


Not all indexing is the same

B-tree is the basis for almost all DB systems
e Data structure invented in 1972
¢ Has not kept up with hardware trends

» Works poorly on modern rotational disks
» Works poorly on SSD

Fractal Tree Indexes is the basis of TokuDB
e Scales with hardware
¢ [Fast Indexing = More Indexing = Faster Queries
e Great Compression
e No Fragmentation
e Reduced wear on SSDs
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Storage is quirky

Hard disks are slow for
random /O but fast for
sequential I/O

SSDs are fast for
random |/O but expensive for
sequential.

Difference causes problems
like fragmentation, ...

Garbage collection
causes artefacts: increased
wear, write cliffs...
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But you only get the goodies if
each /O has lots of new bytes

If you read a big block, change one byte, then
write it, you get terrible wear problems
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Data is big, RAM is Small

Caching is great
e But you can’t cache all your data
e [or stuff not In memory, you have to go to disk

Goal: Do the best we can for the stuff on disk

N Tokutek.



Now, What's a B-tree?
& a Fractal Tree Index




What’s a B-tree”

N Tokutek.



What’s a B-tree”

Search Tree

N Tokutek.



What’s a B-tree”

Each node has B pivots Fetching pivots as a group
saves |/Os

Search Tree

N Tokutek.



What’s a B-tree”

Each node has B pivots Fetching pivots as a group
saves |/Os

Search Tree

Most leaves are on disk, not in RAM

N Tokutek.



What’s a B-tree”

Each node has B pivots Fetching pivots as a group
saves |/Os

Search Tree

Most leaves are on disk, not in RAM Inserting into a leaf that’s not in memory
will require an I/O per insertion
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Real-world delivery

Keep regional warehouses
e Only move stuff when you can move a lot

Each item gets moved several times
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Fractal Tree Indexes

Each node has
pivots & Buffers

0

Buffers fill as
updates arrive

£

Flush a buffer
\ when it fills

(i) [N

A

(3 0

The Art of Indexing

Iokutek.



Fractal Tree Indexes
= *
pivots & Buffers N

updates arrive

Flush a buffer
when it fills

A flush might take an I/O, but it
does lots of useful work

N Tokutek.




Fractal Tree Indexes

Each node has [ \
pivots & Buffers
Buffers fill as

updates arrive

Flush a buffer
when it fills

More changes per write = A flush might take an I/O, but it

fewer changes for same write does lots of useful work
load => less SSD wear

oAt of e Tokutek.
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Fractal Tree Indexes: Queries

Lots of buffers have
messages

Messages can be

insert, update, delete /

So every query has the
most up-to-date information
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Schema Changes are
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changes are immediate
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Fractal Tree Indexes: Schema Changes

Schema Changes are
broadcast messages

Schema change
message still on root-
leaf path

Insertion into root is fast,

. . Leaves get rewritten
changes are immediate

when broadcast message
makes it that far
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Delivery system gives goodies:

e Messages get moved, but each I/O pays for a lot of
movement

® You get very fast inserts
¢ You get Hot Schema Changes

Each flush carries lots of useful information
e S0 it’s worth it to make nodes big
e No fragmentation, Better Compression
e Much better wear on SSDs

N Tokutek.



