Indexing

*UCSB 290N.

*Mainly based on slides from the text books
of Croft/Metzler/Strohman and
Manning/Raghavan/Schutze

All slides ©Addison Wesley, 2008

' Table of Content

* Inverted index with positional information
« Compression
« Distributed indexing

Indexing Process

@ Document data store

- Text Acquisition Index Creation -
N
E-mail, Web pages, s ‘ v
News articles, Memos, Letters

Index

Text Transformation

Indexes

* Indexes are data structures designed to make search
faster
« Most common data structure is inverted index
= general name for a class of structures

= “inverted” because documents are associated with
words, rather than words with documents

— similar to a concordance
« What is areasonable abstract model for ranking?

= enables discussion of indexes without details of
retrieval model

Simple Model of Ranking

Fred's Tropical Fish Shop is
the best place to find
tropical fish at low, low
prices. Whether you're
locking for a little fish or a
big fish, we've got what you
need. We even have fake

seaweed for your fishtank
(and little surfboards too).

Document

— 8.2 seaweed

™

9.7 fish
4.2 tropical
22.1 tropical fish

4.2 surfboards

Topical Features

14 incoming links

3 days since last update

Quality Features

tropical fish
Query

Ranking Function

24.5

Document Score

More Concrete Model

g; is a query feature function

R(Q, D) — Z gz(Q) fz(D) Ji is a document feature function

f 9.7 fish < p fish 5.2

1 4.2 tropical —»- tropical 3.4 gi

Fred's Tropical Fish Shop is 1) .

the best place to find 22.1 tropical fish g— p tropical fish 9.9

tropical fish at low, l(')w / 872 seaweed ChiChlidS 1.2

prices. Whether you're

locking for a little fish or a 4.2 Sll['be&['dS barbs 0.7

big fish, we've got what you tropical fish
need. We even have fake Topical Features Topical Features

Query

SCBWCCd fOI’ your ﬁshtank

(and little surfboards too). \

14 incoming links q—— g incominglinks 1.2
3 update count p update count 0.9

Document Quality Features Quality Features

303.01

Document Score

Inverted Index

Each index term Is associated with an inverted list

= Contains lists of documents, or lists of word
occurrences in documents, and other information

= Each entry is called a posting

= The part of the posting that refers to a specific
document or location is called a pointer

= Each document in the collection is given a unique
number

= Lists are usually document-ordered (sorted by
document number)

Example “Collection”

Tropical fish include fish found in tropical environments
around the world, including both freshwater and salt water
species.

Fishkeepers often use the term tropical fish to refer only
those requiring fresh water, with saltwater tropical fish re-
ferred to as marine fish.

Tropical fish are popular aquarium fish, due to their often
bright coloration.

In freshwater fish, this coloration typically derives from iri-
descence, while salt water fish are generally pigmented.

Four sentences from the Wikipedia entry for tropical fish

Simple Inverted
Index

and
agquarium
are

around
as

both
bright
coloration
derives
due

environments

fish
fishkeepers
found
fresh
freshwater
from
generally
in

include
including
iridescence
marine

often

5 150 0 | 2 13 G20 9 0 S [| S () Y R

[e°]

=]

[~]

]

[~]

[~]

3]l4]

only

pigmented
popular
refer
referred
requiring
salt
saltwater
species
term

the

their

this
those

to
tropical
typically
use

water
while
with

world

EENEEEEENEEEENENEEREEEE

] =]

o]l
]

]
=]

Inverted Index
with counts

e supports better
ranking algorithms

and
aquarium
are

around
as

both
bright
coloration
derives
due

environments

fish
fishkeepers
found
fresh
freshwater
from
generally
in

include
including
iridescence
marine

often

[y | Sy | ANy | Y | Y Y | Y | QU | Y |

—_
—_

e
—

-
—

1:2] [2:3] [3:2] [4:2]

SIS Il |l | R | ol Kol | el | Rl RS [RO
P | [y | Y | g g g | I | SR | |

-
—

e
—

oo
—

only

pigmented

popular
refer
referred
requiring
salt
saltwater
species
term

the

their

this
those

to
tropical
typically
use
water
while
with

world

B B2 e Q0 B = D D B D Qo s | D
[I N e N e N e N e e e T R e I e
b2 A
— [—

—

)
[0

wo
Ll

—
[

=[] =

._\

1] |2:1) [4:1]

ol IR e
— || =]~

' Positional indexes

« Store, for each term, entries of the form:
<number of docs containing term;
docl: position1, position2 ... ;
doc2: position1, position2 ... ;
etc.>

' Positional index example

<be: 993427:
1: 7,18, 33, 72, 86, 231;

Which of docs 1,2,4,5
2: 3, 149; < could contain “to be
4:17,191, 291, 430, 434

or not to be”?
5: 363, 367, ...>

* this expands postings storage substantially

and

aguarium
are

around

Inverted Index as

both
with positions bt
derives

due

¢ SUpportS environments
proximity matches ™"

fishkeepers
found

fresh
freshwater
from
generally
in

include
including

iridescence

-

—
—
o

Lo
o

[

Iy

[F]
uﬂﬁ
—
e

I =
B3| O
—_

—_

-

—
o

\-\..w
[E—
[

Lo
—
[

R
o

:P-
-1

[F]

-

-1

—_
o0

marine 2,22

often 3,10
only (2,10
plgmented
popular
refer |2,9
referred
requiring | 2,12

sl

B
—_
(=]

saltwater
species

—_
[

(1,4 | [27] [218] [2.23] term

[Nl

"

—

—_
o

[
—
Lo

= | || || =
|| | ool —
= =
=

B

]
Hea
[

ey

[l

—_
—
[

e

)

=]

Lol =] o] —
| = | =
] o]
[
e

4,3 ‘ the
their
this |44
those |2,11
to 2,8 |]220][38 |
tropical ‘1,1 ‘ ‘1,7 ‘ ‘2,6 ‘ ‘2}17‘ ‘3?1 ‘
typically
use |2,3
water | 1,17][2,14] 4,12
while |4,10
with
world | 1,11

Proximity Matches

 Matching phrases or words within a window
explicitly or implicitly.
= e.g., "tropical fish", or “find tropical within 5

= e.g.,

tropical

fish

words of fish”

 Word positions in inverted lists make these types
of query features efficient

i

1.7

2.6

217

T2

1,4

31

2.7

2,18

2,23

32

3,6

43

413

Fields and Extents

* Document structure is useful in search

= field restrictions
— e.g., date, from:, etc.

= some fields more important
- e.g., title
« Options:
= separate inverted lists for each field type
= add information about fields to postings

= use extent lists to mark special areas in a document

Extent Lists

 An extentis a contiguous region of a document
= represent extents using word positions
= inverted list records all extents for a given field type

" e.g.,
fish |1,2 1,4 2,7 | 2,18 2,23 (3,2 3,6 4.3 114,13
title | 1:(1,3) 2:(1,5) 4:(9,15)

\

extent list

' Other Issues

 Precomputed scores in inverted list

= e.g., list for “fish” [(1:3.6), (3:2.2)], where 3.6 is total
feature value for document 1

= improves speed but reduces flexibility

« Score-ordered lists

= query processing engine can focus only on the top
part of each inverted list, where the highest-scoring
documents are recorded

= very efficient for single-word gueries

' Issue with data size: Example

* Number of docs =n =40M

« Number of terms =m = 1M

« Use Zipf to estimate number of postings entries:
"n+n2+n/3+....+n/m~nlilnm=560M entries
= 16-byte (4+8+4) records (term, doc, freq).

« 9GB

 No positional info yet
Check for

yourself

Positional index size

 Need an entry for each occurrence, not just once
per document

* Index size depends on average document size
= Average web page has <1000 terms
= SEC filings, PDF files, ... easily 100,000 terms
« Consider aterm with frequency 0.1%

Document size Postings Positional postings
1000 1 1
100,000 1 100

Compression

* Inverted lists are very large
= Much higher if n-grams are indexed

« Compression of indexes saves disk and/or memory
space
= Typically have to decompress lists to use them

= Best compression techniques have good
compression ratios and are easy to decompress

 Lossless compression —no information lost

' Rules of thumb

 Positional index size factor of 2-4 over non-
positional index

* Positional index size 35-50% of volume of original
text

« Caveat: all of this holds for “English-like”
languages

Compression

« Basic idea: Common data elements use short codes
while uncommon data elements use longer codes

= Example: coding numbers

— number sequence: 0, 1, 0, 2,0,3,0

_ possible encoding: 00 01 00 10 00 11 00

—encode Ousingasingle0: ()01 0100110

— only 10 bits, but...

' Compression Example

« Ambiguous encoding — not clear how to decode

— another decoding: 0010100110

— which represents: O’]_’]_, O, O, 3, O

— use unambiguous code: Number | Code
0 0
_ _ 1 101
— which gives: 2 110
3 111

0101 0 111 0 110 O

Delta Encoding

 Word count data is good candidate for compression
= many small numbers and few larger numbers
= encode small numbers with small codes

« Document numbers are less predictable

= put differences between numbers in an ordered list
are smaller and more predictable

« Delta encoding:

= encoding differences between document numbers (d-
gaps)

' Delta Encoding

 Inverted list (without counts)
1,5,9,18,23, 24,30, 44, 45, 48

- Differences between adjacent numbers
1,4,4,9,5,1,6,14,1,3

- Differences for a high-frequency word are easier to

compress, e.g.,
1,1,2,1,5,1,4,1,1,3, ...
 Differences for a low-frequency word are large, e.g.,

109, 3766, 453, 1867, 992, ...

Bit-Aligned Codes

« Breaks between encoded numbers can occur after
any bit position

 Unary code
= Encode k by k 1s followed by 0
= 0 at end makes code unambiguous

Number | Code
0

10

110
1110
11110
111110

QU s W o~ O

' Unary and Binary Codes

 Unary is very efficient for small numbers such as 0
and 1, but quickly becomes very expensive

= 1023 can be represented in 10 binary bits, but
requires 1024 bits in unary

 Binary is more efficient for large numbers, but it may
be ambiguous

Elias-y Code

« To encode a number k, compute ® kq = |logy k|

o k. =k — 2llog2 k]

— kg4 iIs number of binary digits, encoded in unary

Number (k) | kq | k- | Code

1| 0 00

21 1 0100

3 1 11101

6| 2 2 | 110 10
15 3 7| 1110 111
16 | 4 0 | 11110 0000

255 7| 127 | 11111110 1111111
1023 | 9 | 511 | 1111111110 111111111

' Elias-0 Code

 Elias-y code uses no more bits than unary, many
fewer for k > 2

= 1023 takes 19 bits instead of 1024 bits using unary
* In general, takes 2|log,k]+1 bits

« To improve coding of large numbers, use Elias-0
code
= Instead of encoding kg4 in unary, we encode k, + 1
using Elias-y
= Takes approximately 2 log, log, k + log, k bits

Elias-0 Code

« Split ky Into:

= encode k44 In unary, ky in binary, and k; in binary

® Kdd

® kd’r

logy(ka +1)]

ky — 2lloga(ka+1)]

Number (k) | kq k. | kga | kar | Code

1 0 0 0 0|0
2 1 0 1 011000
3 1 1 1 01001
§ 2 2 1 1101 10

15 3 7 2 0| 110 00 111

16 4 0 2 1 110 01 0000

255 7 127 3 0 | 1110 000 1111111
1023 9 | 511 3 2 | 1110 010 111111111

#

Generating Elias-gamma and Elias-delta codes in Python
#

import math

def unary_encode(n):
return "1" * n + "O"

def binary_encode(n, width):
r =
for i in range(0,width):
if ((1<<i) & n) > 0O:

r ="{" + r
else:
r="0" +r
return r

def gamma_encode(n):
logn = int(math.log(n,2))
return unary_encode(logn) + " " + binary_encode(n, logn)

def delta_encode(n):
logn = int(math.log(n,2))
if n ==
return "Q0"
else:
loglog = int(math.log(logn+1,2))
residual = logn+l - int(math.pow(2, loglog))
return unary_encode(loglog) + " " + binary_encode(residual, loglog) + " " + binary_encode(n, logn)

if __name__ == "__main__":
for n in [1,2,3, 6, 15,16,255,1023]:

logn = int(math.log(n,2))
loglogn = int(math.log(logn+1,2))
print n, "d_r", logn
print n, "d_dd", loglogn
print n, "d_dr", logn + 1 - int(math.pow(2,loglogn))
print n, "delta", delta_encode(n)
#print n, "gamma", gamma_encode(n)
#print n, "binary", binary_encode(n)

' Byte-Aligned Codes

Variable-length bit encodings can be a problem on
processors that process bytes

v-byte is a popular byte-aligned code
= Similar to Unicode UTF-8
Shortest v-byte code is 1 byte

Numbers are 1 to 4 bytes, with high bit 1 in the last
byte, O otherwise

V-Byte Encoding

k Number of bytes

k< 2f 1
2T < k<21 |2
21 < | <221 | 3
221 < k<228 | 4

k Binary Code | Hexadecimal

1 1 0000001 81

6 1 0000110 86

127 11111111 FF
128 0 0000001 1 0000000 01 80
130 0 0000001 1 0000010 01 82
20000 | 0 0000001 0 0011100 1 0100000 01 1C A0

V-Byte Encoder

public void encode(int[] input, ByteBuffer output) {
for(int i : input) {
while(i >= 128) {
output.put(i & O0x7F);
i >>>= T7;
+
output.put(i | 0x80);

V-Byte Decoder

public void decode(bytel]l input, IntBuffer output) {
for(int i=0; i < input.length; i++) {
int position = 0;
int result = ((int)inputl[i] & Ox7F);

while((input[i] & 0x80) == 0) {
i +=1;
position += 1;
int unsignedByte = ((int)input[i] & Ox7F);
result |= (unsignedByte << (7*position));

+

output.put (result);

' Compression Example

« Consider invert list with positions:
(1,2,[1,7])(2,3,[6,17,197])(3, 1, [1])

* Delta encode document numbers and positions:

(1,2,[1,6])(1,3,]6,11,180])(1, 1, [1])
« Compress using v-byte:

31 82 81 86 81 82 86 8B 01 B4 81 81 81

-

Skip pointers for faster merging of postings

' Basic merge

« Walk through the two postings simultaneously, in
time linear in the total number of postings entries

24816 =32 64 — 128 | Brutus
2 8 h
1 235817 B 21 31 | Caesar

If the list lengths are m and n, the merge takes O(m+n)
operations.

Can we do better?
Yes, if index 1sn’t changing too fast.

(at

Augment postings with
indexing-time)

16 128

2 14 8 =116 ™32 64 128

Q 31

1 23578 17 21 31
 Why?

« To skip postings that will not be part of the

search results.

'Query processing with

16 128
24 8 16 7132 164 1128

8 31
{2 3 5t 8 M 17 21 — 3l

Suppose we’ve stepped through the lists until we process 8 on
each list.

When we get to 16 on the top list, we see that its
successor 1s 32.

But the skip successor of 8 on the lower list 1s 31, so
we can skip ahead past the intervening postings.

' Skip Pointers

« A skip pointer (d, p) contains a document number d
and a byte (or bit) position p

= Means there is an inverted list posting that starts at
position p, and the posting before it was for
document d

\

|

, , Inverted list
skip pointers

Skip Pointers

« Example

= |nverted list
5,11,17, 21,26, 34, 36, 37, 45,48, 51, 52, 57, 80, 89,91, 94, 101, 104, 119

= D-gaps
5,6,6,4,5,9,2,1,8,3,3,1,5,23,9,2,3,7,3,15
= Skip pointers

(17,3), (34,6), (45,9), (52,12), (89, 15), (101, 18)

Where do we place skips?

 Tradeoff:

= More skips — shorter skip spans = more likely to
skip. But lots of comparisons to skip pointers.

= Fewer skips — few pointer comparison, but then
long skip spans = few successful skips.

' Placing skips

 Simple heuristic: for postings of length L, use VL
evenly-spaced skip pointers.

« This ignores the distribution of query terms.

« Easy if the index is relatively static; harder if L
keeps changing because of updates.

Auxiliary Structures

Inverted lists usually stored together in a single file
for efficiency

= |nverted file
Vocabulary or lexicon

= Contains a lookup table from index terms to the byte
offset of the inverted list in the inverted file

= Either hash table in memory or B-tree for larger
vocabularies

Term statistics stored at start of inverted lists
Collection statistics stored in separate file

' Distributed Indexing

« Distributed processing driven by need to index and
analyze huge amounts of data (i.e., the Web)

 Large numbers of inexpensive servers used rather
than larger, more expensive machines

« MapReduce is a distributed programming tool
designed for indexing and analysis tasks

MapReduce

Distributed programming framework that focuses on
data placement and distribution

Mapper

= Generally, transforms a list of items into another list of
items of the same length

Reducer
= Transforms a list of items into a single item
= Definitions not so strict in terms of number of outputs

Many mapper and reducer tasks on a cluster of
machines

' MapReduce

Map

Input

Reduce

Output

MapReduce

 Basic process

= Map stage which transforms data records into pairs,
each with a key and a value

= Shuffle uses a hash function so that all pairs with the
same key end up next to each other and on the same
machine

= Reduce stage processes records in batches, where
all pairs with the same key are processed at the same
time

« Idempotence of Mapper and Reducer provides fault
tolerance

= multiple operations on same input gives same output

Indexing Example

procedure MAPDOCUMENTSTOPOSTINGS(input)
while not input.done() do
document < input.next()
number < document.number
position < 0
tokens < Parse(document)
for each word w in tokens do
Emit(w, number:position)
position = position + 1
end for
end while
end procedure

procedure REDUCEPOSTINGSTOLISTS(key, values)
word < key
WriteWord(word)
while not input.done() do
EncodePosting(values.next())
end while
end procedure

