
1

Topological Transformation Approaches To
Database Query Processing

Alok Watve Sakti Pramanik Salman Shahid Chad R. Meiners Alex Liu

Abstract—This paper presents a novel approach that transforms the feature space into a new feature space such that a range query

in the original space is mapped into an equivalent box query in the transformed space. Since box queries are axis aligned, there are

several implementational advantages that can be exploited to speed up the retrieval of query results using R-Tree [9] like indexing

schemes. For two dimensional data the transformation is precise. For larger than two dimensions we propose a space transformation

scheme based on disjoint planer rotation and a new type of query, pruning box query, to get the precise results. Experimental results

with large synthetic databases and some real databases show the effectiveness of the proposed transformation scheme. These

experimental results have been corroborated with suitable mathematical models. In disjoint planer rotation, additional computation

time is required to remove the false positives produced due to the bounding box not being precise. A second topological transformation

scheme is presented based on optimized bounding box, which reduces the amount of false positives. Amount of this reduction is more

with increasing dimensions. Optimized bounding box for higher dimensions is computed based on a novel approach of simultaneous

local optimal projections.

Index Terms—Box Query, Range Query, Similarity Search, Query Transformation

✦

1 INTRODUCTION

Some of the most common types of queries used in a

database system are range queries and box queries. There

are numerous application areas for range queries using L1

space that include Geographical Information Systems, Image

Databases and Bioinformatics. In this paper, we focus on

the implementation of range queries in L1 space and use

equivalent box queries for optimizing this implementation.

1.1 Background

We begin by formally defining the range query. Let D be the

set of d-dimensional records in the database then the range

query with radius r at point p = (p1, p2, ...pd), denoted by

r@(p1, p2 . . . pd), is defined as,

r@(p1, p2 . . . pd) = {q|q ∈ D ∧ d(p, q) ≤ r} (1)

where, q = (q1, q2, ...qd) is a point in space and d(p, q) is

the function giving distance between the point p and the point

q. The distant function serves as the measure of dissimilarity

between the points. We focus on L1 distance measure which

is formally defined as,

d(p, q) = L1(p, q) = |q1 − p1|+ · · ·+ |qd − pd| (2)

where, pi(1 ≤ i ≤ d) is ith dimension of point p.
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Fig. 1: Range query
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Fig. 2: Box query

For efficient execution of queries in very large databases,

usually a multi-dimensional index is created for these records

and queries are implemented using this index. Effectiveness of

an index for implementing the range query is determined by

the number of nodes accessed in the index tree during the exe-

cution of the query. We will use R-Tree [9] based indexes (R*-

Tree [2] and Packed R-Tree [15]) for efficiently implementing

range queries. R-tree type index structures are more suited

for implementing box queries than range queries because box

queries have similar type of query space (rectangular) as the

type of bounded space used for an index node (minimum

bounding box) in the R-tree. We, therefore, convert a range

query into an equivalent box query first and then implement

this box query using R-tree type index structure. A box query

with range ri = [mini,maxi] in dimension i is defined as

follows:

b@(r1, r2, ..., rd) =







q

∣

∣

∣

∣

∣

∣

q ∈ D
∧
mini ≤ qi ≤ maxi for 1 ≤ i ≤ d







(3)

Figure 1 gives an example of a range query and Figure 2 gives

an example of a box query.
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Fig. 3: Range query

⇔

Fig. 4: Transformed query

1.2 Converting range queries into box queries

Implementing range queries using indexing is a well studied

problem. However, to the best of our knowledge, transforming

a range query into an equivalent box query and then imple-

menting the box query on R-tree type indexes has not been

studied before. Our motivation for this transformation is that

in L1 space, range query is a d−dimensional hyper-diamond

which can be closely approximated by a box query. In fact,

in 2-dimension this conversion is exact. Thus, we propose

transforming data space so that a range query becomes a box

query. Once we find such a transformation, we can implement

box query by applying any existing indexing scheme that uses

bounding boxes for data space partitioning.

We illustrate the transformation in 2-dimension by us-

ing an example range query 2@(0, 0), shown by the dotted

diamond in Figure 3. Each point in the figure is repre-

sented by a single character so that we can identify the

same point in the transformed space shown in figure Fig-

ure 4. The range query 2@(0, 0) enclosing the set of points

{2, 6, 7, 8, A,B,C,D,E,G,H, I,M} is transformed into a

minimal bounding box query b@([−2, 2], [−2, 2]) (dotted rect-

angle) of Figure 4 enclosing the same set of points. Note

that points that are not inside the diamond are also not inside

the rectangle. Actual transformation function to achieve this

homology in the transformed space is linear and is given in

subsection 3.1.

The transformation is more challenging in the case where

the number of dimensions is greater than two. We tackle

this problem by transforming two dimensional projections

of the space. As an artifact of this, the bounding box no

longer models the range query exactly, creating some false

positives. We propose a novel pruning method to alleviate this

problem. However, with increasing dimensions the number of

false positives increases. Removing these false positives incur

additional main memory computation. We give another scheme

requiring fewer number of false positives based on optimized

bounding box derived from using the concept of Simultaneous

Local Optimal (SLO) projections.

1.3 Key contributions of the paper

• We propose a novel multi-dimensional space transforma-

tion scheme to convert range queries using L1 distance

into equivalent box queries. We then show that imple-

menting box queries in the transformed space provide

better performance than existing methods for implement-

ing range queries that use R-tree type index structures.

• We provide detailed theoretical analysis to estimate var-

ious performance trade-offs resulting from the proposed

transformation. Experimental results corroborate our the-

oretical analysis.

• We demonstrate that the proposed transformation scheme

is effective even for the k-nearest neighbor queries. We

show that the performance of the proposed scheme for

KNN search is better than those commonly used for KNN

search using R-tree type index structure.

• We present a novel algorithm, based on Simultaneous

Local Optimal projections, to compute optimized bound-

ing box for a given set of points in n-dimension, on

a convex hull. Using this SLO approach, we perform

space transformation to convert range queries into box

queries. We show that the proposed algorithm provides

better performance than those commonly used for range

queries using R-tree type index structures. Amount of this

performance gain gets significantly better with increasing

dimensions.

Some of the initial work presented here is published in [25].

1.4 Outline of the paper

The rest of the paper is organized as follows: In section

2, we present the prior work related to this paper. Section

3 proposes a transformation method for 2-D data. These

concepts are extended for higher dimensional data in section

4. A theoretical model for the proposed transformation is

presented in section 5. We discuss the effect of index stability

in section 6 followed by experimental evaluation in section 7.

Performance of KNN queries in the transformed space is given

in section 8. Section 9 describes the algorithm to minimize

false positives based on SLO. Concluding remarks follow in

the last section.

2 RELATED WORK

There is a significant amount of existing work on imple-

menting range queries and nearest neighbor queries using

database indexes. A detailed discussion on these topics can be

found in [13], [14]. Existing multidimensional index structures

such as the R-Tree [9], X-Tree [4], G-Tree [18] and VA-

File [32] have been used for optimizing range searches but

these range searches are not specifically optimized for L1

space. R-tree paper, for example, used search rectangles to

evaluate query performance in L2-space and these queries are

not range queries but similar to box queries as defined in

subsection 1.1 of this paper. There are indexing schemes that

use bounding spheres [6], [33] or sphere/rectangle [16] for

their indexing schemes. These indexing schemes are effective

for implementing range queries in generic metric spaces and

not specifically optimized for L1-space.

The idea of transforming one data-space into some other

data-space for efficient query processing has been around for

some time. A detailed discussion about transformation based

data access methods can be found in [8]. Some of these

methods [7], [11], [17] transform objects (or polygons) into

higher dimensional points and then use one of the established

point access methods such as the grid file [22]. The others

transform the multi-dimensional data to 1-dimensional data

using space filling curves (such as z-curve [21] or Hilbert curve
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[10]). Such methods employing z-curve for executing box

queries are proposed in [23], [29]. Unlike these methods which

map a high dimensional point to a one dimensional point,

some transformations reduce the dimensionality of the data

using methods such as Principal Component Analysis (PCA)

or Singular Value Decomposition (SVD) [1], [5], [26], [31].

The primary motivations for reducing the number of dimen-

sions are to avoid dimensionality curse [3] and to minimize

redundancy. Focus of this work is not on reducing dimension

of the data set but to achieve range query optimization for for

any given dimension.

Linear transformation is a well known technique in linear

algebra [19]. However, its applications to database queries

have not been explored much. To the best of our knowledge,

other than our work in [25] , there is no other work on mapping

of range queries to box queries using data transformation.

The proposed work focuses on using linear transformation

within the framework of existing dynamic database indexes for

improving page accesses for range queries. It also guarantees

100% recall and scalability with increasing database size thus

overcoming some of the disadvantages of prior work.

3 2-D TRANSFORMATIONS

Mapping range queries into box queries requires transforma-

tions of both data space and user queries. The space transfor-

mation is performed offline on the data, before building the in-

dex. For simplicity, we call a database built with a transformed

data a “transformed database”. The query transformation is

performed online on each query. The transformation needs

to satisfy the property that the result of the transformed

query over the transformed database is equal to, or at least

a superset of, the result of the original query over the original

database. When the two query results are equal, we call such

transformations precise transformations; otherwise, we call

them approximate transformations. Approximate transforma-

tion may introduce false positives (i.e., the points that do not

satisfy the original query but do satisfy the transformed query)

or false negatives (i.e., the points that are in the original query

but are not in the transformed query). Precise transformations

have neither false positives nor false negatives. We now present

the proposed transformations. It will be shown later that our

transformations are precise.

3.1 Transformation Function

In this section, we present the transformations from range

queries to box queries for 2 dimensional (2-D) databases.

3.1.1 Space Transformation:

For 2 dimensional (2-D) databases, our transformations from

range queries to box queries are accomplished by mapping

each point (x, y) in the original 2-D space to the point

(x + y, x − y) in the transformed space, which is essentially

a change of axis as shown in Figure 3.

Formally, our transformation function T : R2 → R
2 is

defined as,

T (x, y) = (x + y, x− y) (4)

And the inverse transformation function T−1 : R2 → R
2 is

defined as,

T−1(x, y) = (
x+ y

2
,
x− y

2
) (5)

This function essentially changes the two axes so that they

align perfectly with the geometric faces of range queries in the

original space. By such transformations, a range query in the

original space based on L1 distance becomes a box query in

the transformed space. For any 2-D database D, which is a set

of 2-D points in the original space, the transformed database

T (D) is defined by T (D) = {T (x, y)|(x, y) ∈ D}.
Note that we do not need to store T (D) as a separate

database; rather, we build an index for T (D), which points

back to the original points in D.

3.1.2 Query Transformation:

Mathematically, r@(a, b) denotes the set of all the points that

are within range r based on L1 distance from point (a, b).
Geometrically, all the points in r@(a, b) form a diamond with

four end points: (a+ r, b), (a, b+ r), (a− r, b), (a, b− r). All

points in b@([a1, b1], [a2, b2]) form a rectangle with four end

points: (a1, b1), (a2, b1), (a2, b2), (a1, b2).
The space transformation transforms the four corners of

the range query r@(a, b) to a square with four end points:

(a+r+b, a+r−b), (a−r+b, a−r−b), (a+r+b, a−r−b),
(a − r + b, a + r − b). Thus, these transformed points are

precisely the representation of a box query b@([a+ b− r, a+
b + r], [a − b − r, a − b + r]) in the transformed space.

Geometrically, our 2-D transformation from range queries to

box queries converts a diamond in the original space to a

square in the transformed space. For example, in Figure 3,

range query 2@(0, 0) in the original space is equivalent to

the box query b@([−2, 2], [−2, 2]) in the transformed space.

Note that, in the discussion so far, we implicitly assume that

the database objects are points in 2-D space. However, it can

be seen that the proposed transformation can be applied to

indexing other object structures such as lines/planes or boxes.

Real world applications (such as map databases) may use

bounding rectangles to approximate lines and other objects,

which are then indexed using R-Tree like index structures.

Extension of this technique for these objects is straightforward.

A rectangle in the original space is transformed by simply

applying the transformation function to each of its vertices.

This transformation is similar to query transformation and it

can be easily seen that the object formed by these transformed

point is a rectangle in transformed space.

3.2 Transformation Properties

We present several important properties of our transformation

function T defined in formula 4.

3.2.1 Precision Property

Theorem 3.1 shows that both our range to box query transfor-

mation and box to range query transformation are precise.

Theorem 3.1: For any point (x, y) ∈ D, (x, y) satisfies the

range query r@(a, b) if and only if (iff) T (x, y) satisfies the

box query b@([a+ b− r, a+ b+ r], [a− b− r, a− b+ r]).
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Proof: For any two numbers u and v, |u| + |v| ≤ r iff

|u+v| ≤ r and |u−v| ≤ r. Based on this, |x−a|+ |y−b| ≤ r
holds iff both |(x+y)− (a+ b)| = |(x−a)+(y− b)| ≤ r and

|(x− y)− (a− b)| = |(x− a)− (y − b)| ≤ r hold. Note that

(x, y) satisfies the range query r@(a, b) iff |x−a|+|y−b| ≤ r
holds, and T (x, y) satisfies the box query b@([a+ b− r, a+
b + r], [a − b − r, a− b + r]) iff |(x+ y)− (a+ b)| ≤ r and

|(x− y)− (a− b)| ≤ r holds.

3.2.2 Distance Property

The proposed transformation function T does not preserve L1

distance, even though it is precise.

Consider two points p = (1, 1) and q = (1.5, 0). Distance

of these points from origin is 2 units and 1.5 units respec-

tively. Using the transformation, T (p) = (2, 0) and T (q) =
(1.5, 1.5). As origin is unaffected by the transformation, the

distances of transformed points from the (transformed) origin

are 2 units and 3 units respectively. It can be seen that neither

the distance nor the relative ordering of points is preserved.

Theorem 3.2: For any two points (x1, y1) and (x2, y2),
L1(T (x1, y1), T (x2, y2)) =
L1((x1, y1), (x2, y2)) + ||x1 − x2| − |y1 − y2||.

Proof: For any two numbers u and v, |u + v| + |u −
v| = |u| + |v| + ||u| − |v||. Based on this fact, we have

L1(T (x1, y1), T (x2, y2)) = L1((x1 + y1, x1 − y1), (x2 +
y2, x2 − y2)) = |(x1 + y1)− (x2 + y2)|+ |(x1 − y1)− (x2 −
y2)| = |(x1 − x2) + (y1 − y2)| + |(x1 − x2) − (y1 − y2)|
= |x1 − x2| + |y1 − y2| + ||x1 − x2| − |y1 − y2|| =
L1((x1, y1), (x2, y2)) + ||x1 − x2| − |y1 − y2||.

We can prove a similar property for T−1.

Corollary 3.1: For any two points (x1, y1) and (x2, y2),
L1(T

−1((x1, y1)), T
−1((x2, y2)))

= (L1((x1, y1), (x2, y2)) + ||x1 − x2| − |y1 − y2||)/2.

3.2.3 Inequality Property:

Although transformation function T does not preserve L1

distance, Theorem 3.3 shows an important special case where

the transformation function T preserves distance inequality.

Theorem 3.3: Given a point (x1, y1), an MBR represented

as a rectangle B, and a point (x2, y2) on the edge of the

rectangle, if among all the points in B, (x2, y2) is the point

that is closest to (x1, y1), then T ((x2, y2)) is the closest point

in T (B) to T ((x1, y1)) and T−1((x2, y2)) is the closest point

in T−1(B) to T−1((x1, y1))
Proof: Our proof is based on the fact that for any four

non-negative numbers u, v, w, and z, if u+v ≤ w+z, u ≤ w,

and v < z, then u+ v + |u− v| ≤ w + z + |w − z|. We omit

the proof of this fact.

For any two points (x1, y1) and (x2, y2), we use

L1((x1, y1), (x2, y2)) to denote their L1 distance. Con-

sidering any point (x3, y3) in the rectangle, because

(x2, y2) is closer to (x1, y1) than (x3, y3), we have

L1((x2, y2), (x1, y1)) ≤ L1((x3, y3), (x1, y1)), |x2 − x1| ≤
|x3 − x1| and |y2 − y1| ≤ |y3 − y1|. Now we need to prove

L1(T ((x2, y2)), T ((x1, y1))) ≤ L1(T ((x3, y3)), T ((x1, y1))).
By Theorem 3.2, we have L1(T ((x2, y2)), T ((x1, y1))) =
L1((x1, y1), (x2, y2))+||x1−x2|−|y1−y2|| = |x1−x2|+|y1−
y2|+||x1−x2|−|y1−y2|| and L1(T ((x3, y3)), T ((x1, y1))) =

L1((x1, y1), (x3, y3)) + ||x1 − x3| − |y1 − y3|| = |x1 − x3|+
|y1 − y3| + ||x1 − x3| − |y1 − y3||. By the above fact, we

have |x1 − x2| + |y1 − y2| + ||x1 − x2| − |y1 − y2|| ≤
|x1 − x3|+ |y1 − y3|+ ||x1 − x3| − |y1 − y3||.

4 MULTI-DIMENSIONAL TRANSFORMATIONS

For d = 2, range queries can be precisely transformed into

box queries. However, to the best of our knowledge, for

d > 2 we have not found any work in the literature on

precise transformations. We conjecture that such a precise

transformation may not exist. Since we cannot define such

a precise transformation, we develop a new type of box query

that uses the range value from the original range query to

prune the false positives in the transformed box query while

preventing the occurrence of false negatives.

In this section, we first use the 2-D transformation of

Section 3 to define an approximate transformation called

disjoint planar rotations (DPR). Second, we describe how to

use the disjoint planar rotations to map a range query into a

precise box query.

4.1 Disjoint Planar Rotations

DPR is a transformation that is derived from our two dimen-

sional transformation function. We transform a d dimensional

space via this technique by transforming disjoint planes in the

database. For example, a four dimensional point (x, y, z, w)
can be transformed into (T (x, y), T (z, w)). That is, this trans-

formation can be visualized as a rotation of each disjoint plane

in the database’s space.

More formally, we define a d dimensional transformation

T d(p) as follows:

T d(p) =













































T (p1, p2), T (p3, p4),

· · · ,

T (pd−1, pd)






when d is even







T (p1, p2), T (p3, p4),

· · · ,

T (pd−2, pd−1), pd






when d is odd

(6)

Note that in the odd case we choose to preserve the last

dimension because in 1-dimensional space, range query and

box query are one and the same and they differ only in

the representation (e.g. r@(x) ⇔ b@([x − r, x + r])), which

obviates the need for an explicit transformation.

4.2 Pruning Box Query

Our modification to box query (which we call Pruning Box

Query) is based on the observation that if we can estimate

distance between the query center and an MBR of the index

tree, we can prune the branches of the tree that do not

contain any true positives. We first prove the result proposed

in theorem 3.3 for d−dimensional data.

Theorem 4.1: Given a point c and a set of points B repre-

senting the points from an MBR. If p is the closest point in

B to c, then T d(p) is the closest point in T d(B) to T d(c) and

(T−1)d(p) is the closest point in (T−1)d(B) to (T−1)d(c).
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Proof: The proof is similar to that of theorem 3.3 and is

omitted.

Based on the theorem we propose following heuristic to

eliminate all the false positives:

Heuristic: If an MBR M overlaps with the query box,

we find the closest point T d(p) in M to query center T d(c).
Using the inverse transformation we then calculate distance

between p and c; if it is greater than the query range then the

MBR is pruned.

Let u be the point in MBR M that is nearest to center of

the box query b. Using the above heuristic, we now formally

define pruning box query (PBQ) as,

pbq@(r1, r2, ..., rd) =































q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q ∈ D
∧ (mini ≤ qi ≤ maxi

for 1 ≤ i ≤ d) ∧
distance between (T−1)d(q)
and (T−1)d(u)

is less than the query radius































(7)

In equation 7 above, ri = [mini,maxi] is calculated using

the method for computing the query bounds in section 3.1.2. If

the number of dimensions is odd i.e. when the last dimension

cd of point c is not transformed, rd is calculated as, rd =
[cd − r, cd + r], r being the query radius. This approach not

only eliminates all the false positives but it also provides more

efficient query execution. It is important to note that we do

not miss any data record with this pruning strategy. Theorem

4.2 states this.

Theorem 4.2: For every point p that satisfies the range

query r@(c1, c2 . . . cd), p is also contained in the result of

the PBQ.

Proof: Let c = (c1, c2 . . . cd). Further, Let, if possible,

there be a point p such that, p ∈ r@(c1, c2 . . . cd) but p′ is

not contained in the box query, where p′ = T d(p). This is

possible, only if the MBR M containing p′ was pruned by the

box query at some point, i.e. the estimated distance between

M and c′ (c′ = T d(c)) was greater than r. Let u′ = T d(u) be

the closest point in M to c′. This implies that while u′ was the

closest point to c′ in the transformed domain, u was not the

closest point to c in the original data domain. This contradicts

theorem 4.1. Hence, such a point p does not exist. In other

words, resultset returned by the PBQ contains all the points

from the one returned by the original range query.

4.3 Search algorithm

Based on the concepts developed so far, we summarize our

search algorithm using PBQ in algorithm 1.

5 THEORETICAL ANALYSIS

Using DPR and pruning box queries improves the performance

of indexed queries because the transformation aligns the

index’s minimum bounding boxes’ faces with faces of the

query. In this section we provide a detailed analysis of the

range query and the PBQ performances. We first present it

for 2-dimensional queries and then generalize it for higher

dimensions.

Algorithm 1 PBQ Search

Input: Query point q, query radius r and root node Nr of the

search tree (built in transformed space).

Transform q to T d(q) using DPR in equation 6

Bq ← Query box in the transformed space.

Result set R← {}
Add Nr in to the queue NQ of nodes to search.

while NQ is not empty do

Get the next node N from NQ.

if N is leaf node then

Add all the points in N satisfying the query to R.

else

for Each child node Nc in N do

if Bq intersects with MBR of Nc then

Find the point T d(p) in MBR of Nc closest

to T d(q)
if L1(p, q) < r then

Add Nc in NQ.

end if

end if

end for

end if

end while

return R

5.1 Model Basics

Without loss of generality, we fix the size of all MBRs

so that we can calculate the area of MBR centroids whose

corresponding MBRs intersect with a query. From this area,

we can calculate the probability that an MBR of a certain

size will intersect with a query. For example, for 2-D query

spaces, we fix an MBRs length to be 2l and breadth to be

2b. We must calculate probability that a random MBR of

certain size intersects the query space (a diamond in case of

the range query and a square for the PBQ). We analyze only

one quadrant of the 2-D plane. Analysis for other quadrants

is similar and is omitted.

Query

space

D E

2l

2b

A
B

O
C

G

F

R4

r

R2

R1

R3 MBRR1

A

D

O C F
R3

E

2l

2b

(a) (b)

Fig. 5: The MBR intersection areas in a quadrant for range

and transformed range queries

Figure 5 shows the space in which an MBR of size 2l ×
2b must lie in order to intersect with the query space. We

can see from this visualization that the query faces align with

the MBR faces after transformation, and we conjecture that

this alignment improves query performance for two reasons:

MBRs are less likely to intersect with the PBQ than the range

query, and MBRs that do intersect with PBQ have a higher
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likelihood of containing a point within the query than MBRs

that intersect the range query. We would like to clarify here

that, only the data space is transformed, not the MBRs. So

MBR in figure 5 (b) does not correspond to MBR in (a). In

this analysis, we simply compute and compare the probability

that an MBR of certain size intersects with the query in the

original and transformed space.

5.2 Analysis of Range Query

To calculate the probability of intersection for a range

query PR(r,l,b) with an MBR, we determine the area in

which the centroid of an MBR with length 2l and breadth

2b must lie for it to intersect with the query. As shown

in Figure 5(a), the intersection space can be divided into

four regions R1(�ADEB), R2(�OABC), R3(△BEF ) and

R4(�CBFG). The area of the intersection space can then be

calculated as,

AR(r,l,b) =Area of R1, R2, R3, and R4

=

∫ r

0

b dx+ lb+

∫ r
√

2

0

2x dx+

∫ r

0

l dx

=
r2

2
+ lb+ r(l + b) (8)

Hence, given the area of the data space, A, the probability that

an MBR will overlap with a range query is,

PR(r,l,b) =
AR(r,l,b)

A
(9)

5.3 Analysis of Box Query

To calculate the probability PB(r,l,b) of intersection of a PBQ
with an MBR, we determine the area in which the centroid

of an MBR with length 2l and breadth 2b must lie for it

to intersect with the query. As shown in Figure 5(b), the

intersection space is a rectangle with length of 2(l + r) and

breadth of 2(b+r). In other words, any MBR whose center lies

in the �ODEF will intersect with the box query. Note that

the space has dilated by a factor of 2 due to the transformation.

Hence, the total area of the space in the transformed domain

is 2A. We divide the space into three regions R1(�ADEB),
R2(�OABC) and R3(�CBEF ). The area of the intersection

space can then be calculated as,

AB(r,l,b) =Area of R1, R2, and R3

=

∫ r

0

(l + x) dx+ lb+

∫ r

0

(b+ x) dx

= r2 + lb+ r(l + b) (10)

Hence, given the area of the data space, 2A, the probability

that a random MBR intersects the transformed range query is,

PB(r,l,b) =
AB(r,l,b)

2A
(11)

5.4 Hyper-dimensional Queries

Figure 6 represents the four dimensional space as a two

dimensional grid of two dimensional slices through the four

dimensional space. In this case, the grid is a coarse grain

visualization of the effect of the wz plane on the xy planes

so each panel in the wz represents the xy plane that is fixed

at the wz panel’s coordinate. The visualization is easier to

understand if we note that in L1 space, query radius in 4-

D space is sum of query radii in xy plane and that in wz
plane. For a point at a distance r from the query, as its

distance in xy projection increases, its distance in wz plane

must decrease. Hence, in Figure 6, a large projection in xy
plane corresponds to small projection wz plane and vice

versa. While this visualization is coarse grained in that it does

not show every point in the range query, it illustrates how

DPR transforms the range query into a PBQ as shown in

Figure 6(b), which shows Figure 6(a)’s range query as a PBQ
in a DPR transformed space. Note that this visualization can

be generalized to visualize any hyperspace as a nested series

of two dimensional grids. with more than two dimensions.

The above equations can be generalized to any even number

of dimensions via a density function. We use this nesting

concept to find the area of centroids for any even dimensional

query. As we move away from the center of the query in xy
plane, density of points (or query space) in wz plane decreases.

We define density function as the area in which center of an

MBR must lie in order to intersect with query space. The d-

dimensional density function for range query is denoted as

AR(r,W,d) and that for the box query is denoted as AB(r,W,d).

Consider the MBR in Figure 6(a); we first examine the inter-

sections of the wz projections of the MBR and query, which

is shown by the dotted lines. Note that if these projections

did not intersect there would be no intersection of query and

MBR; however, since there is an intersection we can determine

if query and MBR do intersect by looking for an intersection

in the xy projection that is closest to the origin of the range

query.

Given a hyper-rectangle with widths W = 〈w1, · · · , wd〉,
the density function for the range query is recursively defined

as,

AR(r,W,0) =1

AR(r,W,d) =

∫ r

0

AR(r−x,W,d−2)wd dx

+AR(r,W,d−2)wd−1wd

+

∫ r
√

2

0

AR(r−x
√
2,W,d−2)2x dx

+

∫ r

0

AR(r−x,W,d−2)wd−1 dx (12)

PR(r,W,d) =
AR(r,W,d)

A
(13)
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in the original space and

AB(r,W,d) =1

AB(r,W,d) =

∫ r

0

AB(r−x,W,d−2)(wd−1 + x) dx

+AB(r,W,d−2)wd−1wd

+

∫ r

0

AB(r−x,W,d−2)(wd + x) dx (14)

PB(r,W,d) =
AB(r,W,d)

2d/2A
(15)

in the transformed space. It can be seen that area analyses for

two dimensional cases are in fact special cases of equations 12

through 14. Space dilation mentioned in the previous section,

is responsible for the factor 2d/2 in the denominator. Space

dilation also causes the bounding boxes in transformed space

to be bigger. Thus, the probability of intersection does not

decrease exponentially with dimensions. However, as shown

in the results section, the performance improvement increases

significantly with dimensions.

It can be shown that the density function for the PBQ is

less than the density function for the range query, when we

increase the number of dimensions. Hence, the range query

has a larger number of valid centroids that intersect it than the

pruning box query.

5.5 Performance improvement

(a) (b)

Fig. 6: Visualizations of range and pruning box queries rela-

tionship with MBRs in hyperspace

We define relative improvement in performance due to

the proposed transformation as the ratio of query IO of a

transformed box query to that of original range query. For

uniformly distributed data and uniformly distributed query

points probability of intersection of MBR with query point

derived above can be used as an estimate of expected IO. We

would like to highlight that our analysis applies for a given

level in the tree. Leaf level heavily dominates IO required for

any query, hence, we can use IO estimated at the leaf level as a

good approximation of query IO. Hence we can use equations

13 and 15 to estimate expected relative improvement due to

the transformation as,

I(r,W, d) = PB(r,W,d)/PR(r,W,d) (16)

When range r is considerably large compared to size of the

MBRs, the first term in equations 8 and 10 will dominate and

we will not have significant improvement. However, in most

of the real world systems, query range is usually small so that

it retrieves few records. Hence, based on equations 9 and 11,

we can expect a considerable performance gain. Performance

gain based on the actual values of b and l in the original as

well as the transformed space is given in section 7.

6 EFFECT OF INDEX STRUCTURE ON PER-
FORMANCE IMPROVEMENT

Splitting decisions in R*-Tree are made based on the points

seen so far, hence, its node splits are heavily dependent on the

data. For two databases drawn from the same data distribution,

R*-Tree can be considerably different. In fact even for the

same database, performance of R*-Tree can be very different

for different insertion order. This fact is particularly evident

in higher dimensional spaces. We have observed that the

performance improvement due to transformation is sensitive

to the structure of the R*-tree being built. We use average

leaf diameter to assess goodness of an index structure. Leaf

diameter is defined as the maximum distance between a pair

of points in a leaf node. Leaf diameter measures compactness

of a leaf node. Smaller leaf diameter implies that the points

within the leaf are close to each other (hence are more similar

to each other). An index with smaller leaf diameter does a

better job partitioning the data space into index pages and is

expected to have better performance. Our experiments show

a very high correlation between leaf diameter and query IO.

Further, we observed that performance improvement due to

the transformation is better when the average leaf diameter is

smaller. Average leaf diameter varies with the order in which

data set is being inserted into the tree. As a result, we see

a wide variation in performance improvement with different

insertion orders.

Tables 1 and 2 summarize our findings. For all the experi-

ments, database size was fixed at 10 million records. We used

10 different insertion orders within the same database for the

first experiment and 10 different databases, having the same

distribution but generated using different seeds, for the second.

Average number of page accesses and standard deviation of

the number of page accesses was calculated. It can be seen

from these tables that there exists a large variance in query

performance of R*-Tree. There are cases where performance

improvement due to the transformation is observed to be in

excess of 40%.

Query type # Dimensions Mean IO Std. Deviation

RQ
2 27.67 0.21

10 7678.05 1626.54

PBQ
2 25. 09 0.46

10 7609.86 1465.36

TABLE 1: Mean and Std. deviation of # page accesses in an

R*-Tree averaging over various insertion orders

The inherent dependence of R*-Tree on insertion order and

statistical properties of the database makes it a poor test-bed

for effectively measuring the performance improvement due

to transformation. We apply the proposed transformation on a

static index called packed R-Tree [15]. Packed R-Tree (and any

static index) assumes that all the data is available at the time

of indexing. This allows for better tuning of the index. Packed
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Query type # Dimensions Mean IO Std. Deviation

RQ
2 27.77 0.35

10 7220.27 1702.33

PBQ
2 24.88 0.35

10 6509.47 1375.35

TABLE 2: Mean and Std. deviation of # page accesses in an

R*-Tree averaging over various databases

R-Tree sorts the data in Hilbert order before inserting. This

creates more compact R*-tree with reduced leaf diameters.

Thus, it does not matter which order the data comes in, it

will always be indexed in the same order. Further, Packed R-

Tree also guarantees (almost) 100% space utilization which

considerably reduces the total number disk pages required for

the index.

Similar to the R*-Tree we measured mean and variance of

number of page accesses for 10 different databases. Table 3

shows results of these experiments. It can be seen that standard

deviation in the number of page accesses for a packed R-

Tree is very small highlighting its stability. At the same time

performance gain in terms of page accesses is significant even

for higher dimensions.

Query type # Dimensions Mean IO Std. Deviation

RQ
2 29.21 0.14

10 3212.96 3.28

PBQ
2 26.41 0.1

10 2500.88 2.21

TABLE 3: Mean and Std. deviation of # page accesses in a

packed R-Tree averaging over various databases

Based on these results, we decide to use Packed R-Tree for

all our experiments in order to nullify any positive or negative

effect of the index properties and to accurately measure

performance improvement due to transformation alone.

7 EXPERIMENTAL RESULTS

In this section we present the results of applying the proposed

transformation on various databases. Effectiveness of the pro-

posed transformation is measured by comparing the IO cost

(i.e. number of index page accesses) for the proposed pruning

box queries with that of range queries. For performance

comparison purposes, we create packed R-Tree indexes for the

range query in the original space and the pruning box query

in the transformed space. It should be noted that the proposed

transformation can be used on any R-Tree based index.

Uniformly distributed synthetic datasets as well as some real

datasets were used for the experiments. Data records were

normalized to unit (hyper)cube. Page size of 4K bytes was

used for the index nodes. All results presented here are based

on averaging the IO of one hundred random queries. All the

experiments were run on AMD Opteron 2.2 GHz systems

running GNU/Linux. The labels used for various methods in

the figures and tables are as follows: RQ - traditional range

query on packed R-Tree, PBQ - Pruning Box Query on packed

R-Tree. We include results for linear scan (labeled 10% Linear)

wherever they are comparable. However, wherever linear scan

is much worse than indexing, it is dropped from the graph for

better presentation.

A detailed analysis of effect of database sizes, number

of dimensions and query radius is presented in subsequent

sections. We first prove the correctness of our theoretical

analysis by comparing improvement predicted by our model

with the actual improvement observed experimentally.

7.1 Improvement estimation

Fig. 7: 2-dimensional data Fig. 8: 10-dimensional data

Comparison of estimated and observed improvement

Figures 7 and 8 compare the estimated values of relative

improvements (equation 16) with the observed values for a

fixed query for 2 and 10 dimensional databases respectively.

For ease of evaluating integrals, we assumed that all MBRs

are uniform (i.e. l = b). It can be seen from the graphs that our

analysis is fairly accurate especially for larger databases. When

database size is small, some of our assumptions such as MBRs

are uniform and they all have the same size, may not be valid.

These results are in slight disagreement between observed

performance improvement and predicted one. However, as

database size increases, the assumptions hold and we see much

better agreement in the two values.

7.2 Avoiding Empty Pages

Experimentally, we can see that the reduction in area that our

model predicts for pruning box queries translates to fewer page

accesses in the index tree. Table 4 shows the performance

break down at each level of the index tree for both range and

pruning box queries for two and ten dimensions and database

of 10 million. The break down shows the average number

of page accesses, the average number of empty page accesses,

and the average number of non-empty page accesses. An empty

page has no children that satisfy the query, while a non-empty

page has at least one child that satisfies the query. For 10-

dimensional data, the tree has 4 levels, so in the table, we

denote middle two levels as Middle-h (higher level closer to

the root) and Middle-l (lower level closer to the leaf).

We observe that both range and pruning box queries have

a similar number of non-empty page accesses, which corre-

sponds in our model to the shared centroid area with both

queries. The number of non-empty pages access should be

similar between both query types because our transformation

does not change the relative distribution of the records in the

space.

We observe that the performance improvements are best

gained by reducing the number of empty page accesses. For
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D = 2 R = 0.005

PBQ RQ
Level Total Empty Non-

empty
Total Empty Non-

empty
Top 1.47 0.44 1.03 1.34 0.31 1.03
Middle 3.97 2.34 1.63 3.46 1.67 1.79
Bottom 20.13 3.35 16.78 23.34 5.44 17.9

D = 10 R = 0.07

PBQ RQ
Level Total Empty Non-

empty
Total Empty Non-

empty
Top 1.91 0.53 1.38 1.95 0.56 1.39
Middle-h 27.76 22.31 5.45 34.17 29.81 4.36
Middle-l 269.56 255.75 13.81 346.53 335.74 10.79
Bottom 1948.66 1922.56 26.1 2690.01 2665.98 24.03

TABLE 4: Break down of page accesses

example, when D = 2, there are very few empty pages, and

we see a small difference in performance between queries.

However, when D = 10, empty pages make up the majority

of page accesses, and we see that the pruning box query

loads approximately two third the number of empty pages than

the range query, which results in a much larger performance

improvement.

7.3 2D Transformations

As explained earlier, transformation in 2-dimensional

databases is perfect, i.e., the transformed query does not lose

any useful results nor does it gather any unwanted results.

7.3.1 Effect of database size

Figure 9 shows the effect of database size on the number

of page accesses. As seen from the figure, as the database

size increases, number of page accesses for both range and

pruning box queries increases, as expected. However, rate of

increase for range query is higher than that of the pruning box

query. The performance improvement increases with increas-

ing database size. The relatively low improvement is consistent

with our analysis in section 7.2.

7.3.2 Effect of query ranges

We experimented with various query ranges keeping database

size constant (10 million records). The performance compari-

son of pruning box query with range query is shown in figure

10. Ranges in the figure are a normalized distances. It can

be seen from the figure that pruning-box queries perform

consistently better than range queries.

7.4 Higher dimensional transformation

The main challenge in transforming high dimensional queries

is that the DPR transformation tends to retrieve a lot of false

positives. We use the pruning box query to eliminate false

positives and reduce the number of page accesses for execution

of the query. In the following subsections, we present the

results for multi-dimensional synthetic data.

7.4.1 Effect of database size

Figure 11 shows effect of database size on the query cost.

We used a database with 10 dimensional vectors. Query range

was kept constant. As can be seen from the figure, as the

database size increases, cost for both range and box queries

increases, as expected, but the rate of increase is much slower

for pruning box queries than for range queries. We get about

25% reduction in the cost for a database of 9 million vectors.

7.4.2 Effect of query ranges

Figure 12 gives the comparative performance of range queries

versus pruning box queries with increasing query range (cho-

sen so as to get reasonable number of hits). As seen from

the figure, performance of pruning box queries is consistently

better than range queries, and the performance difference gets

wider with increasing query ranges. This is because hyper-

diamonds of the range queries tend to intersect more with the

bounding boxes than the pruning box queries.

7.5 Performance results for real data

The experimental results described so far were carried out on

synthetic data. In this section we describe effectiveness of the

proposed approach on real data. We used two different datasets

for our experiments.

First is a GIS dataset with two dimensions (co-ordinates

of points obtained through GPS) and there are totally 108779

records (obtained from a GIS company). We randomly selected

100 points from the database as range query centers. For each

query center, range was changed from 0.01 to 0.05. Figure

13 shows that even for this small database pruning box query

has better performance than the traditional range query on

the packed R-Tree. Our second dataset is an image feature

dataset. Similar to the features used in Coral Image data [30],

first three moments were calculated for hue, saturation and

intensity values of the pixels. The resulting feature vector

has 9 dimensions. A feature database of 10 million images

obtained from [20] was built. Range was varied from 0.005

to 0.010. Note that the value of the range was chosen such

that we get a reasonable number of hits. Further, the number

of page accesses for 10% Linear (≈ 49000) is too high

and hence omitted. Figure 14 shows that with increasing

range, performance improvement due to PBQ increases. which

highlights applicability of the proposed transformation to high-

dimensional spaces.

8 k-NN QUERIES

k-NN (k-Nearest neighbor) queries can be considered as a

special case of range queries which only return the set of k
records that are most similar to query record. A k-NN query

can be implemented by keeping track of distance dk of current

kth neighbor [12], [27]. Any data node whose MBR is farther

than dk can be safely pruned. This is conceptually similar to

range query with range dk. As query execution proceeds, the

range decreases. Due to the underlying similarity between k-

NN queries and range queries the proposed transformation can

also be applied for k-NN queries.
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Fig. 9: Effect of database

size(2-D)

Fig. 10: Effect of query

radius(2-D)

Fig. 11: Effect of database

size(10-D)

Fig. 12: Effect of query

radius(10-D)

Fig. 13: Effect of query ra-

dius(GIS data)

Fig. 14: Effect of query ra-

dius (image feature data)

Fig. 15: KNN-Effect of

database size(2-D)

Fig. 16: KNN-Effect of in-

creasing K(2-D)

Fig. 17: KNN-Effect of

database size(10-D)

Fig. 18: KNN-Effect of in-

creasing K(10-D)

Fig. 19: KNN-Effect of in-

creasing K(GIS data)

Fig. 20: KNN-increasing

K(Image feature data)

Roussopoulos et. al. [27] propose some of the basic distance

based heuristics for running nearest neighbor queries in R-Tree

based indexes. They propose using depth-first traversal of the

index tree. However, as shown in [12], best-first search is a

better approach for tree traversal. Further, authors also note

that not all the heuristics proposed in [27] can be extended

for use in k-NN (k > 1) queries. Hence, we use the best-first

algorithm proposed by [12] for our experiments.

It was observed that at higher levels in the index tree, node

MBRs are large in size and query point is inside a lot of

MBRs and its minimum distance from these MBRs is zero. We

break the ties in such cases using distance of the query point

from the center of the MBR. This heuristic was observed to

perform better than choosing any one of the qualifying MBRs

randomly.

In the next few subsections we present results of using the

transformation for k-NN queries. We executed k-NN queries

in transformed space as well as original space. Different

combinations of number of dimensions, database size and

value of k were used. In all the following graphs, the labels

KNN-Orig and KNN-Trnf are used for representing KNN

queries in original space and transformed space respectively.

8.1 k-NN in 2-D Space

Figure 15 shows the results of running 500-NN queries on 2-D

data. Database size was varied from 2 million to 10 million

records. It can be seen from the figure that transformed space

queries consistently perform better than those in the original

space. Figure 16 shows the results of varying the value of k
(i.e. number of neighbors) for a database of 10 million records.

We observed that for very small values of k(< 100), queries in

transformed space perform worse than those in original space.

This is expected because for small k the effective radius of the

query space is much smaller. From equations 9 and 11, it can

be seen that for small query radius, the transformation may not

be very effective. So our observations are in accordance with

the analysis. As k increases, we can see from the figure that

performance improvement due to transformation increases.

8.2 k-NN in 10-D Space

Figures 17 and 18 highlight advantages of transformation for

K-NN queries in 10 dimensional space. It can be clearly seen

from the figures that improvement in excess of 20% can be

achieved using the transformation. Further, the improvement

increases with increasing database size and increasing values

of k.

8.3 k-NN on Real Data

We used the proposed technique for the real database men-

tioned in section 7.5. Our findings are in accordance with the

observations we made with synthetic data. For 2 dimensional

real data, there is no improvement if the value of k is small.
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But for k ≥ 80, the transformation indeed provides better

performance. For the 9-dimensional image feature data, we

see about 22% improvement even for lower values of k.

9 TOPOLOGICAL TRANSFORMATION IN

MULTI-DIMENSIONAL SPACE

Our PBQ approach creates bounding boxes for efficient imple-

mentation of range queries. While having the advantages in IO

accesses due to their alignment with the bounding boxes of the

index tree, these boxes have empty space, which may produce

false positives. This extra space can be removed using the

pruning box query discussed earlier. However, the amount of

extra space increases as the dimensionality increases, leading

to more CPU time to prune the extra space. In this section, we

introduce a topological transformation algorithm to minimize

the bounding box querying time for d-dimensional range

queries, for d > 2. When d = 3, the algorithm for computing

optimal bounding box for a 3D-cross polytope (i.e., 3D-convex

polygon) exists [24]. For example, the 3D regular diamond

shown in Figure 21 is in the up-right position, i.e., vertices

are (1,0,0), (-1,0,0), (0,1,0), (0, -1,0), (0,0,1) and (0,0,-1) We

obtain the optimal bounding box for this 3D-diamond by rotat-

ing parallel to the XY-plane by 45°and then rotating clockwise

by 54.7327°parallel to the YZ-plane. However, when d > 3,

there is no such algorithms for finding optimal bounding boxes

in prior literature. In this section, we present an algorithm

that computes an optimized axis aligned bounding box for d-

dimensional cross polytopes (i.e., d-dimensional hyper convex

polygon).

Fig. 21: 3D-diamond in

upright position

Fig. 22: Projection of 3D-

diamond on XY-plane

9.1 Definitions

We first define some terminologies and prove a theorem, which

will serve as the basis of our algorithm.

Definition 1: Axis Aligned Bounding Box An axis aligned

bounding box of a d-dimensional polytope P is defined as the

box whose body diagonal is delimited by the minimum and

maximum axial coordinate values of P .

The edges of an axis aligned bounding box are parallel to the

axes of the coordinate space. For example, the box A’B’C’D’

in Figure 22 is the axis aligned bounding box of the diamond

ABCD.

Definition 2: Oriented Bounding Box An oriented bound-

ing box of a d-dimensional polytope P is a tightly fitting

rectangular bounding box of an arbitrary orientation in the

d-dimensional space.

The edges of an oriented bounding box may not be parallel

to the axes.

Definition 3: Orientation in d-Dimensions Given an arbi-

trary polytope P in d-dimensions, all orientations of P can

be obtained by rotating P in parallel with one or more of

the axial planes in the d-dimensional space while the vertex

coordinates of the axes that are not involved in the rotation

remaining fixed.

For example, if we rotate the 3D-regular diamond of Figure 21

parallel to the XY-plane, the Z values of the vertices remain

fixed.

Definition 4: Local Optimal For a given k, 0 ≤ k ≤ d−1, if

the axis aligned bounding box of a d-k dimensional projection

of a d-dimensional polytope is its arbitrarily oriented minimum

bounding box (requiring no rotation of the projection to make

it smaller), then the projection is said to be local optimal.

For example, the diamond ABCD of Figure 22 is the 2D-

projection of the 3D-regular diamond of Figure 21 in the XY-

plane. Projection ABCD is not locally optimal because the

axis aligned bounding box for this projection is A’B’C’D’

as shown by the dotted line in the figure, which is not the

smallest bounding box of the projection. We get the optimal

axis aligned bounding box for this projection when we rotate

the projection ABCD by a 45°. Note that we are not rotating

the 3D diamond, instead, we are just rotating the projection if

it’s bounding box is not already optimal.

On the other hand, if the 3D-regular diamond itself is

rotated from it’s up-right position of Figure 21 by a 45°parallel

to the XY-plane, the XY-projection of this newly oriented

3D-diamond is an axis aligned square which is also it’s

optimal axis aligned bounding box. Thus, the XY-projection

of this newly oriented diamond is locally optimal. Using this

definition of local optimality, we can further elaborate on the

situations where multiple projections of a given orientation of

a cross-polytope exhibit local optimality at the same time.

Definition 5: Simultaneously Local Optimal (SLO) For a

given k, 0 ≤ k ≤ d− 1, if the d-k dimensional projections of

the d-dimensional polytope in each d-k dimensional plane are

locally optimal, then the projections are called simultaneously

local optimal.

For example, when the 3D diamond of Figure 21 in upright

position is first rotated parallel to the XY-plane by 45°and

then rotated clockwise by 54.7327°parallel to the YZ-plane,

the projections of this orientation of the diamond in all three

coordinate planes are locally optimal.

If the bounding box of a d-dimensional cross polytope is

minimal, then we postulate about the nature of its projections

in lower dimensions in terms of SLO by the following theo-

rem.

Theorem 9.1: Given an optimally oriented convex d-

polytope P and a given k, 0 ≤ k ≤ d − 1, projections of the

object P in d − k dimensional subspaces are simultaneously

local optimal.

Proof: By way of contradiction, we assume there exists

a d-polytope P and rotation R such that an axis-aligned

minimum bounding box B is also the minimum arbitrarily

oriented minimum bounding box. Suppose that the projections

of the object P , rotated by R, in all (permutations) of d − k
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dimensions for a given k, 0 ≤ k ≤ d − 1, are not simultane-

ously local optimal. Thus, there exists a projection p′ of P in

d − k dimensions rotated by R such that B’ (corresponding

to the projection of B along the same d − k dimensions)

is not an arbitrarily oriented minimum bounding box of the

projection p′ of P rotated by R. Then there exists an arbitrarily

oriented minimum bounding box B′′ of the projection p′ of

P rotated by R that is different from B′. Let R′ be the

rotation that rotates B′′ such that it is an axis-aligned minimum

bounding box. The volume of the bounding box is the product

of the ranges in each dimension. Since projection discards

dimensions not subject to the projection, any rotation of the

projection does not change the range values on the axis in the

orthogonal dimensions that are not subject to projection for an

axis aligned bounding box. However, there does now exist a

rotation of the projection such that an axis aligned bounding

box is smaller than B′. Hence, the composition of R and R′ is

a rotation that will rotate the d-polytope P such that a smaller

axis-aligned minimum bounding box exists. This contradicts

our earlier assumption of the optimality of the bounding box of

the d-polytope. Hence, the projections of P in d−k dimensions

are simultaneously locally optimal.

The above theorem works for any d-dimensional cross

polytope. In our case, the query is a d-dimensional regular

hyper-diamond and if it is optimally oriented then, accord-

ing to the above theorem all of it’s 2-D projections are

simultaneous local optimal. We use this property to develop

the algorithm presented in the following section to compute

optimized bounding box.

9.2 Computing Optimized Axis Aligned Bounding

Box

We next introduce our algorithm called SLO for computing

optimized axes aligned bounding boxes. This algorithm first

picks the 2D-projection in XY-plane of the arbitrarily oriented

d-dimensional regular hyper-diamond and checks if it is lo-

cally optimal. If it is not locally optimal, this projection is

rotated in the XY-plane such that it becomes locally optimal.

The same amount of rotation, parallel to the XY-plane, is

then applied to the hyper diamond. This rotation of the

hyper diamond now creates a set of new 2D projections.

Now the projection in the YZ plane is rotated to make it

locally optimal and then apply the same amount of rotation

to the hyper diamond parallel to YZ plane. This process is

repeated iteratively for all the 2D projections, wrapping around

after rotating in all the planes, until all the projections are

simultaneously local optimal. The projections will converge to

a simultaneous local optimal in a finite number of iterations

because each rotation reduces the area of projection to achieve

local optimal while the lengths of the bounding box in other

orthogonal planes do not change. The pseudo-code of our

algorithm is shown in Algorithm 2.

For example, we apply the above algorithm to the 3D-regular

diamond of Figure 21 to compute the optimal orientation

of the diamond corresponding to the minimum-volume axis-

aligned bounding box. The algorithm starts with the diamond

in upright position. It derives the three 2-D projections of the

Algorithm 2 Algorithm SLO

Input: Data points in d-dimensions.

P ← Datapoints
Proj ← All 2D projections of P
n← NumberofProjections
Initialize all check[i] to 0.

while check[1] ∗ check[2] ∗ ...... ∗ check[n] 6= 1 do

for i = 1→ n) do
if IsOptimal(Proj[i] then

check[i]← 1
else

R← RotatingCallipers(Proj[i]).
Apply R to P .

Proj ← All 2D projections of P
check[i]← 0

end if

end for

end while

FinalV olume← Volume of P.

Orientation← Optimal Rotation of P.

return FinalV olume, Orientation

diamond, namely projections in XY, YZ and ZX planes. We

number these planes as 1, 2 and 3 respectively, to correspond

to the notation in the algorithm. check(1) through check(3)

are all 0, initially, because the projections of the starting

orientation of the diamond are assumed to be not locally

optimal. For-loop starts with plane 1 (i=1 in the algorithm).

IsOptimal(Proj[1]) checks to see if projection 1 is locally

optimal, which is not the case here. Thus, the algorithm applies

RotatingCallipers(Proj[1]) [28] next. It rotates projection

1 by 45°to make Project[1] locally optimal. Same amount of

rotation (”Apply R to P” in the algorithm) is then applied to

the diamond. For this newly arrived orientation of the diamond

get all 2D projections again and set check[1] to 0 (not part

of a simultaneous local optimal yet). Now run the for-loop

for i=2 (YZ plane). IsOptimal(Proj[2]) checks to see if

projection 2 is locally optimal, which is not the case. Thus,

the algorithm applies RotatingCallipers(Proj[2]) next. It

rotates projection 2 by 54.7327°to make it locally optimal.

For this new orientation of the diamond get all 2D projec-

tions again and set check[2] to 0. The process continues for

i=3 but IsOptimal(proj[3]) is true and check[3] is set to

1. While-loop starts again because for-loop has ended and

check[1]*check[2]*check[3] is false. This time, for each value

of i in the for-loop IsOptimal(proj[i]) is true. Therefore,

check[i] is set to 1 for each i and the while loop terminates,

giving the rotation of 45°parallel to XY plane and then

54.7327°parallel to YZ plane as the optimal orientation of the

3D diamond.

We have computed the volumes of optimized bounding box

for d-dimensional simple hyper diamond where the diamond

is centered at the origin and has a unit radius in L1 norm.

In 3D the vertices are (1,0,0), (-1,0,0), (0,1,0), (0, -1,0),

(0,0,1) and (0,0,-1) Table 5 compares the volumes of the

bounding boxes for d-dimensional hyper diamonds for the
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upright position, the method using PBQ and the method

using SLO. The table shows that SLO provides 99.99% better

optimized bounding box volume over the PBQ approach in

16 dimensions. Using the optimized orientation of the d-

dimensional regular diamond, we have implemented range

queries using this optimized box queries.

Dim 4 6 8 10 12 16

Upright 16 64 256 1024 4096 32768

PBQ 4 8 16 32 64 256

SLO 1.005 0.9473 0.3076 0.1354 0.0435 0.0022

SLO-PBQ(%) 74.88 88.16 98.08 99.58 99.93 99.99

TABLE 5: Volume Optimization for Bounding Box for Unit

Hyper-Diamond

9.3 Topological Transformation based on Simulta-

neous Local Optimal

Based on the final orientation of the polyhedron given by the

algorithm, we can obtain the transformation matrix, which

then can be applied directly to transform the corresponding d-

dimensional space. This transformation is achieved as follows:

If A is the matrix defining the initial orientation of the d-

dimensional hyper-diamond P and X is the matrix defining

the final orientation of P (derived from algorithm) then we can

get the topological transformation matrix T by T = A×X−1.

Thus, a given d-dimensional query P in the original space

becomes the query P ′ in the transformed space as P ′ = P ∗T .

9.4 Performance Evaluation

We conducted experiments using the same machines and the

same system parameters as described in section 7. Table 6

shows the run time performance of range queries, for query

ranges varying from 0.05 through 0.08, in the original space

(RQ), using bounding box query of PBQ and the optimized

bounding box query of SLO. Reduced run time of SLO over

PBQ is due to less false positives that need to be discarded in

SLO over PBQ. The number of IO’s for both SLO and PBQ

is the same because both approaches remove false positives

before accessing the leaf nodes. Here the database size is fixed

at 1 million feature vectors. We observe that the performance

improvement of SLO over PBQ increases with dimensions and

this improvement is about 34% for 20 dimension. The data also

shows that this improvement percentage is almost the same for

varying query ranges when the dimension is fixed.

Table 7 gives the performance improvement of Box queries

due to SLO over that due to PBQ with increasing database size.

Query range was fixed at 0.05 and the number of dimensions

is 10. Performance of range query (RQ) in the original space is

also included in the table for comparison purpose. We observe

that the performance improvement of SLO over PBQ is stable

as the database size increases.

10 CONCLUSION AND FUTURE WORK

In this paper, we present two novel topological transforma-

tion schemes to improve the performance of range queries.

First transformation scheme is based on a simple topological

Dim 0.05 0.06 0.07 0.08 SLO Over PBQ

8
3.215/ 5.235/ 7.761 / 10.969/ 11%
3.075/ 3.162/ 6.844 / 9.476/
2.733 2.82 6.072 8.481

12
10.095/ 17.134/ 27.649/ 37.108/ 16%
8.837/ 14.61 / 20.645 / 29.319/
7.449 12.257 17.362 24.745

16
41.463/ 63.85/ 92.491/ 123.47/ 24%
34.89/ 52.469/ 74.474/ 98.109/
26.495 39.934 56.51 74.68

20
98.456/ 121.63/ 170.187/ 225.224/ 34%
84.561/ 94.903/ 131.495/ 173.661/
56.402 62.73 87.707 115.172

TABLE 6: Run time in seconds with increasing dimensions

(RQ/PBQ/SLO)

DB Size 1M 2M 5M 10M

RQ 6.478 13.301 16.273 34.274

PBQ 5.069 8.361 14.638 29.273

SLO 4.404 7.207 12.515 24.823

TABLE 7: Performance for increasing database size

transformation and is computationally easy to implement.

It provides better IO performance than that in the original

space. This transformation is precise for 2 dimensions and for

dimensions higher than two, additional computation is required

to remove the false positives.

In the second transformation scheme amount of false pos-

itives is significantly reduced by using optimized bounding

boxes. A novel approach to compute optimized bounding box

in higher dimensions is given. It is shown that with increasing

dimensions, the second transformation scheme requires much

less computation time than that for the first.
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