current strategy,
then the optimizer switches to executing the less expensive strategy,
continuing from the execution point reached by the current strategy.
Figure 10 summarizes this algorithm.

Next, our experimental evaluation shows that our optimization ap-
proach accurately predicts the cost of each execution strategy and –in
many cases– manages to choose the strategy that reaches the target
recall τ with the minimum execution time.

7. EXPERIMENTAL SETTING
We now describe the experimental setting for each text-centric task

of Section 2, including the real-world data sets for the experiments.
We also present interesting statistics about the task-specific distribu-
tion of tokens in the data sets.

7.1 Information Extraction
Document Processor: For this task, we use the Snowball informa-
tion extraction system [1] as the document processor (see Section 3).
We use two instantiations of Snowball: one for extracting a Disease-
Outbreaks relation (Task 1a) and one for extracting a Headquarters
relation (Task 1b). For Task 1a, the goal is to extract all the tu-
ples of the target relation DiseaseOutbreaks (DiseaseName, Country),
which we discussed throughout the paper. For Task 1b, the goal is to
extract all the tuples of the target relation Headquarters (Organiza-
tion,Location), where a tuple 〈o, l〉 in Headquarters indicates that
organization o has headquarters in location l. A token for these tasks
is a single tuple of the target relation, and a document is a news article
from the New York Times archive, which we describe next.
Data Set: We use a collection of newspaper articles from The New
York Times, published in 1995 (NYT95) and 1996 (NYT96). We

Token Degree Distribution

y = 5492.2x-2.0254

R2 = 0.8934

1

10

100

1000

10000

1 10 100 1000

Token Degree

N
um

be
r

of
 T

ok
en

s

Figure 11: Token distribution for Task 1’s DiseaseOutbreaks

Document Degree Distribution

y = 43060x-3.3863

R2 = 0.9406

1

10

100

1000

10000

100000

1 10 100
Document Degree

N
um

be
r

of
 D

oc
um

en
ts

Figure 12: Document distribution for Task 1’s DiseaseOutbreaks

use the NYT95 documents for training and the NYT96 documents for
evaluation of the alternative execution strategies. The NYT96 data-
base contains 182,531 documents, with 16,921 tokens for Task 1a and
605 tokens for Task 1b. Figures 11 and 12 show the document and
token degree distribution (Section 5) for Task 1a: both distributions
follow a power-law, a common distribution for information extraction
tasks. The distributions are similar for Task 1b.
Execution Plan Instantiation: For Filtered Scan we use a rule-based
classifier, created using RIPPER [19]. We train RIPPER using a set
of 500 useful documents and 1,500 not useful documents from the
NYT95 data set. We also use 2,000 documents from the NYT95 data
set as a training set to create the queries required by Automatic Query
Generation. Finally, for Iterative Set Expansion, we construct the
queries using the conjunction of the attributes of each tuple (e.g., tuple
〈typhus,Belize〉 results in query [typhus AND Belize]).

7.2 Content Summary Construction
Document Processor: For this task, the document processor is a sim-
ple tokenizer that extracts the words that appear in the eligible docu-
ments, defined as a sequence of one or more alphanumeric characters
and ignoring capitalization.
Data Set: We use the 20 Newsgroups data set from the UCI KDD
Archive [6]. This data set contains 20,000 messages from 20 Usenet
newsgroups. We also randomly retrieve additional Usenet articles to
create queries for Automatic Query Generation. Figures 13 and 14
show the document and token degree distribution (Section 5) for this
task. The document degree follows a lognormal distribution [34] and
the token degree follows, as expected [43], a power-law distribution.
Execution Plan Instantiation: For this task, Filtered Scan is not
directly applicable, since all documents are “useful.” For Iterative
Set Expansion, the queries are constructed using words that appear
in previously retrieved documents; this technique corresponds to the
Learned Resource Description strategy for vocabulary extraction pre-
sented by Callan et al. [10]. Finally, for Automatic Query Gener-

Token Degree Distribution

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000
Token Degree

N
um

be
r

of
 D

oc
um

en
ts

Figure 13: Token distribution for Task 2

Document Degree Distribution

0

20

40

60

80

100

120

140

160

180

1 10 100 1000 10000
Document Degree

N
um

be
r

of
 D

oc
um

en
ts

Figure 14: Document distribution for Task 2

ation, we constructed the queries as follows: first, we separate the
documents into topics according to the high-level name of the news-
group (e.g., “comp”, “sci”, and so on); then, we train a rule-based
classifier using RIPPER, which creates rules to assign documents into
categories (e.g., cpu AND ram → comp means that a document con-
taining the words “cpu” and “ram” is assigned to the “comp” cate-
gory). The final queries for Automatic Query Generation contain the
antecedents of the rules, across all categories. This technique cor-
responds to the Focused Probing strategy for vocabulary extraction
presented by Ipeirotis and Gravano [31].

7.3 Focused Resource Discovery
Document Processor: For this task, the document processor is a
multinomial Naive Bayes classifier, which detects the topic of a given
web page [14]. The topic of choice for our experiments is “Botany.”
Data Set: We retrieved 8,000 web pages listed in Open Directory13

under the category “Top → Science → Biology → Botany.” We se-
lected 1,000 out of the 8,000 documents as training documents, and
created a multinomial Naive Bayes classifier that decides whether a
web page is about Botany. Then, for each of the downloaded Botany
pages, we used Google to retrieve all its “backlinks” (i.e., all the web
pages that point to that page); again, we classified the retrieved pages
and for each page classified as “Botany” we repeated the process of
retrieving the backlinks, until none of the backlinks was classified
under Botany. This process results in a data set with approximately
12,000 pages about Botany, pointed to by approximately 32,000 use-
less documents deemed irrelevant to the Botany topic. To augment the
data set with additional useless documents, we picked 10 more ran-
dom topics from the third level of the Open Directory hierarchy and
we downloaded all the web pages listed under these topics, for a total
of approximately 100,000 pages. After downloading the backlinks for
these pages, our data set contained a total of approximately 800,000

13http://www.dmoz.org

100

1,000

10,000

100,000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Recall

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

SC_time SC_pred
FS_time FS_pred
ISE_time ISE_pred
AQG_time AQG_pred
Optimized

Figure 15: Actual vs. estimated execution times for Task 1a, as a
function of the target recall τ

10

100

1,000

10,000

100,000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Recall

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

SC_time SC_pred
FS_time FS_pred
ISE_time ISE_pred
AQG_time AQG_pred
Optimized

Figure 16: Actual vs. estimated execution times for Task 1b, as a
function of the target recall τ

pages, out of which 12,000 are relevant to Botany.
Execution Plan Instantiation: For this task, the Scan plan corre-
sponds to an unfocused crawl, with a classifier deciding whether each
of the retrieved pages belongs to the category of choice. As an in-
stantiation of Filtered Scan, we use the “hard” version of the focused
crawler described in [14]. The focused crawler starts from a few
Botany web pages, and then visits a web page only when at least one
of the documents that points to it is useful. Finally, to create queries
for Automatic Query Generation, we train a RIPPER classifier using
the training set, and create a set of rules that assign documents into the
Botany category. We use these rules to query the data set and retrieve
documents.

8. EXPERIMENTAL EVALUATION
In this section, we present our experimental results. Our experi-

ments focus on the execution times of each alternate execution strat-
egy (Section 4) for the tasks and settings described in Section 7. We
compute the actual execution times and compare them against our
estimates from Section 5. First, we compute our estimates with ex-
act values for the various parameters on which they rely (e.g., token
degree distribution). Then, we measure the execution time using our
optimization strategy, which relies on approximations of these param-
eters, as described in Section 6.

Accuracy of Cost Model with Correct Information: The goal of
the first set of experiments is to examine whether our cost model of
Section 5 captures the real behavior of the alternate execution strate-
gies of Section 4, when all the parameters of the cost model (e.g., to-
ken and document degree distributions, classifier characteristics) are
known a-priori. For this, we first measure the actual execution time
of the strategies, for varying values of the target recall τ . The lines
SC time, FS time, ISE time, AQG time in Figures 15, 16, 17, and 18
show the actual execution time of the respective strategies for the tasks
described in Section 7. Then, to predict the execution time of each

http://www.dmoz.org

0.1

1.0

10. 0

100. 0

1,000. 0

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Recall

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

SC_pred SC_time
ISE_pred ISE_time
AQG_pred AQG_time
Optimized

Figure 17: Actual vs. estimated execution times for Task 2, as a
function of the target recall τ

100

1,00 0

10,00 0

100,00 0

1,000,00 0

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Recall

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

SC_time SC_pred
FS_time FS_pred
AQG_time AQG_pred
Optimized

Figure 18: Actual vs. estimated execution times for Task 3, as a
function of the target recall τ

strategy, we used our equations from Section 5. The lines SC pred,
FS pred, ISE pred, AQG pred in Figures 15, 16, 17, and 18 show our
execution time estimates for varying values of the target recall τ . The
results were exceptionally accurate, confirming the accuracy of our
theoretical modeling. The prediction error is typically less than 10%
for all values of target recall τ .

Furthermore, our modeling captures well the limitations of each ex-
ecution plan. For example, for Task 1a (Figure 15) Automatic Query
Generation is the fastest execution plan when target recall τ < 0.15.
However, due to the limited number of queries generated during the
training phase, Automatic Query Generation cannot reach high recall
values. (We generated 72 queries for this task.) Our analysis cor-
rectly captures this limitation and shows that, for higher recall targets,
other strategies are preferable. This limitation also appears for the
Iterative Set Expansion strategy, confirming previously reported re-
sults [3]. The results are similar for Task 3: our analysis correctly
predicts the execution time and the recall limitations of each strategy.

Quality of Choice of Execution Strategies: After confirming that
our cost models accurately capture the actual execution time of the al-
ternate execution strategies, we examine whether the cost model leads
to the choice of the fastest plan for each value of target recall τ . We
start executing each task by using the strategy that is deemed best for
the target recall and the available statistics. These statistics are the ex-
pected distribution family of the token and document degrees for the
task, with some “default” parameters, such as β = −2 for power-law
distributions (see Section 7). Our experiments also assume knowl-
edge of the actual value of |Tokens|, as discussed. During the actual
execution, the available statistics are refined; if the acquired statistics
show that an alternative strategy is preferable at some point in the exe-
cution, then we switch to the strategy that is deemed best (Figure 10).

The Optimized line in Figures 15, 16, 17, and 18 shows the actual
execution time, for different recall thresholds, using our optimization
approach. Typically, our optimizer finishes the task in the same time

as the best possible strategy, resulting in execution times that can be
up to 10 times faster than alternative plans that we might have picked
based on plain intuition or heuristics. For example, consider Task 1b
with recall target τ = 0.35 (Figure 16): without our cost modeling,
we might select Iterative Set Expansion or Automatic Query Gener-
ation, both reasonable choices given the relatively low target recall
τ = 0.35. However, Automatic Query Generation cannot achieve a
recall of 0.35 and Iterative Set Expansion is more expensive than Fil-
tered Scan for that task. Our optimizer, on the other hand, correctly
predicts that Filtered Scan should be the algorithm of choice. In this
example, our optimizer initially picked Iterative Set Expansion, but
quickly revised its decision and switched to Filtered Scan after gath-
ering statistics from only 1-2% of the database. In some cases, our
prediction algorithm overestimates the achievable recall of a strategy
(e.g., Automatic Query Generation). In such cases, our (incorrectly
picked) strategy runs to completion; then, naturally, our technique
picks the “next best” strategy and continues the execution from the
point reached by the (incorrectly picked) strategy. In such cases, we
sometimes even observed a small performance gain derived from this
initial mistake, since the “incorrect” strategy outperforms the “cor-
rect” strategy for the first part of the execution. This result outlines
an interesting future research direction: instead of picking a single
strategy for a target recall, we could instead build multi-strategy ex-
ecutions explicitly, by choosing different strategies for different parts
of the execution.

Conclusions: We demonstrated how our modeling approach can be
used to create an optimizer for text-centric tasks. The presented ap-
proach allows for a better understanding of the behavior of query- and
crawl-based strategies, in terms of both execution time and recall. Fur-
thermore, our modeling works well even with on-the-fly estimation of
the bulk of the required statistics, and results in close-to-optimal exe-
cution times. Our work provides fundamental building blocks towards
a full query optimizer for text-centric tasks: given a specific target re-
call (e.g., “find 40% of all disease outbreaks mentioned in the news”),
the query optimizer can automatically select the best execution strat-
egy to achieve this recall.

9. RELATED WORK
In this paper, we analyzed and estimated the computational costs of

text-centric tasks. We concentrated on three important tasks: informa-
tion extraction (Task 1), text database content summary construction
(Task 2), and focused resource discovery (Task 3).

Implementations of Task 1 (Section 2.1) traditionally use the Scan
strategy of Section 4.1, where every document is processed by the
information extraction system (e.g., [28, 42]). Some systems use
the Filtered Scan strategy of Section 4.2, where only the documents
that match specific URL patterns (e.g., [7]) or regular expressions
(e.g., [29]) are processed further. Agichtein and Gravano [2] presented
query-based execution strategies for Task 1, corresponding to the It-
erative Set Expansion strategy of Section 4.3 and Automatic Query
Generation strategy of Section 4.4. More recently, Etzioni et al. [24]
used what could be viewed as an instance of Automatic Query Gener-
ation to query generic search engines for extracting information from
the web. Cafarella and Etzioni [8] presented a complementary ap-
proach of constructing a special-purpose index for efficiently retriev-
ing promising text passages for information extraction. Such docu-
ment (and passage) retrieval improvements can be naturally integrated
into our framework. For Task 2, the execution strategy in [10] can be
cast as an instance of Iterative Set Expansion, as discussed in Sec-
tion 4.3. Another strategy for the same task [31] can be considered
an instance of Automatic Query Generation (Section 4.4). Interest-
ingly, over large crawlable databases, where both query- and crawl-
based strategies are possible, query-based strategies have been shown
to outperform crawl-based approaches for a related database classi-
fication task [26], since small document samples can result in good
categorization decisions at a fraction of the processing time required

by full database crawls. For Task 3, focused resource discovery sys-
tems typically use a variation of Filtered Scan [14, 13, 21, 33], where a
classifier determines which links to follow for subsequent (expensive)
retrieval and processing. Other strategies such as Automatic Query
Generation may be more effective for some scenarios [20].

Other important text-centric tasks can be modeled in our frame-
work. One such task is text filtering (i.e., selecting documents in a
text database on a particular topic) [37], which can be executed fol-
lowing either Filtered Scan, or, if appropriate, Automatic Query Gen-
eration. Another task is the construction of comparative web shop-
ping agents [22]. This task requires identifying appropriate web sites
(e.g., by using an instance of Automatic Query Generation) and subse-
quently extracting product information from a subset of the retrieved
pages (e.g., by using an implementation of Filtered Scan). As another
example, web question answering systems [4] usually translate a nat-
ural language question into a set of web search queries to retrieve doc-
uments for a subsequent answer extraction step from a subset of the
retrieved documents. This process can be viewed as a combination of
Automatic Query Generation and Filtered Scan. Recently, Ntoulas et
al. [36] presented query-based strategies for exhaustively “crawling”
a hidden web database while issuing as few queries as possible.

Estimating the cost of a query execution plan requires estimating
parameters of the cost model. We adapted common database sam-
pling techniques (e.g., [16, 32]) for our problem, as we discussed in
Section 6. Our work is similar in spirit to query optimization over
structured relational databases, adapted to the intrinsic differences of
executing text-centric tasks. Our work is complementary to previous
research on optimizing query plans with user-defined predicates [17],
in that we provide a robust way of estimating costs of complex text-
centric “predicates”. Our work can then be regarded as developing
specialized, efficient techniques for important special-purpose “oper-
ators” (e.g., as was done for fuzzy matching [15]).

Closest to this paper, in [3] we presented results on modeling and
estimating the achievable recall of Iterative Set Expansion, for Task 1
(information extraction) and Task 2 (database content summary con-
struction). Our current work extends [3] in several ways. First, we
develop rigorous cost models for Iterative Set Expansion, as well as
for three additional general execution strategies, namely Scan, Fil-
tered Scan, and Automatic Query Generation. We also present a prin-
cipled, cost-based method for selecting the most efficient execution
strategy automatically, whereas [3] only provided upper bounds on
the possible recall that each strategy could achieve if run to comple-
tion. Finally, we thoroughly evaluated our cost estimation models and
adaptive execution strategy over multiple tasks and multiple data sets.

10. CONCLUSION
In this paper, we introduced a rigorous cost model for several query-

and crawl-based execution strategies that underlie the implementation
of many text-centric tasks. We complement our model with a prin-
cipled cost estimation approach. Our analysis helps predict the exe-
cution time and output completeness of important query- and crawl-
based algorithms, which until now were only empirically evaluated,
with limited theoretical justification. We demonstrated that our mod-
eling can be successfully used to create an optimizer for text-centric
tasks, and showed that the optimizer can adaptively select the best ex-
ecution strategy to achieve a target recall, resulting in executions that
can be orders of magnitude faster than alternate choices.

Our work can be extended in multiple directions. For example, the
current framework assumes that the document processors have perfect
“precision,” in that they always produce accurate results. Relaxing
this assumption and, correspondingly, predicting the precision of the
output produced by different strategies is a natural next step. Another
interesting direction is to apply our model to other text-centric tasks
and also study how to minimize our reliance on task-specific prior
knowledge of the token and document distributions for our analysis.

11. REFERENCES
[1] E. Agichtein and L. Gravano. Snowball: Extracting relations from large plain-text

collections. In DL, 2000.
[2] E. Agichtein and L. Gravano. Querying text databases for efficient information

extraction. In ICDE, 2003.
[3] E. Agichtein, P. G. Ipeirotis, and L. Gravano. Modeling query-based access to text

databases. In WebDB, 2003.
[4] M. Banko, E. Brill, S. Dumais, and J. Lin. AskMSR: Question answering using the

World-Wide Web. In Symp. on Mining Answers from Texts and KBases, 2002.
[5] M. K. Bergman. The Deep Web: Surfacing hidden value. Journal of Electronic

Publishing, 7(1), Aug. 2001.
[6] C. L. Blake and C. J. Merz. UCI repository of machine learning databases.

http://www.ics.uci.edu/˜mlearn/MLRepository.html
[7] S. Brin. Extracting patterns and relations from the World Wide Web. In WebDB,

1998.
[8] M. J. Cafarella and O. Etzioni. A search engine for natural language applications.

In WWW, 2005.
[9] J. P. Callan and M. Connell. Query-based sampling of text databases. ACM TOIS,

19(2):97–130, 2001.
[10] J. P. Callan, M. Connell, and A. Du. Automatic discovery of language models for

text databases. In SIGMOD, 1999.
[11] J. P. Callan, Z. Lu, and W. B. Croft. Searching distributed collections with

inference networks. In SIGIR, 1995.
[12] S. Chakrabarti. Mining the Web. Morgan Kaufmann, 2002.
[13] S. Chakrabarti, K. Punera, and M. Subramanyam. Accelerated focused crawling

through online relevance feedback. In WWW, 2002.
[14] S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawling: A new approach

to topic-specific web resource discovery. Computer Networks, 31, 1999.
[15] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and efficient fuzzy

match for online data cleaning. In SIGMOD, 2003.
[16] S. Chaudhuri, R. Motwani, and V. R. Narasayya. Random sampling for histogram

construction: How much is enough? In SIGMOD, 1998.
[17] S. Chaudhuri and K. Shim. Optimization of queries with user-defined predicates.

ACM TODS, 24(2):177–228, 1999.
[18] F. Chung and L. Lu. Connected components in random graphs with given degree

sequences. Annals of Combinatorics, 6:125–145, 2002.
[19] W. W. Cohen. Learning trees and rules with set-valued features. In AAAI, 1996.
[20] W. W. Cohen and Y. Singer. Learning to query the web. In AAAI Workshop on

Internet-Based Information Systems, 1996.
[21] M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles, and M. Gori. Focused crawling

using context graphs. In VLDB, 2000.
[22] R. B. Doorenbos, O. Etzioni, and D. S. Weld. A scalable comparison-shopping

agent for the World-Wide Web. In AGENTS’97, 1997.
[23] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, 1973.
[24] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M. Popescu, T. Shaked,

S. Soderland, D. S. Weld, and A. Yates. Web-scale information extraction in
KnowItAll. In WWW, 2004.

[25] L. Gravano, H. Garcı́a-Molina, and A. Tomasic. GlOSS: Text-source discovery
over the Internet. ACM TODS, 24(2):229–264, June 1999.

[26] L. Gravano, P. G. Ipeirotis, and M. Sahami. Query- vs. crawling-based
classification of searchable web databases. IEEE Data Eng. Bull., 25(1), 2002.

[27] L. Gravano, P. G. Ipeirotis, and M. Sahami. QProber: A system for automatic
classification of hidden-web databases. ACM TOIS, 21(1):1–41, Jan. 2003.

[28] R. Grishman. Information extraction: Techniques and challenges. In SCIE, 1997.
[29] R. Grishman, S. Huttunen, and R. Yangarber. Information extraction for enhanced

access to disease outbreak reports. Journal of Biomedical Informatics, 35(4), 2002.
[30] P. G. Ipeirotis. Classifying and Searching Hidden-Web Text Databases. Ph.D.

thesis, Columbia University, 2004.
[31] P. G. Ipeirotis and L. Gravano. Distributed search over the hidden web:

Hierarchical database sampling and selection. In VLDB, 2002.
[32] Y. Ling and W. Sun. An evaluation of sampling-based size estimation methods for

selections in database systems. In ICDE, 1995.
[33] F. Menczer, G. Pant, and P. Srinivasan. Topical web crawlers: Evaluating adaptive

algorithms. ACM Transactions on Internet Technology, 4(4):378–419, Nov. 2004.
[34] M. Mitzenmacher. Dynamic models for file sizes and double Pareto distributions.

Internet Mathematics, 1(3):305–334, 2004.
[35] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary

degree distributions and their applications. Phys. Review E, 64(2):1–17, 2001.
[36] A. Ntoulas, P. Zerfos, and J. Cho. Downloading textual hidden web content by

keyword queries. In JCDL, 2005.
[37] D. W. Oard. The state of the art in text filtering. UMUAI, 7(3):141–178, 1997.
[38] S. M. Ross. Introduction to Probability Models. Academic Press, 8th ed., 2002.
[39] F. Sebastiani. Machine learning in automated text categorization. ACM Computing

Surveys, 34(1):1–47, Mar. 2002.
[40] V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, Sept. 1998.
[41] H. S. Wilf. Generatingfunctionology. Academic Press Professional, Inc., 1990.
[42] R. Yangarber and R. Grishman. NYU: Description of the Proteus/PET system as

used for MUC-7. In MUC-7, 1998.
[43] G. K. Zipf. Human Behavior and the Principle of Least Effort. 1949.

http://www.ics.uci.edu/~mlearn/MLRepository.html

	1 Introduction
	2 Examples of Text-Centric Tasks
	2.1 Task 1: Information Extraction
	2.2 Task 2: Content Summary Construction
	2.3 Task 3: Focused Resource Discovery

	3 Describing Text-Centric Tasks
	4 Execution Strategies
	4.1 Scan
	4.2 Filtered Scan
	4.3 Iterative Set Expansion
	4.4 Automatic Query Generation

	5 Estimating Execution Plan Costs
	5.1 Preliminaries
	5.2 Cost of Scan
	5.3 Cost of Filtered Scan
	5.4 Cost of Iterative Set Expansion
	5.5 Cost of Automatic Query Generation

	6 Putting it All Together
	7 Experimental Setting
	7.1 Information Extraction
	7.2 Content Summary Construction
	7.3 Focused Resource Discovery

	8 Experimental Evaluation
	9 Related Work
	10 Conclusion
	11 References

