
Indexing

•UCSB 290N.

•Mainly based on slides from the text books

of Croft/Metzler/Strohman and

Manning/Raghavan/Schutze
All slides ©Addison Wesley, 2008

Table of Content

• Inverted index with positional information

• Compression

• Distributed indexing

Indexing Process

Indexes

• Indexes are data structures designed to make search

faster

• Most common data structure is inverted index

 general name for a class of structures

 “inverted” because documents are associated with

words, rather than words with documents

– similar to a concordance

• What is a reasonable abstract model for ranking?

 enables discussion of indexes without details of

retrieval model

Simple Model of Ranking

More Concrete Model

Inverted Index

• Each index term is associated with an inverted list

 Contains lists of documents, or lists of word

occurrences in documents, and other information

 Each entry is called a posting

 The part of the posting that refers to a specific

document or location is called a pointer

 Each document in the collection is given a unique

number

 Lists are usually document-ordered (sorted by

document number)

Example “Collection”

Simple Inverted

Index

Inverted Index

with counts

• supports better

ranking algorithms

Positional indexes

• Store, for each term, entries of the form:

<number of docs containing term;

doc1: position1, position2 … ;

doc2: position1, position2 … ;

etc.>

Positional index example

• this expands postings storage substantially

<be: 993427;

1: 7, 18, 33, 72, 86, 231;

2: 3, 149;

4: 17, 191, 291, 430, 434;

5: 363, 367, …>

Which of docs 1,2,4,5

could contain “to be

or not to be”?

Inverted Index

with positions

• supports

proximity matches

Proximity Matches

• Matching phrases or words within a window

explicitly or implicitly.

 e.g., "tropical fish", or “find tropical within 5

words of fish”

• Word positions in inverted lists make these types

of query features efficient

 e.g.,

Fields and Extents

• Document structure is useful in search

 field restrictions

– e.g., date, from:, etc.

 some fields more important

– e.g., title

• Options:

 separate inverted lists for each field type

 add information about fields to postings

 use extent lists to mark special areas in a document

Extent Lists

• An extent is a contiguous region of a document

 represent extents using word positions

 inverted list records all extents for a given field type

 e.g.,

extent list

Other Issues

• Precomputed scores in inverted list

 e.g., list for “fish” [(1:3.6), (3:2.2)], where 3.6 is total

feature value for document 1

 improves speed but reduces flexibility

• Score-ordered lists

 query processing engine can focus only on the top

part of each inverted list, where the highest-scoring

documents are recorded

 very efficient for single-word queries

Issue with data size: Example

• Number of docs = n = 40M

• Number of terms = m = 1M

• Use Zipf to estimate number of postings entries:

 n + n/2 + n/3 + …. + n/m ~ n ln m = 560M entries

 16-byte (4+8+4) records (term, doc, freq).

• 9GB

• No positional info yet
Check for

yourself

Positional index size

• Need an entry for each occurrence, not just once

per document

• Index size depends on average document size

 Average web page has <1000 terms

 SEC filings, PDF files, … easily 100,000 terms

• Consider a term with frequency 0.1%

100 1 100,000

1 1 1000

Positional postings Postings Document size

Compression

• Inverted lists are very large

 Much higher if n-grams are indexed

• Compression of indexes saves disk and/or memory

space

 Typically have to decompress lists to use them

 Best compression techniques have good

compression ratios and are easy to decompress

• Lossless compression – no information lost

Rules of thumb

• Positional index size factor of 2-4 over non-

positional index

• Positional index size 35-50% of volume of original

text

• Caveat: all of this holds for “English-like”

languages

Compression

• Basic idea: Common data elements use short codes

while uncommon data elements use longer codes

 Example: coding numbers

– number sequence: 0, 1, 0, 2,0,3,0

– possible encoding:

– encode 0 using a single 0:

– only 10 bits, but...

Compression Example

• Ambiguous encoding – not clear how to decode

– another decoding:

– which represents:

– use unambiguous code:

– which gives:

Delta Encoding

• Word count data is good candidate for compression

 many small numbers and few larger numbers

 encode small numbers with small codes

• Document numbers are less predictable

 but differences between numbers in an ordered list

are smaller and more predictable

• Delta encoding:

 encoding differences between document numbers (d-

gaps)

Delta Encoding

• Inverted list (without counts)

• Differences between adjacent numbers

• Differences for a high-frequency word are easier to

compress, e.g.,

• Differences for a low-frequency word are large, e.g.,

Bit-Aligned Codes

• Breaks between encoded numbers can occur after

any bit position

• Unary code

 Encode k by k 1s followed by 0

 0 at end makes code unambiguous

Unary and Binary Codes

• Unary is very efficient for small numbers such as 0

and 1, but quickly becomes very expensive

 1023 can be represented in 10 binary bits, but

requires 1024 bits in unary

• Binary is more efficient for large numbers, but it may

be ambiguous

Elias-γ Code

• To encode a number k, compute

– kd is number of binary digits, encoded in unary

Elias-δ Code

• Elias-γ code uses no more bits than unary, many

fewer for k > 2

 1023 takes 19 bits instead of 1024 bits using unary

• In general, takes 2⌊log2k⌋+1 bits

• To improve coding of large numbers, use Elias-δ

code

 Instead of encoding kd in unary, we encode kd + 1

using Elias-γ

 Takes approximately 2 log2 log2 k + log2 k bits

Elias-δ Code

• Split kd into:

 encode kdd in unary, kdr in binary, and kr in binary

Byte-Aligned Codes

• Variable-length bit encodings can be a problem on

processors that process bytes

• v-byte is a popular byte-aligned code

 Similar to Unicode UTF-8

• Shortest v-byte code is 1 byte

• Numbers are 1 to 4 bytes, with high bit 1 in the last

byte, 0 otherwise

V-Byte Encoding

V-Byte Encoder

V-Byte Decoder

Compression Example

• Consider invert list with positions:

• Delta encode document numbers and positions:

• Compress using v-byte:

Skip pointers for faster merging of postings

Basic merge

• Walk through the two postings simultaneously, in

time linear in the total number of postings entries

128

31

2 4 8 16 32 64

1 2 3 5 8 17 21

Brutus

Caesar
2 8

If the list lengths are m and n, the merge takes O(m+n)

operations.

Can we do better?

Yes, if index isn’t changing too fast.

Augment postings with skip pointers (at

indexing time)

• Why?

• To skip postings that will not be part of the

search results.

128 2 4 8 16 32 64

31 1 2 3 5 8 17 21

31 8

16 128

Query processing with skip pointers

128 2 4 8 16 32 64

31 1 2 3 5 8 17 21

31 8

16 128

Suppose we’ve stepped through the lists until we process 8 on

each list.

When we get to 16 on the top list, we see that its

successor is 32.

But the skip successor of 8 on the lower list is 31, so

we can skip ahead past the intervening postings.

Skip Pointers

• A skip pointer (d, p) contains a document number d

and a byte (or bit) position p

 Means there is an inverted list posting that starts at

position p, and the posting before it was for

document d

skip pointers
Inverted list

Skip Pointers

• Example

 Inverted list

 D-gaps

 Skip pointers

Where do we place skips?

• Tradeoff:

 More skips  shorter skip spans  more likely to

skip. But lots of comparisons to skip pointers.

 Fewer skips  few pointer comparison, but then

long skip spans  few successful skips.

Placing skips

• Simple heuristic: for postings of length L, use L

evenly-spaced skip pointers.

• This ignores the distribution of query terms.

• Easy if the index is relatively static; harder if L

keeps changing because of updates.

Auxiliary Structures

• Inverted lists usually stored together in a single file

for efficiency

 Inverted file

• Vocabulary or lexicon

 Contains a lookup table from index terms to the byte

offset of the inverted list in the inverted file

 Either hash table in memory or B-tree for larger

vocabularies

• Term statistics stored at start of inverted lists

• Collection statistics stored in separate file

Distributed Indexing

• Distributed processing driven by need to index and

analyze huge amounts of data (i.e., the Web)

• Large numbers of inexpensive servers used rather

than larger, more expensive machines

• MapReduce is a distributed programming tool

designed for indexing and analysis tasks

MapReduce

• Distributed programming framework that focuses on

data placement and distribution

• Mapper

 Generally, transforms a list of items into another list of

items of the same length

• Reducer

 Transforms a list of items into a single item

 Definitions not so strict in terms of number of outputs

• Many mapper and reducer tasks on a cluster of

machines

MapReduce

MapReduce

• Basic process

 Map stage which transforms data records into pairs,

each with a key and a value

 Shuffle uses a hash function so that all pairs with the

same key end up next to each other and on the same

machine

 Reduce stage processes records in batches, where

all pairs with the same key are processed at the same

time

• Idempotence of Mapper and Reducer provides fault

tolerance

 multiple operations on same input gives same output

Indexing Example

