

Not all indexing is the same

B-tree is the basis for almost all DB systems
e Data structure invented in 1972
¢ Has not kept up with hardware trends

» Works poorly on modern rotational disks
» Works poorly on SSD

Fractal Tree Indexes is the basis of TokuDB
e Scales with hardware
¢ [Fast Indexing = More Indexing = Faster Queries
e Great Compression
e No Fragmentation
e Reduced wear on SSDs

N Tokutek.

How do Fractal Tree

INndexes outperform
B-trees”?

How do Fractal Tree

INndexes outperform

First, some facts about storage systems

Storage is quirky

Hard disks are slow for
random /O but fast for
sequential I/O

Difference causes problems
like fragmentation, ...

N Tokutek.

Storage is quirky

Hard disks are slow for
random /O but fast for
sequential I/O

SSDs are fast for
random |/O but expensive for
sequential.

Difference causes problems
like fragmentation, ...

Garbage collection
causes artefacts: increased
wear, write cliffs...

N Tokutek.

Storage) Big Reads and Writes

Iokutek.

Storage) Big Reads and Writes

4)
Hard Disks: No

Fragmentation
\

N Tokutek.

Storage) Big Reads and Writes

4)
Hard Disks: No

Fragmentation

_

The Art of Indexing

-

SSDs: Less Garbage

P

~

Collection & Wear
J

Iokutek.

Storage) Big Reads and Writes

4)
Hard Disks: No 4 N
Fragmentation SSDs: Less Garbage
\ Collection & Wear

- J

But you only get the goodies if
each /O has lots of new bytes

N Tokutek.

Storage) Big Reads and Writes

4)
Hard Disks: No 4)
Fragmentation SSDs: Less Garbage
_ Collection & Wear

- J

But you only get the goodies if
each /O has lots of new bytes

If you read a big block, change one byte, then
write it, you get terrible wear problems

N Tokutek.

Storage) Big Reads and Writes

-

_

~
Hard Disks: No

Fragmentation

-

_

Both: Better
Compression

J

The Art of Indexing

4)
SSDs: Less Garbage

Collection & Wear
N Y,

But you only get the goodies if
each /O has lots of new bytes

If you read a big block, change one byte, then
write it, you get terrible wear problems

Iokutek.

Data is big, RAM is Small

Caching is great
e But you can’t cache all your data
e [or stuff not In memory, you have to go to disk

Goal: Do the best we can for the stuff on disk

N Tokutek.

Now, What's a B-tree?
& a Fractal Tree Index

What’s a B-tree”

N Tokutek.

What’s a B-tree”

Search Tree

N Tokutek.

What’s a B-tree”

Each node has B pivots Fetching pivots as a group
saves |/Os

Search Tree

N Tokutek.

What’s a B-tree”

Each node has B pivots Fetching pivots as a group
saves |/Os

Search Tree

Most leaves are on disk, not in RAM

N Tokutek.

What’s a B-tree”

Each node has B pivots Fetching pivots as a group
saves |/Os

Search Tree

Most leaves are on disk, not in RAM Inserting into a leaf that’s not in memory
will require an I/O per insertion

N Tokutek.

B-tree Delivery Service

If fast memory is like walking across a room

e Fach update in a B-tree is a walking trip from
» New York

N Tokutek.

B-tree Delivery Service

If fast memory is like walking across a room

e Fach update in a B-tree is a walking trip from
» New York to St Louis

N \

| " | I N ! :

-) ') l. \’
] - Ny -1

T
-'. L—-_

N Tokutek.

B-tree Delivery Service

If fast memory is like walking across a room

e Fach update in a B-tree is a walking trip from
» New York to St Louis

| \ —-i | |
| B W &] \
-‘| 'r ' “' l. \

N Tokutek.

Real-world delivery

Keep regional warehouses
e Only move stuff when you can move a lot

N Tokutek.

Real-world delivery

Keep regional warehouses
e Only move stuff when you can move a lot

Each item gets moved several times

N Tokutek.

Real-world delivery

Keep regional warehouses
e Only move stuff when you can move a lot

Each item gets moved several times

-%ﬁi‘iﬂ“\\\m» &

\

: But each trip is vastly cheaper

N Tokutek.

Fractal Tree Indexes
Each node has i = ‘

POV

ARG RG]

Iokutek.

Fractal Tree Indexes
Each node has i = ‘

POV

ARG RG]

Iokutek.

Fractal Tree Indexes
Each node has i = ‘

POV

ARG RG]

Iokutek.

~

Fractal Tree Indexes
Each node has i
I 1l |

PV
iy
OV

ARG RG]

Iokutek.

~

Fractal Tree Indexes
Each node has i
I 1l |

P
iy
OV

ARG RG]

Iokutek.

~

Fractal Tree Indexes
Each node has i
I 1l |

PV
iy
OV

ARG RG]

Iokutek.

~

Fractal Tree Indexes
Each node has i
I 1l |

PV
iy
POV

ARG RG]

Iokutek.

~

Fractal Tree Indexes
Each node has i
I 1l |

P
iy
POV

ARG RG]

Iokutek.

~

Fractal Tree Indexes
Each node has i
I 1l |

PV
iy
POV

ARG RG]

Iokutek.

~

Fractal Tree Indexes
Each node has i
I 1l |

PV
ey
POV

ARG RG]

Iokutek.

~

Fractal Tree Indexes
Each node has i
I 1l |

P
ey
POV

ARG RG]

Iokutek.

~

Fractal Tree Indexes
Each node has i
I 1l |

P
ey
POV

ARG RG]

Iokutek.

~

Fractal Tree Indexes
Each node has i
I 1l |

PV
ey
OV

ARG RG]

Iokutek.

~

Fractal Tree Indexes
Each node has i
I 1l |

P
ey
OV

ARG RG]

Iokutek.

~

Fractal Tree Indexes
Each node has i
I 1l |

PV
iy
OV

ARG RG]

Iokutek.

~

Fractal Tree Indexes
Each node has i
I 1l |

PV
iy
OV

ARG RG]

Iokutek.

~

Fractal Tree Indexes
Each node has i
I 1l |

P
iy
OV

ARG RG]

Iokutek.

~

Fractal Tree Indexes
Each node has i
I 1l |

PV
iy
OV

ARG RG]

Iokutek.

~

Fractal Tree Indexes
Each node has i
I 1l |

PV
iy
OV

ARG RG]

Iokutek.

Fractal Tree Indexes

Each node has
pivots & Buffers

0

Buffers fill as
updates arrive

£

Flush a buffer
\ when it fills

(i) [N

A

(3 0

The Art of Indexing

Iokutek.

Fractal Tree Indexes
= *
pivots & Buffers N

updates arrive

Flush a buffer
when it fills

A flush might take an I/O, but it
does lots of useful work

N Tokutek.

Fractal Tree Indexes

Each node has [\
pivots & Buffers
Buffers fill as

updates arrive

Flush a buffer
when it fills

More changes per write = A flush might take an I/O, but it

fewer changes for same write does lots of useful work
load => less SSD wear

oAt of e Tokutek.

Fractal Tree Indexes: Queries

C

| ;Aa/\ ﬂ\

(3 6y (A

O\

S

Iokutek.

Fractal Tree Indexes: Queries

Lots of buffers have B /.\
messages
0 a But query follows
! \ \ root-leaf path
P

N Tokutek.

Fractal Tree Indexes: Queries

Lots of buffers have
messages

So every query has the
most up-to-date information

N Tokutek.

Fractal Tree Indexes: Queries

Lots of buffers have
messages

Messages can be

insert, update, delete /

So every query has the
most up-to-date information

N Tokutek.

Fractal Tree Indexes: Schema Changes

C

;Aa/\ ﬂ\

(3 6y (A

O\

S

Iokutek.

Fractal Tree Indexes: Schema Changes

C

;Aa/\ ﬂ\

(3 6y (A

O\

S

Iokutek.

Fractal Tree Indexes: Schema Changes

C

;Aa/\ ﬂ\

(3 6y (A

O\

S

Iokutek.

Fractal Tree Indexes: Schema Changes

Schema Changes are
broadcast messages

Insertion into root is fast,

changes are immediate

N Tokutek.

Fractal Tree Indexes: Schema Changes

Schema Changes are
broadcast messages

Schema change
message still on root-
leaf path

Insertion into root is fast,

. . Leaves get rewritten
changes are immediate

when broadcast message
makes it that far

N Tokutek.

Delivery system gives goodies:

e Messages get moved, but each I/O pays for a lot of
movement

® You get very fast inserts
¢ You get Hot Schema Changes

Each flush carries lots of useful information
e S0 it’s worth it to make nodes big
e No fragmentation, Better Compression
e Much better wear on SSDs

N Tokutek.

