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ABSTRACT

Towards a Database System for Large-scale Analytics on Strings

Majed Ali Sahli

Recent technological advances are causing an explosion in the production of

sequential data. Biological sequences, web logs and time series are represented as

strings. Currently, strings are stored, managed and queried in an ad-hoc fashion

because they lack a standardized data model and query language. String queries

are computationally demanding, especially when strings are long and numerous.

Existing approaches cannot handle the growing number of strings produced by

environmental, healthcare, bioinformatic, and space applications. There is a trade-

off between performing analytics efficiently and scaling to thousands of cores to

finish in reasonable times.

In this thesis, we introduce a data model that unifies the input and output

representations of core string operations. We define a declarative query language

for strings where operators can be pipelined to form complex queries. A rich

set of core string operators is described to support string analytics. We then

demonstrate a database system for string analytics based on our model and query

language. In particular, we propose the use of a novel data structure augmented by

efficient parallel computation to strike a balance between preprocessing overheads

and query execution times.
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Next, we delve into repeated motifs extraction as a core string operation for

large-scale string analytics. Motifs are frequent patterns used, for example, to

identify biological functionality, periodic trends, or malicious activities. Statistical

approaches are fast but inexact while combinatorial methods are sound but slow.

We introduce ACME, a combinatorial repeated motifs extractor. We study the

spatial and temporal locality of motif extraction and devise a cache-aware search

space traversal technique. ACME is the only method that scales to gigabyte-

long strings, handles large alphabets, and supports interesting motif types with

minimal overhead.

While ACME is cache-efficient, it is limited by being serial. We devise a

lightweight parallel space traversal technique, called FAST, that enables ACME to

scale to thousands of cores. High degree of concurrency is achieved by partition-

ing the search space horizontally and balancing the workload among cores with

minimal communication overhead. Consequently, complex queries are solved in

minutes instead of days. ACME is a versatile system that runs on workstations,

clusters, and supercomputers. It is the first to utilize a supercomputer and scale

to 16 thousand CPUs.

Merely using more cores does not guarantee efficiency, because of the related

overheads. To this end, we introduce an automatic tuning mechanism that suggests

the appropriate number of cores to meet user constraints in terms of runtime

while minimizing the financial cost of cloud resources. Particularly, we study

workload frequency distributions then build a model that finds the best problem

decomposition and estimates serial and parallel runtimes. Finally, we generalize

our automatic tuning method as a general method, called APlug. APlug can be

used in other applications and we integrate it with systems for molecular docking

and multiple sequence alignment.
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Chapter 1

Introduction

Imagination is more important
than knowledge. Knowledge is
limited. Imagination encircles
the world.

Albert Einstein

1879 — 1955 CE

In this chapter, we introduce the problem and challenges of string analytics.

We then describe our solution and give an overview of the remaining chapters,

including the roadmap of our thesis and a list of our contributions.
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Figure 1.1: The size of the GenBank has doubled approximately every 18 months.

1.1 Large-scale String Analytics

Recent technological advances are causing an explosion in sequential data pro-

duction. For instance, strings in bioinformatics are generated by high-throughput

sequencing technologies [1]. According to the National Center for Biotechnology

Information1 (NCBI), the size of the genomic sequences stored in the GenBank

repository has doubled approximately every 18 months as shown in Figure 1.1.

Genomics can be used to find treatments and to predict how a treatment will af-

fect a certain person. However, only the gene sections of the human genome, which

constitute 5%, are discovered. Therefore, we need to analyze larger and more se-

quences to understand how diseases work, diagnose and treat them. Governmental

and industrial bodies aim at sequencing individuals with cancer, rare diseases, and

infectious diseases. Ambitious projects include the 100,000 Genomes Project2 in

the UK and the Cancer Genome Atlas3 in the US. Similarly, string collections re-

1ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt
2http://www.genomicsengland.co.uk
3http://cancergenome.nih.gov
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quire extensive processing in astronomy4 and other fields [2]. For such projects to

succeed, proper management and processing of the growing string datasets are of

paramount importance.

String management and string analytics were long recognized as critical for

applications that query genetic sequences, process images, or mine textual content

[3]. Since operations on strings require accessing their internal structure, one

could map a string to a relation and its symbols to attributes. However, the order

of string elements matters and the number of symbols is usually large and not

fixed. Several attempts were proposed in the last two decades to handle strings

in database systems differently. Some Works extened the relational calculus [4,

5, 6, 7]. Periscope/SQ [8] extended PostgreSQL with matching operations over

biological sequences. But it is challenging to express common string operations,

such as motifs and k-mers, using matching only. To handle strings as first-class

types, researchers moved to object-oriented databases [9, 10]. However, simple

extensions are limited by their original data models and require the modification of

mature systems. Unfortunately, there is no standard mechanism for managing and

analyzing strings. Therefore, string analytics are currently performed by running

multiple disjoint applications.

For example, BLAST [11] is used for matching; it finds regions of local similar-

ity between biological sequences. Another example is KAT5, a k-mer counting tool

used to analyze substring frequency spectra. Users need to move data between

applications that use different formats and have different requirements in order

to draw conclusions. This gave rise to string analysis pipeline systems, such as

SeqWare Pipeline6. In these systems, users need to define the steps and order of

4http://www.skatelescope.org
5http://www.tgac.ac.uk/KAT/
6https://seqware.github.io/docs/6-pipeline/
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Figure 1.2: Example string S over DNA alphabet Σ = {A, C, G, T}. Matches for
GGTGC are indicated, allowing one mismatch and overlapping matches.

execution required to analyze the underlying strings. However, current datasets

are too large or too long for existing methodologies to manage them and process

them efficiently. Inspired by the well-established and successful relational database

management systems, we envision a database management system for strings. Such

system needs to natively represent strings and support their operations while al-

lowing users to declaratively query their data.

There are many complex string operations, like extracting frequent pattern,

called motifs. Motif extraction is a core string operation used to identify biological

functionality in genomic sequences, periodicity in time series, or user activity trends

in web logs. A repeated motif is a pattern that approximately appears many times

in a single string. For example, Figure 1.2 shows an example DNA sequence.

Consider a motif extraction query where motifs are of length 5 and we require at

least 5 approximate matches for a pattern to be a valid motif. Assume we allow up

to one mismatch between a motif candidate and its matches. To find the indicated

matches in the figure, we need to scan the sequence once.

However, to find all repeated motifs, an accurate motif extractor faces a search

space that is exponential with respect to the alphabet size. In this example,

the number of motif candidates is 1,024 (i.e., 45). If the sequence was from a

protein, there would be 205 = 160,000 motif candidates. It is indeed challenging

to efficiently extract all motifs. Hence, the classic apriori algorithm is used to

stop short and full-text indexes are used to reduce scanning. Unfortunately, this
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introduces random data access patterns and significantly affects performance [12].

Existing combinatorial motif extractors, such as FLAME [13] and VARUN [14],

are serial and very slow. Consequently, they are limited to very short strings (i.e.,

a few megabytes), small alphabets (typically 4 symbols for DNA sequences), and

restricted types of motifs.

In addition, the search space of a motif extraction query is pruned at different

depths depending on the query parameters and the underlying string. Paralleliza-

tion is challenging because it is difficult to decompose the search space and main-

tain a balanced workload among many cores. In fact, the only existing parallel

repeated motif extractor, PSmile [15], reported scaling to 4 cores only to extract

motifs from a sequence of size 0.2MB. Their scalability is limited by their assump-

tion of equal workload per search space partition. Obviously, high efficiency and

massive parallelization are key for extracting motifs and enabling string analytics

in general.

To sum up, traditional data management methods were designed and imple-

mented to deal with challenges different than those of data-intensive applications.

The challenges that face string management and large-scale analytic systems are

manifold. (i) First, the representation of string collections is not straightforward.

For example, strings can be represented as a relation or as a set of arrays, which

affects how strings are stored and accessed. (ii) Nevertheless, it is key for string

operations to be efficient in using the memory hierarchy because they are complex

and repetitive. (iii) Moreover, a single machine cannot handle large-scale string

analytics; so operations need to run in distributed environments. Given the un-

known and variable workloads of string operations, scalability is challenging. (iv)

Additionally, it is critical when using large infrastructures to work within a budget,

such as time or money.
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1.2 Contributions and Thesis Organization

The remainder of this dissertation is organized as follows: In Chapter 2, we survey

the related work in the area and introduce the string notation used through this

dissertation. Subsequently, we introduce our specific contributions:

In Chapter 3, we propose an architecture of a string database system for

large-scale string analytics. Our architecture hides the complexity of the un-

derlying infrastructure in order to enable efficient processing with minimal

user intervention. Particularly, we introduce a novel data model and describe

a declarative query language to separate data from systems implementations.

We lay down the building blocks of a distributed string database system. We

demonstrate how by using our proposed architecture, what used to be cum-

bersome separate tasks could be achieved by dealing with a single, possibly

distributed, system.

For example, using our string database system, a biologist would store all

genomic sequences in a single repository and perform analytics by submit-

ting the following declarative queries: SELECT RMOTIFS FROM dna WHERE

LEN=9; SELECT KMERS FROM dna WHERE LEN=3;. Currently, this is not pos-

sible with any existing system.

In Chapter 4, we introduce ACME, a combinatorial repeated motifs extrac-

tor. We exploit the memory hierarchy to address the challenge of random

data access patterns in string operations. Particularly, we study the spacial

and temporal locality of motif extraction and devise a cache aware search

space traversal technique. We logically consider the search space tree as a

set of branches. Each branch contains symbols that are conceptually adjacent

with preserved order; allowing for spatial locality. Moreover, maintaining oc-
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currences sets is a pipelined process; for instance, the occurrences set of AA

is used to build the occurrences set of AAA, leading to temporal locality.

ACME is the only method that scales to gigabyte-long strings, handles

large alphabets, and supports interesting motif types with minimal over-

head. Cache efficiency allows ACME to achieve an order of magnitude per-

formance gain in serial execution compared to the state-of-the-art accurate

motif extractors: FLAME [13], VARUN [14], and MADMX [16]. However,

scaling to larger strings and supporting more interesting motif types, such

as supermaximal ones, require scaling out to finish in reasonable times.

In Chapter 5, we extend ACME with an efficient parallel space traversal

technique which enables us to scale to thousands of cores. High degree of

concurrency is achieved by partitioning the search space horizontally and

balancing the workload among cores with minimal communication overhead.

We decompose the search space into a large number of independent sub-tries.

Our target is to provide enough sub-tries per CPU to utilize all computing

resources with minimal idle time.

The only parallel accurate motif extractor, PSmile [15], reported scaling to 4

cores only; due to excessive load imbalance. Using our methodology, ACME

solves complex queries in minutes using a supercomputer instead of days on

a workstation. Nevertheless, merely using more cores does not guarantee

efficiency, because of overheads such as duplicate work and communication.

In Chapter 6, we introduce our automatic tuning mechanism that suggests

the appropriate number of cores to meet the user constraints in terms of run

time, while minimizing the financial cost of cloud resources. Particularly, we

study workload frequency distributions then build a model that finds the best
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problem decomposition and estimates serial and parallel runtimes. Using a

sample of tasks runtimes, our framework approximates the workload and uses

a discrete event simulator to calculate the optimal decomposition parameter

and accurately estimate serial and parallel runtimes. The decomposition is

to be fine to avoid heavy tasks that affect balancing the work across many

cores. However, the decomposition must not be too fine because the parallel

overheads then increase drastically. Given a speedup efficiency threshold,

the goal of our automatic tuning method is to maximize parallelism while

maintaining efficiency.

Finally, we generalize our automatic tuning method as a standalone frame-

work, called APlug. Our automatic tuning framework can be integrated in

bag-of-tasks applications or used as a standalone tool to guide user decisions.

We use APlug to estimate serial and parallel runtimes of a molecular dock-

ing application and a sequence alignment tool. This allows us to predict and

optimize speedup efficiency and choose the right number of cores according

to the data workload, which is not known in advance.

This dissertation contains published work and work to be submitted. Specif-

ically, Chapter 3 describes our system accepted for demonstration in the Very

Large Data Bases Conference (VLDB 2015) [17] and a paper of our declarative

string query language, to be submitted to the Very Large Data Bases Conference

(VLDB 2016). Chapter 4 is based on our paper published in the proceedings of

the ACM International Conference on Information and Knowledge Management

(CIKM 2013) [18]. The work in Chapter 5 is published in the Very Large Data

Bases Journal (December 2014, VLDBJ) [19]. Our automatic tuning framework

in Chapter 6 is part of the proceedings of the IEEE International Conference on

Data Engineering (ICDE 2015) [20]. Figure 1.3 shows the roadmap.
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Figure 1.3: The roadmap of this thesis.

In a nutshell, our contributions are:

A scalable data model and a declarative query language for strings.

An architecture of a database system for large-scale string analytics.

A cache efficient search space traversal method applied to motif extraction.

A scalable problem decomposition technique applied to motif extraction.

An automatic tuning and elasticity framework applied to motif extraction

and generalized to bag-of-tasks applications.
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Chapter 2

Background

We often miss opportunity
because it’s dressed in overalls
and looks like work.

Thomas A. Edison

1847 — 1931 CE

This chapter first presents previous work related to string databases and query

languages. Following our thesis roadmap, we discuss serial and parallel repeated

motif extraction methods then present areas and works related to automatic tuning

and elasticity. Finally, the notation used through this dissertation is introduced.
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2.1 Related Work

2.1.1 String Databases and Query Languges

Traditional databases do not provide adequate support for strings and their oper-

ations. Present-day data management methods were designed and implemented to

deal with challenges different than those of large-scale string analytics. To handle

strings in database systems differently, several attempts were proposed in the last

two decades. They were either mere extensions or novel approaches.

Relational databases can be used to store strings in tables using columns of

text or binary large object (blob) data types. However, relational databases deal

with strings as atomic entities and queries over their internal structure are lim-

ited to the LIKE construct in the de facto query language, SQL. Simple extensions

build on the rich and well-established data management literature and systems by

introducing strings as relational domains [21]. Works of this type include exten-

sions to the relational calculus [4, 5, 6, 7]. Periscope/SQ [8] extended PostgreSQL

with matching operations over biological sequences. It is challenging to express

common string queries, such as motifs and k-mers, with only matching operations.

Moreover, complex queries require the efficient utilization of large infrastructures

to finish in reasonable times. Therefore, Periscope/SQ reported simple matching

queries over sequences of 5,000 symbols.

Most relational databases support a limited number of data types. To handle

strings as first-class types, researchers moved to object-oriented databases [9, 10].

Nevertheless, support of string operations in object-oriented databases does not

provide an ultimate solution as meta data overhead grows. Generally, extentions

of existing databases are limited by their original data models and require the

modification of mature systems [22].
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Attempts for native string support in databases exist, but most cases take

an application-specific approach. SRS is an information indexing and retrieval

system [23]. It targets flat files and makes use of the internal structure of their for-

mats. SRS only allows users to draw links between different files using atomic non-

sequence fields [24]. For example, SRS users can only query the description fields of

FASTA-formatted and EMBL-formatted nucleotide and peptide sequences. SEQ

is a string database system based on distinct domains for string elements and their

underlying order type [25]. This is beneficial if users need to compute moving aver-

ages on time series. However, SEQ model is limits parsing tasks, such as matching.

There is no standard mechanism for managing and analyzing strings at the

scale needed nowadays. Algorithms that handle long strings or large collections

of strings are implemented within disjoint applications. For example, BLAST

[11] is used for matching; it finds regions of local similarity between biological

sequences. Another example is KAT1, a k-mer counting tool used to analyze

substring frequency spectra. Currently, string analytics require running multiple

standalone applications. Users need to move data between applications that use

different formats and have different requirements in order to draw conclusions.

This gave rise to string analysis pipeline systems, such as SeqWare Pipeline2, where

users need to define the steps and order of execution manually.

Several string data models and languages are theoritically sound but imprac-

tical to implement [9]. Richardsons introduced one of the early declarative query

language for strings [26]. In his model, a string starts with a symbol and the

every symbol is considered the next instance of the symbol to its left. However,

it is known that temporal logic modalities have limited support for recursion or

iteration [27], both needed for string queries.

1http://www.tgac.ac.uk/KAT/
2https://seqware.github.io/docs/6-pipeline/
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Table 2.1: Comparison of previous combinatorial repeated motif extractors.
Method Largest reported input Supported motif types Execution
FLAME [13] 1.3 MB Exact-length Serial
VARUN [14] 3.1 MB Maximal Serial
MADMX [16] 0.5 MB Maximal Serial
PSmile [15] 0.2 MB Exact-length Parallel

2.1.2 Repeated Motifs

In this thesis, we use the repeated motifs problem as a string problem that faces

the challenges of a string database system. This section presents the most recent

methods for extracting motifs from a single string (i.e., combinatorial repeated

motifs). Table 2.1 shows a summary.

Serial Methods

Motif extraction is a highly repetitive process making it directly affected by cache

alignment and memory access patterns. For a motif extractor to be scalable, it

needs to utilize the memory hierarchy efficiently and run in parallel. Existing

methods do not deal with these issues. Therefore, they are limited to sequences in

the order of a few megabytes [28].

The complexity of motif extraction grows exponentially with the motif length.

Intuitively, extracting maximal and supermaximal motifs is more complex than

exact-length ones because, if length is known, the search space can be pruned sig-

nificantly. FLAME [13] supports only exact-length motifs. To explore a sequence,

users need to run multiple exact-length queries. VARUN [14] and MADMX [16],

on the other hand, support maximal motifs, without any length restriction. To

limit the search space, VARUN and MADMX assume that the distance threshold

varies with respect to the length of the current motif candidate. None of these

techniques supports supermaximal motifs; therefore their output contains a lot of
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redundant motifs (i.e., motifs that are subsequences of longer ones). Despite these

restrictions, the length of the largest reported input was only a few megabytes. It

must be mentioned that none of these methods is parallel.

In Chapter 4, we introduce CAST, a cache-aware method for solving the combi-

natorial repeated motifs problem. CAST arranges the search space, the index, and

intermediate results in continuous memory blocks, and accesses it in a way that

exhibits spatial and temporal locality, thus minimizing cache misses. As a result,

CAST improves performance of serial execution by an order of magnitude. CAST

allows for extracting right-supermaximal motifs, which are motifs that are not

prefixes of any other; eliminating redundant motifs that existing methods report.

Parallel Methods

Parallelizing motif extraction attracted a lot of research efforts, especially in bioin-

formatics [15, 29, 30, 31, 32, 33]. Challa and Thulasiraman [29] handle a dataset of

15,000 protein sequences with the longest sequence being 577 symbols only; their

method does not manage to scale to more than 64 cores. Dasari et al. [30] extract

common motifs from 20 strings of a total size of 12KB and scale to 16 cores. This

work has been extended [31] to support GPUs and scaled to 4 GPU devices using

the same dataset. Liu et al. [32] process a 1MB dataset on 8 GPUs. DMF, an

implementation of Huang’s work [34], has been parallelized by Marchand et al. [33]

to run on a supercomputer. The aforementioned methods target the much sim-

pler common motifs problem (i.e., they assume a dataset of many short strings),

whereas we solve the repeated motifs problem [35] (i.e., one very long string). More-

over, most of these approaches are statistical. Therefore they may introduce false

positive or false negative results, whereas we focus on the combinatorial case that

guarantees correctness and completeness.
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To the best of our knowledge, the only parallel and combinatorial method for

extracting motifs from a single sequence is PSmile [15]. This method parallelizes

SMILE [36], an existing serial algorithm that extracts structured motifs, com-

posed of several “boxes” separated by “spacers” of different lengths. Intuitively,

this corresponds to a distance function that allows gaps. SMILE (and PSmile)

can support the Hamming distance by using only one box and zero-length spac-

ers. PSmile partitions the search space using prefixes. Their contribution is the

heuristic that groups search space partitions to balance workload among cores.

Prefixes are grouped into coarse-grained tasks, and workload of different prefixes

is assumed to be similar. Based on this assumption, a static scheduling scheme

is used to distribute the tasks. However, their assumption is not satisfied in real

datasets; therefore, in practice PSmile suffers from highly imbalanced workload

and parallel overhead [37]. PSmile reported scaling to 4 cores only; the maximum

input size was 0.2MB.

In Chapter 5, we introduce the first parallel method that scales to thousands

of cores and gigabyte long strings. The most important issue for good scalability

is to achieve load balance by having a good decomposition of the search space.

Our approach scales to 16,386 cores and can support gigabyte long strings. We

also propose an algorithm to extract supermaximal motifs with minimal overhead.

Straight-forward calculation would require keeping track of all maximal motifs;

this is too expensive, therefore no previous approach supports such motifs.

Motifs in time series

The notion of motifs exists in applications that use time series. As in the case of

motifs in strings, most methods for extracting motifs in time series are approximate

solutions [38, 39, 40]. Nevertheless, serial [41] and parallel [42] exact solutions exist,
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too. However, solutions for extracting motifs from time series cannot be used to

extract motifs from strings for two main reasons. (i) The definition of motifs in

strings is different that that in time series. In time series, motifs are pairs of

similar time series subsequences. Without considering the difference in frequency

requirement, motifs in time series have at least one exact match while motifs in

strings may not appear exactly at all. In other words, the search space for motifs

in time series is smaller than that of motifs in strings. (ii) The domain of time

series is continuous whereas it is discrete for strings. If a time series is discretized,

algorithms for extracting motifs in strings are not guaranteed to find the motifs in

the original real-valued time series [43].

2.1.3 Automatic Tuning and Elasticity

Automatic tuning is needed for applications that handle big data and scale out on

large infrastructures. The de facto application is data analytics using MapReduce

or MPI-based systems. In MapReduce frameworks, data analytics is accomplished

using multiple iterations. PREDIcT [44] introduced an experimental methodology

for estimating the number of iterations and the time of each iteration in iterative

analytics. PREDIcT does not estimate the number of machines required to meet

user-specific constraints or suggest the best decomposition into a certain number

of iterations. Both problems are challenging due to variance in iteration times. We

address these problems for bag-of-tasks MPI-based applications, where the variance

among tasks is even higher. Starfish [45] automatically tunes a Hadoop cluster to

enhance its performance for data analytics. It uses dynamic instrumentation to

profile jobs and a what-if engine to predict performance. Cumulon [46] is aimed

specifically at statistical analysis on public clouds. In this thesis, we target different

large-scale infrastructures, such as supercomputers, and suggest resources based
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on workload for general bag-of-tasks applications.

Resource allocation and scheduling are to provision resources and balance the

load on them. Middleware solutions, such as Falkon [47], were used to manage

resources for applications with many-tasks. Recent work provided middleware

solutions with cost-efficient algorithms for tasks assignment across multiple clouds

[48]. Middleware solutions are infrastructure and provider specific. Applications

require code modification to utilize such services. To deal with trailing tasks, the

number of workers can be shrunk at some point to keep utilization high [49]. BaTS

[50] replicates trailing tasks on idle cores to increase the chances of completing

them faster. Resource allocation is done by service providers and scheduling is

done either by applications or middleware. We consider these problems from a

user point of view. Our work is orthogonal to resource allocation and scheduling.

Runtime and scalability estimation are used to assist the decision making pro-

cesses of schedulers and resource management modules [51]. One way of estimating

task runtime is to analyze and profile code [52]. Compiler knowledge can be used

to extract performance metrics [53]. Full code needs to be analyzed in order to

create and validate scalability predictive models. The inputs for such models are

low level system metrics, such as communication latencies, data type sizes, and

memory contention. A more practical approach is to use statistical modeling to

estimate runtime and scalability [54]. Bayesian and neural networks were used

in grids to learn the execution times of running tasks [55]. Nevertheless, existing

execution time estimators for large-scale applications were shown to be ineffective

in clouds [56]. Our approach is less aggressive and requires no or minimal coding.

We model the workload distribution of tasks using a sample run. Our model does

not require code profiling and is not infrastructure specific.

Performance modeling is a useful tool to optimize existing systems and design
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future ones [57]. Works on performance prediction are mostly specific to certain

applications and architectures requiring code inspection and instrumentation [58].

Regression techniques were used to estimate the performance of scientific workflows

in heterogeneous environments [59]. Recently, a framework for predicting applica-

tion performance on systems with hardware accelerators was introduced [60]. Our

goal is to meet user constraints for a specific run of a bag-of-tasks application. We

implicitly capture hardware performance in order to automatically tune the degree

of parallelism and problem decomposition.

We are not concerned with allocation and scheduling strategies at the infras-

tructure level. We do not measure nor optimize performance of applications or

computing infrastructures. In Chapter 6, we develop an automatic tuning process

for the partitioning of the search space in order to scale efficiently to thousands

of cores. For each query and dataset, we gather statistics and build an execution

model. We then run simulations to decide the best partitioning that maximizes

the efficient utilization of available CPUs. In conjunction with a cloud provider’s

pricing scheme, our auto-tuning method can also be used to minimize the financial

cost of deployment on the cloud, while meeting the user constraints in terms of

performance. We then generalize our approach to applications of many indepen-

dent tasks to predict the appropriate degree of parallelism for a particular process

based on user constraints with minimal overhead.
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2.2 Notation

Let Σ be an input alphabet, a finite set of elements. The elements of Σ are called

letters, characters, or symbols. A typical example of alphabets is the English

alphabet of 26 letters. In biology, the DNA alphabet consists of the four characters

{A,C,G, T}. A string S over Σ is a finite concatenation (ordered sequence) of

symbols taken from Σ. The length, or size, of a string S=a0a1 . . . an−1, denoted by

|S| is n, the number of its elements from the alphabet with repetitions. So, the

length of S = ACAAT is 5. Extending these concepts to a collection of strings,

the size is the number of strings in the collection, the length is the summation of

their lengths, and the alphabet is the union of their alphabets.

The i-th element of a string S of length n is denoted by S[i] and i is its position

in S, where 0 ≤ i < n. We will assume that S[n] contains the special end character

$ "∈ Σ, which cannot occur anywhere but in the end of a string. We denote by

S[i, j] a substring of S defined as follows.

S[i, j] =






S[i]S[i+ 1] . . . S[j] of length j − i+ 1 j > i

S[i] of length 1 j = i

$ of length zero j < i

Given a string S and the three strings (possibly empty) p, s, and t such that

S = pst; p is a prefix of S, s is a substring of S, and t is a suffix of S. We say

that the string s of length m occurs in S at position i, or that the position i is a

match for s in S, if s = S[i, i+m−1], or s is similar to S[i, i+m−1] for some integer

i given a similarity measure and threshold.
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Chapter 3

A Unified Model and Query

Language for Strings

The menu is not the meal.

Alan W. Watts

1915 — 1973 CE

We propose the use of a unified data model for strings. The model supports

a wide range of core string operations, unifying the representation of their inputs

and outputs. We define a declarative query language for strings where operators

can be pipelined to easily form complex string queries. We demonstrate a string

database system based on our unified model and query language. Because large-

scale string analytics are too intricate to be solved on one machine, we implement

a distributed system where parallel computation is used to augment the simplicity

of our architecture.
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3.1 A Unified Model for Strings

Operations on strings can have one or more strings as input and produce one or

more strings as output. Therefore, a query language for strings will have to deal

with sets of strings. Theoretically, a set is an ideal representation because it allows

no duplicate entries and can have (i) no strings (the empty set), (ii) one string (a

singleton), or (iii) many different strings.

We introduce StarDM, a string model that unifies different string operations.

In StarDM, we consider strings as sequences of symbols, grouped into collections.

A string of zero symbols is an empty string, and a collection of zero non-empty

strings is an empty collection. Depending on how string collections are generated,

they could consist of several long strings or millions of short strings. We aim to

provide a declarative and abstract method for specifying strings and queries over

them. We define operations that natively support string queries based on the set

theory and that a string is a sequence of symbols. Operations in StarDM take

one or two collections as input and output a collection. This unification of format,

along with relevant meta-data allow for expressing and solving complex string

queries. The simplicity of our model, StarDM, allows for efficient and scalable

implementations, as we show in our demonstration.

3.1.1 String Operations

We collected and extended string algebra operations suggested by different works

[61, 62]. Previous works focus on extending relational calculus to support strings

[63, 64, 9]. This limits the applicability of string operations by the underlying

relational model. Works that do not extend the relational model are constrained

by either being application-specific [65] or by providing very basic operations that
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Table 3.1: Set operations supported by StarDM, where A, B, and C are collections
of strings.

Operator Procedural form Algebraic form
Intersection C = intersection(A, B) A ∩ B
Union C = union(A, B) A ∪ B
Difference C = difference(A, B) A \ B

make them theoretically sound but not practical [66]. The following operations are

chosen to support most string queries required in different applications, such as

matching and frequent patterns. They are not too specific, as genomic assembly,

nor too generic, as simple concatenation. Queries can be composed using one

or more of these operations. Nevertheless, the following set of operations is not

exhaustive and is extensible.

Set operations

The set operations on string collections are identical to their counterparts in the

set theory (see Table 3.1). Given A and B two sets of strings, the intersection

operation outputs the set of strings common to A and B. Similarly, the union

operation results in the set of strings in A or B and the difference operation filters

B out of A. For example, if A = {s1, s2, s3} and B = {s2, s3, s4} then A ∩ B

= {s2, s3}; A ∪ B = {s1, s2, s3, s4}; and A \ B = {s1}.

Matching operations

Matching is the basic textual problem and one of the most used string operations.

An exact matching operator may return a boolean value indicating the existence of

a match or it may return the number of matches, if any. A more involved require-

ment is to return the positions of the matches in the searched string. Variations

of this operator include approximate matching and evaluating regular expressions.
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Table 3.2: Matching operations supported by StarDM, where A, B, and C are
collections of strings; t is a binary for all or any and d is a distance metric threshold.

Operator Procedural form Algebraic form
Exact C = exact(A, B, t) A E B
Approximate C = approx(A, B, t, d) A Aall|any,d B
Regex C = regex(A, B, t) A Rall|any B

Table 3.3: Filtering operations supported by StarDM, where A, B, and C are
collections of strings, and d is a distance metric threshold.

Operator Procedural form Algebraic form
Prefix Filter C = is-prefix(A, B, d) A Pd B
Suffix Filter C = is-suffix(A, B, d) A Sd B
Substring Filter C = contains(A, B, d) A Cd B

In Table 3.2, given A and B two sets of strings, the exact match operation

outputs the set of substrings from A that match a string in B. Similarly, the

approximate match operation finds matches of B in A given a distance metric

threshold. For most flexible matching, regular expressions are used. In this case,

B is a set of regular expressions and the operation outputs the set of substrings from

A that match expressions in B. The all and any variants of the operators dectate

the semantics over the two sets. In particular, an all match requires matching

against every string in B, whereas an any match requires at least one string in

B that matches. Specifically, matching over two string collections is logically an

operation over the Cartesian product of these collections. For example, if A =

{TEST, BEST, ESTATE} and B = {TT} then A E B = ∅; A Aham(1) B = {TE,

ST, AT}; and A R {T*T} = {TEST, TAT}.
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Table 3.4: Extraction operations supported by StarDM, where A and C are col-
lections of strings, and p1 ≤ p2 are integers; lengths in the case of prefixes and
suffixes, and positions in the range case.

Operator Procedural form Algebraic form
Extract Prefixes C = prefixes(A, p1, p2)

∏
(START,[p1,p2])

A
Extract Suffixes C = suffixes(A, p1, p2)

∏
(END−[p1,p2],END) A

Extract Range C = range(A, p1, p2)
∏

(p1,p2)
A

Extract LCS C = lcs(A)
∧

A

Filtering operations

Filtering a collection of strings can be thought of as a form of set difference opera-

tion with a condition. In Table 3.3, given A and B two sets of strings, we filter the

left operand according to conditions that involve the right operand. The prefix and

suffix filter operations output the set of strings in A that have a prefix or a suffix

from B within a distance. The substring filter is more generic, where A is filtered

by matching strings from B regardless of position. Given two string collections,

filters are applied on the Cartesian product of these collections. Moreover, sets can

be filtered according to metadata properties, such as length, size, and alphabet.

For example, if A = {TEST, BEST, ESTATE} and B = {TT} then A Pham(1) B

= {TEST}; A Sham(1) B = {TEST, BEST, ESTATE}; and A Cham(0) B = ∅.

Extraction operations

Extraction operations allow for processing prefixes, suffixes, or ranges within a

collection of strings as shown in Table 3.4. Given a set of strings A, we allow

extracting prefixes with a range of length. If a string is shorter than p1, it is not

considered a valid prefix and thus eliminated altogether. Suffixes are handled in

the same manner without the need to know the length of strings beforehand. The

range extraction operation takes absolute positions and extracts the substrings. If
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Figure 3.1: Extraction operations applied to an example collection of strings and
the StarDM representation of the extracted suffixes showing counts.

Table 3.5: Generation operations supported by StarDM, where A and C are collec-
tions of strings, l1 ≤ l2 are lengths, f is a frequency threshold, and d is a distance
metrics threshold.

Operator Procedural form Algebraic form
Common Motifs C = cmotifs(A, l1, l2, f , d)

⊗
l1,l2,f,d

A
Repeated Motifs C = rmotifs(A, l1, l2, f , d)

⊕
l1,l2,f,d

A
K-mers C = kmers(A, l1)

⊙
l1
A

a string is shorter than p2, no substring would be extracted. The longest com-

mon substring operation (LCS) outputs a collection of a single string, the longest

common substring within the input collection.

Figure 3.1 shows an example of extraction operations over a sample collection.

Notice that if we were to extract prefixes (or suffixes) of length 5 from the example

strings then there would be only one. Moreover, in the example, there are 2 unique

suffixes of length 1, but StarDM keeps track of the total number of suffixes. This

will be detailed when the data structures are discussed in Section 3.3.2. In this

case, the “T” will have a count of 2 because there were 2 “T” suffixes. The range

example has a similar case.

Generation operations

The common motifs problem is to find frequent patterns that appear in a number

of strings. A similar but more challenging problem is the repeated motifs problem,
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Table 3.6: Aggregation operations supported by StarDM, where A is a collection
of strings and I is an integer result.

Operator Procedural form Algebraic form
Length I = length(A)

∐
A

Size I = size(A) |A|

where a pattern is frequent if it appears a certain number of times in a single string.

In Table 3.5, we defined operators for common and repeated motifs. Given A a set

of strings, the common motifs operation outputs the set of strings of length l1 to l2

that have matches in at least f strings from A. For the repeated motifs operation,

the output is the union of repeated motifs in each string in A. Another operation

used in many applications is generating the set of k-mers, substrings of length k.

Our k-mer operation finds the set of strings of a certain length that appear exactly

in at least one string from A.

Aggregation operations

For strings, it is important to know the size of a string collection and the length

of strings in a collection. Table 3.6 shows the two aggregate string operations.

Aggregate operations are deterministic and result in a single value. The length

of a collection is the summation of the its member string lengths. The size is the

number of these nonempty strings. Operations such as average, sum, maximum,

and minimum can operate on outputs of length and size.

3.1.2 Extensibility

Given StarDM, any operator that takes one or more collections as input and out-

puts a collection is a valid operator. The list of operations discussed in Section

3.1.1 is not exhaustive. The four categories of string operations can be extended
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with new operations that have application specific logic. For example, in bioin-

formatics, genome assembly is an operation that takes a collection of short reads

and outputs a collection of a single long sequence. Assembly can be added to

the existing string generation operations. User-defined functions are incorporated

through dynamic loading (e.g., by linking a shared library).

Another way to extend the functionality of StarDM operations is to define

functions that are used within existing operators to embed application logic. For

example, Table 3.2 shows that matching operations take as input a distance metric

function. This function takes as input two strings and returns a scalar value

indicating the disimilarity between the input strings. Typical distance functions

include the Hamming and Edit distance metrics. However, in bioinformatics, users

may require the use of application-specific metrics, such as weighted matrices for

DNA similarity scoring.

3.2 A Declarative String Query Language

We introduce StarQL, a declarative query language based on our strings data

model. Queries in StarQL are categorized according to their applicability and

results to administrative and analytic queries. Administrative queries are used

to manage the database and its string collections. Analytic queries are used to

extract information. Next, we describe the syntax and semantics of StarQL and

its implementation over StarDM.

3.2.1 Syntax and Semantics

In an effort to make StarQL easy to understand with a short learning curve, a

declarative SQL-like approach is used. Figure 3.2 shows an abstract BNF of some
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<query> := <select> | <import> | <delete> | <update>

<extractor> := PREFIXES | SUFFIXES | RANGE

<generator> := RMOTIFS | CMOTIFS | KMERS

<identifier>:= <path> | <name> | <import>

<filter> := PREFIX | SUFFIX | SUBSTRING | <metadata>

<match> := EXACT | APPROXIMATE | REGEX

<import> := IMPORT <path> | <select> | <identifier> AS <identifier>

<delete> := DELETE <identifier>

<select> := SELECT <extractor> | <generator> | *

FROM <identifier> | (<import>) | (<select>)

[ WHERE <filter> | <match> | <metadata> ]

[ <aggregate-ops> | <limit> | <order-by>]

Figure 3.2: Abstract BNF for StarQL.

of the StarQL constructs. Complex string analytics can be performed by easily

forming queries and nesting different constructs. Next, we discuss StarQL con-

structs, grouped according to functionality, and give examples of their usage.

Administration

The IMPORT utility provides a simple way for users to insert and index strings

from the file system to the database management system. The input parameters

of an import command are: the file system directory (path) and the name of the

new collection that will be created. The original path is not required for further

operations on the imported strings but a pointer to the original path is kept for

reference. The newly created collection is named and given a unique ID. The

number of strings and the total length of all the strings are saved as collection

properties. The DELETE utility removes a previously existing collection from the

database system. Any indexes and meta-data can be purged but the origin of a

deleted collection (path or another collection) is not affected.

For example, a user imports a dataset of human DNA shotgun reads by running

the following query: IMPORT ‘‘/datasets/shotgun/human’’ AS hdna; . The



43

IMPORT construct also allows for duplicating an existing collection or saving the

results of a query as a new collection.

Matching

The EXACT matching command finds exact matches of a query pattern in a collec-

tion. The output of an exact match operation is either a collection of one string,

the matched pattern, or an empty collection if no matches are found.

The APPROXIMATE matching command finds matches within a certain distance

threshold from the query pattern. The distance function can be hamming dis-

tance or edit distance, for example. The search process is similar to that of exact

matching except that we allow differences between matches and patterns within

a user-defined threshold. The result is a collection of as many unique substrings

that match with their respective counts in the original collection.

The REGEX matching command finds substrings that match a regular expression

pattern. The capabilities of a regular expression matching command are vital for

several string applications. Regular expressions can be evaluated using determin-

istic finite automaton (DFA) over the strings according to Thompson’s algorithm.

The result is a collection of as many unique substrings that match with their

respective counts in the original collection.

For example, assume a user needs to find matches of the regex expression

“AC..CA” in the previously imported collection hdna. Notice that a collection of

one element can be supplied inline for convenience. The query is written as: SELECT

* FROM hdna WHERE REGEX(‘‘AC..CA’’);. To save the results for later process-

ing, an import is needed: IMPORT (SELECT * FROM hdna WHERE REGEX(‘‘AC..CA’’))

AS re;.
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Extraction

The PREFIXES extraction command extracts all the unique prefixes in a collection

of strings. The input is a collection along with the desired prefix length range.

The output is a collection of all unique prefixes within required length range.

The SUFFIXES extraction command extracts all the unique suffixes in a collection

of strings. The input is a collection along with the desired suffix length range.

The output is a collection of all unique suffixes within required length range. The

RANGE extraction command extracts all the unique substrings that exist at a specific

position in a collection of strings. The input is a collection along with the desired

start and end positions. The output is a collection of all unique substrings that

exist at the specified positions from all the strings.

In our running example, a user may be interested in the different substrings of

length 2 that exist between a pair of “AC”. In this case, a range extraction query

could be used as follows. SELECT RANGE FROM re WHERE POS>1 AND POS<4;. If

re consisted of {ACCCAC, ACGTAC, ACTTAC, ACATAC}, then the output would be

{CC, GT, TT, AT}.

Generation

The RMOTIFS generation command finds all the repeated motifs supported by at

least one string in the collection operated on. The input is a collection along

with the desired motif properties; namely, minimum length, maximum length,

frequency threshold. In addition, motifs can be exact or approximate. The output

is a collection of repeated motifs. The CMOTIFS generation command finds all

the common motifs supported by a user specified number of strings in a certain

collection. The input is a collection along with the desired motif properties; namely,

minimum length, maximum length, frequency threshold. In addition, motifs can be
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exact or approximate. The output is a collection of common motifs. The K-MERS

generation command finds all the unique k-mers in a collection of strings. The

input is a collection along with the desired k value (substring length). The output

is a collection of the unique k-mers from all the strings in the collection.

For example, to generate the k-mers of length 3 from the previously saved collec-

tion re, the query is: SELECT KMERS FROM er WHERE LEN=3;. The results consist

of {AAC, CCC, CCA, CAC, ACG, CGT, GTA, TAC, ACT, CTT, TTA, ACA, CAT, ATA}.

Filtering

The PREFIX filtering command finds the strings that share a certain prefix; either

exactly or approximately. The input is a collection of strings, a prefix pattern,

and a distance function and threshold. The output is a collection of strings with

matching prefixes. The SUFFIX filtering command finds the strings that share a

certain suffix; either exactly or approximately. The input is a collection of strings, a

suffix pattern, and a distance function and threshold. The output is a collection of

strings with matching suffixes. The SUBSTRING filtering command finds the strings

that share a certain substring; either exactly or approximately. The input is a

collection of strings, a substring pattern, and a distance function and threshold.

The output is a collection of strings with matching substrings. The LENGTH filtering

command finds strings of a certain length range. The input is a collection of strings

and a length range. The output is a collection of strings of the specified range.

Continuing our running example, assume the user is interested in the k-mers of

length 3 that include the 2 characters between the pair of “AC” in the regular ex-

pression matches, r = {CC, GT, TT, AT}. This is accomplished using the query:

SELECT er.KMERS AS k FROM er, r WHERE k.LEN=3 AND k.SUBSTRING(r);. The

resulting filtered k-mers are {CCC, CCA, CGT, GTA, CTT, TTA, CAT, ATA}.
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Meta-data

The ID is a unique identifier of a collection, a string, or an occurrence. The NAME

is a textual description of a collection. The SIZE is the number of strings in a

collection. The LENGTH is the total length of all the strings in a collection or the

length of a string. The ALPHABET of a collection is the set of symbols used in all its

strings. For example, if a collection has two string, {aba, cba}, then the alphabet

of the collection is “abc”. The ORIGIN of a collection is the path or query that

resulted in the creation of the collection. The transformations of strings from one

collection to another can be tracked using this attribute.

3.2.2 Execution Plans

Complex StarQL queries can be formed easily. A query that involves multiple

string operations can be optimized by ordering the execution of the underlying

operations. For example, if a query involves multiple matching operations, one of

which is against the longest common substring, then finding the longest common

substring first reduces intermediate results and the search space for subsequent

matching operations. However, it is not always straightforward to optimize query

plans as the optimizer needs to verify semantics and keep them intact.

Consider two collections of strings, hom for human DNA and mus for mouse

DNA. A biologist finds the sequences that are similar in both collections by using

the approximate matching operation. For simplicity, we assume a hamming dis-

tance of 3 is acceptable. The following StarQL query results in all the subsequences

in hom that have approximate matches in mus.

SELECT APPROXIMATE FROM hom, mus WHERE HAMM<=3;

Validating the correctness of string query plans is challenging. This is because
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the order of executing sub-queries could change the final results. For example,

consider a user wants to find all common motifs in a group of strings that are of edit

distance 2 or less from the word “test”. The following plans will produce different

results. (i) Extract all common motifs from all strings, then filter the motifs of

edit distance 2 or less from “test”. (ii) Filter strings of edit distance 2 or less from

“test”, then extract all common motifs from them. To ensure correctness, we use

the syntax of StarQL to avoid such scenarios. In particular, the final output is

always a subset of the operation after a SELECT keyword. Conditions after a WHERE

keyword are interpreted from left to right, but not necessarily executed in this

order. Using this convention, how StarQL interprets the query is clear to users.

Only valid plans are compared internally to optimize efficiency.

Given the StarQL syntax and semantics, users easily form queries that repre-

sent their intentions and systems interpret them the same way. Hence, queries (i)

SELECT CMOTIFS FROM collection WHERE APPROXIMATE(‘‘test’’, 2); and (ii)

SELECT * FROM collection WHERE CMOTIFS AND APPROXIMATE(‘‘test’’, 2);

are clearly different. The following nested query extracts the suffixes of length 3

from the Wikipedia repeated motifs.

SELECT SUFFIXES FROM (SELECT RMOTIFS FROM wiki

WHERE LEN>4 AND EDIT<3)

WHERE LEN=3;

Alternatively, the motifs query could be saved as a collection for further pro-

cessing. This allows users to analyze intermediate results and execute different

queries without having to start from scratch. For example, after extracting suf-

fixes of length 4 from the motifs, the user may want to explore prefixes or suffixes

of different lengths. In this case, first the motifs are saved as a collection then used

in subsequent queries as shown next. Motifs of length 5 will not contribute to the
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results of the prefixes query below.

IMPORT ( SELECT RMOTIFS FROM wiki WHERE LEN>4 AND EDIT<3 ) AS mot;

SELECT SUFFIXES FROM mot WHERE LEN=10;

SELECT PREFIXES FROM mot WHERE LEN>5 AND LEN<10;

3.3 A DBMS for Large-Scale String Analytics

In this section, we introduce StarDB, our proof-of-concept implementation. We

demonstrate the use of our unified model and query language in a distributed sys-

tem. We utilize parallel computation to augment the simplicity of our architecture.

3.3.1 System Architecture

Generally, the workloads of string algorithms scale super-linearly with data size

[67]. A string database system needs to be distributed in order to handle string

analytics in a timely manner. StarDB uses the master-worker parallel programming

paradigm. Complex queries are solved in parallel whereas simpler ones are run in

serial. The abstract architecture of StarDB is shown in Figure 3.3.

The supported StarDM operations are the interface to StarDB and are accessed

using StarQL. Some operations are primitive and require less effort to execute,

such as administrative tasks. Other operations require optimization and planning,

such as matching. Näıvely, string operations require multiple scans to strings

and mostly involves a much wider search space than the strings themselves. The

complexity of a string operation depends on the algorithm, the string size, and the

used parameters. We attack these challenges at several fronts by implementing the

operators so they make use of the available system components and abstractions.

Particularly, we utilize novel data structures and indexes to enhance performance
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Figure 3.3: Architecture of our large-scale string database system.

and introduce optimizations at different system layers.

The analysis of a string is done by executing several queries. Users can uti-

lize the command line interface or form and submit StarQL queries. The query

manager consists of three main components. (i) The optimizer is needed to cre-

ate efficient plans for queries. Adhering to the StarQL conventions, a query is

optimized by pushing less complex operators down the execution tree, as long as

correctness is maintained. This minimizes intermediate results and limits the do-

main of the more complex operators involved in the query plan. (ii) The execution

of a query plan in a distributed system running over a large-scale infrastructure

is not straightforward. The plan executer considers the underlying infrastructure

and the current state of the system to find low cost means for solving the query.

For example, less cores may be used in a multicore system to avoid contention or a

fine grained task decomposition is done to better balance the workload in a large

cluster. (iii) Statistical utilities are used to predict the complexity of an operator
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over a specific collection of strings and to guide the decisions of the optimizer and

plan executer.

Resource utilization is a great challenge as balancing the workload and avoiding

parallel execution overheads are essential tasks. The cloud manager is responsi-

ble for workload distribution, data replication, and system elasticity according to

actual workload and availability of resources. String operations and the query

manager use the cloud manager to interact with the hardware or work within its

context. For example, load balancing is achieved by automatically finding the

best probelm decomposition. Large-scale systems require resource pooling and

elasticity in order to be cost effective. Adding and removing resources should be

transparent to user applications. The elasticity manager estimates the required

resources and updates the query plan executer. The effective orchestration of re-

sources in a large-scale system is used to hide I/O cost and enhance the overall

performance.

In a cloud environment that utilizes a large-scale infrastructure, the collective

memory and disk of each machine form the storage subsystem. Issues that are

simple for small strings are problematic for large strings. For example, reading

a few gigabytes string takes more time than indexing a few megabytes string.

Involved challenges include partitioning large string collections and prefetching to

deal with I/O and network overheads. The storage manager provides abstractions

that guarantee data independence. Indexes are used to minimize string access

while keeping storage cost at a minimum. Under the hood, the storage manager

creates decomposed indexes so parts of them can exist in local memory while other

parts are in the memory of other nodes or on disk. In our implementation, we keep

the strings in the file system as plain files and serialize their in-memory indexes to

disk for persistence. Since the metadata of our collections is structures, we make
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use of an embedded relational database [68] to keep and access metadata.

3.3.2 Data Structures

The de facto data structure for a collection of strings is the generalized suffix tree

(GST), a powerful full-text index. However, a GST is large in size, not scalable

in terms of number of strings, and challenging to parallelize. A hefty constant is

hidden when describing the space requirement of a GST as linear. In average, the

number of nodes in a suffix tree is 2n, where n is the length of the indexed string.

However, each node stores at least 3 integers to identify its path label (a string

identifier, the starting position, and the length). A GST is not scalable because it

requires as many distinct terminating symbols as the number of indexed strings.

This is infeasible considering the number of strings in a set can be in the order

of millions. Therefore, the alphabet size will be huge. Alternatively, GST leaf

nodes will have to store a list of strings that share their path labels; adding to the

space requirement. Moreover, parallel search in a GST would require extensive

communication or excessive replication in the case of distributed processing.

With our goal of supporting generic string operations for large-scale analytics,

we opt for a non-orthodox methodology based on lightweight indexing and parallel

computation. Previously, generalized suffix trees were used to save space and

provide information with minimal computation. However, at the targeted scale,

random storage access to retrieve path labels is an unacceptable I/O burden and

node size explodes in order to store string identifiers. We argue that parallel

computation should be used with more basic data structures to support scalable

and efficient string operations. We utilize a novel suffix trie index. The suffix trie

indexes all suffixes of all strings and retains the frequency of every path label by

storing a single integer in every node. Because we are targeting large collections
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of strings (e.g. thousands of motifs or regular expression matches), each node

stores a single character, avoiding the need to reference strings to retrieve path

labels. The space gain from compacting path labels is not significant in this case

while the gain from avoiding excessive I/O is. We eliminate the need for different

terminating symbols or maintaining string identifiers and compacting path labels.

Some information that would have been readily available in a GST now requires

extra computation. However, this is done in parallel in a distributed fashion.

Although the space requirements of suffix trees and tries are asymptotically the

same, it is accepted that a suffix tree is space-efficient because it is a compressed

trie. Nevertheless, long common labels are less expected in large collections of

strings as the probability of having different combinations from a fixed alphabet

increase with string lengths and collection size. Consequently, the construction

complexity added for compacting path labels is unjustifiable given the expected

space saving. In cases where most suffix tree labels are single characters, a trie is

superior in both space requirement and access time. A trie node is more compact

than a suffix tree node as no start position and label length need to be kept. In

addition, retrieving a path label from a trie does not require accessing the indexed

strings multiple times.

We assume that collections imported by users consist of long strings (e.g., ge-

nomic sequences) while collections that result from user queries consist of relatively

short strings (e.g., matches and k-mers). This assumption allows us to be space-

efficient in the case of long strings, where strings are stored and indexed separately

using suffix trees. We still avoid a GST even for long strings because a huge single

tree is challenging to manage. Operations over long strings avoid the search algo-

rithms since their performance degrades as strings get longer. At the same time,

multiple suffix trees fit the distributed nature of large-scale string analytics, where



53

Figure 3.4: Example generalized suffix tree for a collection of 3 strings.

work on a collection could be partitioned among a number of workers. Suffix trees

are well studied; we next focus on our suffix tries and parallel computation model.

Using our data structures, substrings in the index are not mapped to original

strings in the collection. When exact positions or counts within each string are

required, we utilize well-known string algorithms to efficiently extract this infor-

mation in parallel. We strike a balance between preprocessing time, index size, and

execution efficiency. For instance, Boyer-Moore search algorithm is run in parallel

to find original strings that satisfy a certain filter query after pruning the search

space using the suffix trie and an External R-Way merge sort algorithm is used

to eliminate duplicate results after a pattern extraction query is executed. For

example, consider the set of strings S = { TEST, BEST, ESTATE }. Figure 3.4

shows how S is represented using a GST.

We will next compare the GST with StarDM using the same example collection.

The StarDM representation is shown in Figure 3.5. As a simple form of a suffix

tree, StarDM is constructed in linear time by traversing the trie from the root

using the suffixes. When a suffix exists, the counts of the nodes are incremented.

Otherwise, new nodes are created for the newly added suffix and the counts are

initialized to 1.
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Figure 3.5: StarDM representation of strings in Figure 3.4.

In our example, finding the number of times “EST” appear in S requires travers-

ing the GST to the node whose path label is “EST” then counting the leaf nodes

below it, i.e., exhaustively traverse the sub-tree to find three leaf nodes indicating

three appearances. In StarDM, we traverse the suffix trie following nodes “E”,

“S”, then “T” to find that “EST” appeared three times. In StarDM, the total

count of appearances in available by construction.

Next we show by example how we utilize parallel computation to extract in-

formation that is not stored in our novel data structure. Assume a user was inter-

ested in finding the positions where “EST” appears in S. Using the GST, instead

of counting leaf nodes in the sub-tree rooted by “E” then “ST”, we would find in

each node the string identifier and the starting position of “EST” in that string. In

StarDM, we would know from traversing the trie that “EST” appears three times.

To find the exact positions, a parallel search is executed where the strings in S

are distributed among workers to search for the three occurrences. This search is

feasible because it is an exact search and the cost is distributed between workers.

To show how StarDM supports our string primitives we describe matching,

filtering, extraction, and generation operations. Given the collection S from the
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Figure 3.6: The meta-data of StarDM.

previous example, let T be another collection of one string, T = {WEST}. To

execute match(S, T, edit(1)), the suffix trie of S is traversed to match “WEST”

allowing one edit. The output is the set of matches {BEST, TEST, EST}. Now

assume T = {TA}, to filter strings in S with a suffix “TA” allowing one mismatch,

we use is suffix(S, B, hamming(1)). The suffix trie for S is traversed to level 2

keeping the path labels that are within hamming distance 1 from “TA”. To ensure

a path label is a suffix, it must be a leaf or have its count is more than the sum

counts of its children. In this case, the output is {ESTATE}. To extract the longest

common substring in S, we run lcs(S) which first extracts the longest substrings

that appear at least |S| = 3 times then verify that they exist in every string at

least once. In the first step, the candidate solutions are ordered according to their

length, {EST, ST, E, T}. In order to stop short, if possible, verification starts

from the longest candidate. An exact parallel search is used to verify that “EST”

appears in every string, which is the case in this example and the result is {EST}.

Finally, to generate 3-mers of S, kmers(S, 3), the suffix trie branches of length

three are simply spelled out {ATE, BES, TES, TAT, EST, STA}.

Our string primitives that find positions or report statistics (e.g. length and

size) utilize the meta-data of StarDM. Depending on the required information,

basic meta-data is used to answer some queries without accessing strings or indexes.

Basically, meta-data includes statistics about the number of strings in a collection

and the number of occurrences of substrings. Collections and strings are realized
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entities while occurrences are generated on-the-fly when needed. Figure 3.6 shows

a representation of our meta-data. For instance, the previously used example set

of strings S size is 3 (the number of strings) and length is 14 (the number of

characters). Meta-data is used to filter collections, optimize the execution of some

operations, and answer certain queries.

Example: Consider a user needs to find text that appears frequently in

Wikipedia. The user has to work around spelling mistake and simple differences

such as noun plurals and verb tenses. First, the Wikipedia archive is imported into

StarDB using an administrative operation. StarDB indexes the dataset and may

partition or replicate indexes depending on size and available resources. Motifs

are patterns that appear frequently but not necessarily exactly. StarDB supports

edit distance or hamming distance for approximate matching. To find all frequent

patterns, a query to generate motifs is used. Running on 480 cores, the motifs

search space (a combinatorial tree over English alphabet) is partitioned to 17,576

tasks (263 sub-trees). The workload is balanced by dynamically assigning tasks

and the results are gathered and returned to the user.

The user may decide to filter out motifs of length 4 or less as they correspond

to common short words, such as articles and prepositions. The user allows an edit

distance of 2 characters so words like “fishes” and “fishy” count as occurrences for

the motif “fish”. The length and approximate matching parameters are readily

available in StarQL. The user in our example may form and submit the following

StarQL query.

SELECT RMOTIFS FROM wiki WHERE LEN>4 AND EDIT<=2 AND FREQ>1000;

The Wikipedia archive is represented logically by one collection but indexed

using suffix tries that fit in memory. StarDB first executes the repeated motifs
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operation in parallel. Since the motifs search space is a combinatorial tree, it

is logically partitioned into many sub-trees. On a supercomputer, the parallel

planner finds that 2,048 cores can be fully utilized given the query workload. The

original archive is not accessed because suffix tries are annotated with counts.

The resulting repeated motifs are also in the form of a suffix trie. Therefore, the

common suffixes are easily extracted by a simple index traversal.

3.3.3 User-Defined Functions

User-defined functions extend StarDB with new operations or introduce application-

specific logic using routines executed by other functions. For exmaple, one of the

main routines used in string operations is the distance function. A distance func-

tion accepts two strings as input and outputs a scalar value indicating the dis-

imilarity of these strings. Maximizing a similarity is fundamentally the same as

minimizing a distance. However, it is difficult to include every possible distance

function. Therefore, user-defined functions are used to augment StarDB distance

functions in order to support new metrics.

In bioinformatics, weighted matrices are used to measure the similarity of DNA

sequences. The weights are based on a particular theory of evolution, where certain

symbols are more likely to mutate into other symbols. Conventionally, rows and

columns in a weighted matrix are associated with alphabet symbols. For instance,

using the example matrix below, the distance between AACT and GAAT is 2 + 0 +

1 + 0 = 3, whereas using Hamming distance it is 2.

W =

A C G T
A 0 1 2 1
C 1 0 3 2
G 2 3 0 3
T 1 2 3 0
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3.3.4 Implementation

Given our proposed architecture for a large-scale string database, we implemented

StarDB using C/C++ and MPI. Key features include the following:

1. Scalability to large infrastructures.

2. Automatic tuning for execution.

3. Perform online analytical tasks.

4. Handle real string datasets.

5. Express complex string queries.

6. Extend matching with DNA weighted matrices.

The application interface is handled by the master process. StarDB is accessed

by a command line interface (CLI) or by a graphical user interface (GUI). The

CLI is ideal to run over secure network connections when using remote servers

and provides a command line menu to form queries and manage datasets. On

workstations and local clusters, the StarDB GUI provides the same functionality

of the CLI with a more user-friendly experience. Figure 3.7 shows sample screens.

We use real datasets from bioinformatics and the English language. We have

tested StarDB using real datasets in the order of gigabytes (e.g., complete human

genome) and synthetic datasets of large alphabets (i.e., upto 100 symbols). The

used datasets are one to two orders of magnitude larger than previously reported

results in string databases and parallel procedural string applications. The chosen

datasets exhibit a variety of alphabets, strings of different lengths, and collections

of different sizes. Moreover, these datasets show the difference in query workloads

given different character repetition distributions.
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(a) Command line interface (CLI)

(b) Graphical user interface (GUI)

Figure 3.7: Sample StarDB interface screens.
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StarDB fully utilizes the resource of an IBM Blue Gene/P supercomputer

(16,384 CPUs) at over 90% speedup efficiency [19]. We also used a dedicated

high-end 480-core Linux cluster. This cluster consists of 20 machines; each ma-

chine is equipped with 148GB RAM shared by 24 cores. StarDB was also tested

on 40 Amazon EC2 instances.

3.3.5 Scenarios and Workloads

We consider scenarios of users performing analytical tasks on strings; such as

finding frequent patterns, matching, counting, and generating k-mers. Queries can

be executed in different orders, nested, saved, and further processed.

Bioinformatics scenario: Given the DNA and protein datasets, a biologist

needs to find the patterns that are frequent within every genomic sequence and

at the same time common between sequences. Such patterns have potential func-

tional importance and can be used to draw conclusions across species or to find

mutations within a species. The workload of such task is high due to the exponen-

tial search space size with respect to the string’s alphabet size. The task translates

to generating repeated motifs, generating common motifs, then finding the motifs

that are both repeated and common. Another way of executing this task is to

generate repeated (or common) motifs, then count the matches to check if they

are also common (or repeated). The total search space is smaller in this case. For

matching, we extend StarDB with a user-defined function that uses a weighted

distance matrix for DNA sequences. The following StarQL query is an example

for this scenario.

SELECT CMOTIFS(dna) AS c FROM dna,(SELECT RMOTIFS as r FROM dna

WHERE r.LEN>10 AND r.USERDIST<2 AND r.FREQ>10000) AS rep

WHERE c.LEN>10 AND c.USERDIST<2 AND c.FREQ=10 AND c.EXACT(rep);
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First, the inner sub-query is evaluated and its results are saved as a collec-

tion (rep). This evaluation is done in parallel by executing the repeated motifs

operator. The collection rep is only available for the current query because it is

not imported. Then, the outer sub-query is evaluated by running the common

motifs operator resulting in another temporary collection (c). The exact filter

(c.EXACT(rep)) is used to find the intersection between the repeated and com-

mon motifs. After returning the final results, the temporary collections and their

indexes are dropped.

Literary scenario: Given the English text of Wikipedia, a librarian is curious

about how writers start articles. She wants to explore the letters that frequently

appear consecutively in the prefaces of Wikipedia pages. In StarDB, the k-mers

operation finds symbols that appear consecutively and reports their frequencies.

To find k-mers from the beginnings of articles, the k-mers are generated from the

prefixes of the texts or are checked to exist in a specific range. To explore, the

librarian may need to increase k-mers lengths as long as frequency is high. Given

StarDB indexing, these queries are of low workloads. The following two StarQL

queries find the top 20 k-mers of length 4, 8, or 16, that appear in the first 100

characters more than 200 times across the dataset.

IMPORT (SELECT PREFIXES AS p FROM wiki WHERE p.LEN=100) AS pref;

SELECT KMERS AS k FROM pref WHERE k.LEN=4 OR k.LEN=8 OR k.LEN=16 AND

COUNT(k)>200 ORDER BY COUNT(k) DESC LIMIT 20;

The first query translates to creating a new collection in the database from the

results of the prefix extractor. The second query is run by executing the k-mers

operation with length and frequency filters to keep the top 20 results only.
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3.4 Discussion

Considering the complexity of a distributed database system for large-scale string

analytics, it is best to deal with the challenges one at a time. First, we choose

a string operation that faces the challenges of the larger system. We focus on

repeated motifs extraction, a core string problem used in many applications. For

example, they are used to identify biological functionality in genomic sequences,

periodicity in time series, or user activity trends in web logs. A repeated motif is

a pattern that approximately appears many times in a string. Motifs extraction

is a time consuming task with random data access patterns and an exponential

search space. Efficiency is key to perform string analytics. Moreover, scaling to

larger strings and supporting more interesting motif types of higher workloads,

such as supermaximal ones, require scaling out. Merely using more cores does not

guarantee speedup efficiency, because of parallel overheads, such as duplicate work

and communication. Minimizing user tuned parameters frees the system from

the user assumptions and previous (possibly limiting) background. We require

automatic tuning and elasticity features in order to be practical at scale.
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Chapter 4

Cache Efficiency Applied to Motif

Extraction

Obviously, the highest type of
efficiency is that which can
utilize existing material to the
best advantage.

Jawaharlal Nehru

1889 — 1964 CE

We introduced CAST, a cache-aware method for solving the combinatorial re-

peated motifs problem. CAST arranges the suffix tree in continuous memory

blocks, and accesses it in a way that exhibits spatial and temporal locality, thus

minimizing cache misses. As a result, CAST improves performance of serial exe-

cution by an order of magnitude.
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Figure 4.1: Example string S over DNA alphabet Σ = {A, C, G, T}. Occurrences of
motif candidate m = GGTGC are indicated, assuming distance threshold d = 1. X

refers to a mismatch between m and the occurrence. Occurrences may overlap.

4.1 Background

This section introduces necessary definitions and defines the repeated motifs prob-

lem. The problem search space and index used in the solution are then discussed.

4.1.1 Motifs

A string S over an alphabet Σ is an ordered and finite list of symbols from Σ.

S[i] is the ith symbol in S, where 0 ≤ i < |S|. A substring of S that starts at

position i and ends at position j is denoted by S[i, j] or simply by its position pair

(i, j). For example, (7,11) represents GGTGC in Figure 4.1. Let D be a function that

measures similarity between two strings. Following the previous work [69, 13], in

this chapter we assume D is the Hamming distance (i.e., number of mismatches).

A motif candidate m of length n is an n-tuple of symbols from Σ. A substring

S[i, j] is an occurrence of m in S, if the distance between S[i, j] and m is at most

d, where d is a user-defined distance threshold. The set of all occurrences of m in

S is denoted by L(m). Formally: L(m) = {(i, j)|D(S[i, j],m) ≤ d}.

Definition 1 (Motif). Let S be a string, σ ≥ 2 be a frequency threshold, and d ≥ 0

be a distance threshold. A candidate m is a motif if and only if there are at least

σ occurrences of m in S. Formally: |L(m)| ≥ σ.
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Definition 2 (Maximal motif). A motif m is maximal if and only if it cannot be

extended to the right nor to the left without changing its occurrences set. Formally,

L(m) "= L(αm) "= L(mβ), where α and β ∈ Σ.

A maximal motif must be right and left maximal [69]. A motif m is right

maximal if L(mβ) has less occurrences or more mismatches than L(m). Similarly,

a motif m is left maximal if extending m to the left causes a loss in occurrences or

introduces new mismatches. There is excessive overlapping among maximal motifs.

Users are typically interested in longer motifs [69], such as the right-supermaximal

ones, denoted by rs-motifs in the rest of this chapter.

Definition 3 (Right-Supermaximal Motif). Let M be the set of maximal motifs

from Definition 2 and let m̂ ∈ M . m̂ is a rs-motif, if m̂ is not a prefix of any

other motif in M . We call Mrs the set of all rs-motifs. Formally: Mrs = {m̂|m̂ ∈

M, m̂α /∈M,α ∈ Σ}.

The number of possible motif candidates for a certain σ value is
∑|S|−σ+1

i=1 |Σ|i,

where |Σ| is the alphabet size. To restrict the number of motif candidates, previous

works have imposed minimum (lmin) and maximum (lmax) length constraints.

Problem. Given string S, frequency threshold σ ≥ 2, distance threshold d ≥ 0,

minimum length lmin ≥ 2, and maximum length lmax ≥ lmin; find all rs-motifs.

The most interesting case is when lmax = ∞. Obviously, this is also the most

computationally expensive case since the length cannot be used as an upper bound.

4.1.2 Trie-based Search Space and Suffix Trees

The search space of a motif extraction query is the set of motif candidates for that

query. The size of such search space is astronomical even for a short input string
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Figure 4.2: Two levels of the search space trie for DNA motifs, alphabet Σ =
{A, C, G, T}.

and a small alphabet. A combinatorial trie (see Figure 4.2) is used as a compact

representation of the search space. Every path label formed by traversing the trie

from the root to a node is a motif candidate. Finding the occurrences of each motif

candidate and verifying maximality conditions require a large number of expensive

searches in the input string S. To minimize this cost, a suffix tree index is typically

used. A suffix trees is a full-text index where the path labels from the root to the

leaves correspond to the suffixes of the indexed string [12]. It is built in linear time

and space as long as the string and the tree fit in memory [70].

The properties of the suffix tree facilitate the verification of right and left

maximality as discussed by Federico and Pisanti [69]. For the sake of completeness,

we highlight the following essential properties. (i) A suffix tree node is left-diverse

if at least two of its descendant leaves have different left symbols in S. Based on

the suffix tree, a motif m is left maximal if one of its occurrences is a left-diverse

suffix tree node. (ii) The labels of the children of an internal suffix tree node start

with different symbols. Hence, if a motif has an occurrence that consumes the

complete label of an internal node, then it is right maximal.

We annotate the suffix tree by traversing it once and storing in every node

whether it is left-diverse or not and the number of leaves reachable through it.
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Figure 4.3: Example sequence over Σ = {A, C, G, T} and its suffix tree. Suffix tree
nodes are annotated with the frequency of their path labels and are numbered for
referencing in the text.

This number is the frequency of a node’s path label. For example, the path label

for node 1.2 in Figure 4.3 is TGC and it is not a left-diverse node as TGC is always

preceded by G in S. Node 1.2 is annotated with f = 2 because TGC appears in

S at {(9, 11), (20, 22)}. For simplicity, Figure 4.3 does not show the left-diversity

annotation. In case of exact motifs, where d = 0, the search space is reduced to the

suffix tree [71]. For the general case, where d > 0, occurrences of a candidate motif

are found at different suffix tree nodes. The frequency of the motif is calculated

by summing the annotations from all these nodes.

Example. Let us start a depth first traversal of the search space trie in Figure 4.2

to extract motifs from the example sequence and its suffix tree in Figure 4.3.

Assume d = 1 and σ = 10. The trie traversal starts at node A in the first level. By

traversing the suffix tree, we find that the first symbol from every branch starting

at the root is an occurrence of A within distance 1. Therefore, the occurrences set

contains the following suffix tree nodes: L(A) = {1, 2, 3, 4} and a total frequency
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of 7 + 13 + 2 + 1 = 23. Search space traversal continues to the first child of A,

representing the motif candidate AA. The occurrences set of A is used to create

AA’s. The label of suffix tree node 1 is TG. It already has distance 1 from A in the

first level. Extending the occurrence by one symbol introduces another mismatch

for AA so it is discarded. To extend the label for the second occurrence we need to

check all branches from suffix tree node 2. The first three children 2.1 to 2.3 of

node 2 are pruned for exceeding the allowed distance. Node 2.4 is added to the

occurrences set of AA since its path label is GA, which has distance 1 from AA. The

rest of the occurrences of A are extended and validated in the same manner. The

occurrences set of AA is L(AA) = {2.4, 4} with a total frequency of 1 + 1 = 2. AA

is not frequent enough and the search space is pruned by backtracking to node A

in Figure 4.2. Then, AC is processed in the same way.

4.2 Cache-optimized Motif Extraction (CAST)

We maintain the search space of motif extraction using our cache-optimized mech-

anism, called CAST1. CAST is implemented as part of our exact motif extractor,

ACME.

4.2.1 Spatial and Temporal Memory Locality

Existing motif extraction methods realize the search space trie as a set of nodes,

where each node has a one character label, pointers to its parent and children, and

its occurrences set. These nodes are dynamically allocated and deallocated. The

maximum number of nodes to be created and then deleted from main memory is
∑lmax

i=1 |Σ|i. For example, when lmax = 15 and |Σ| = 4, the maximum number of

1CAST stands for Cache Aware Search space Traversal
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nodes is 1,431,655,764. These nodes are scattered in main memory and visited

back and forth to traverse all motif candidates. Consequently, existing methods

suffer dramatically from cache misses, plus the overhead of memory allocation and

deallocation.

A branch of trie nodes represents a motif candidate as a sequence of symbols.

These symbols are conceptually adjacent with preserved order; allowing for spatial

locality. Moreover, maintaining occurrences sets is a pipelined process; for instance,

the occurrences set of AA is used to build the occurrences set of AAA. This leads to

temporal locality. Existing approaches overlooked these important properties.

We propose CAST, a representation of the search space trie together with access

methods, that is specifically designed to be cache efficient by exhibiting spatial and

temporal locality. For spatial locality, CAST utilizes an array of symbols to recover

all branches sharing the same prefix. The size of this array is proportional to the

length of the longest motif to be extracted. For instance, a motif of 1K symbols

requires roughly a 9KB array. In practice, motifs are shorter. We experimented

with DNA, protein, and English sequences of gigabyte sizes, where the longest

frequent motif lengths are 28, 95 and 42 symbols respectively. Moreover, the

occurrences set is also realized as an array. A cache of a modern CPU can easily

fit a sub-trie branch and, in most cases, its occurrences array. For temporal locality,

once we construct the occurrences array L(vi) of branch node vi, we revisit each

occurrence to generate L(vi+1). We take advantage of the fact that the total

frequency of L(vi+1) is bounded by that of L(vi). Therefore, with high probability

all data necessary for the traversal and validation are already in the cache.
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Figure 4.4: Snapshot of CAST processing for Q′(|S| = 23, σ = 12, lmin = 5, lmax =
5, d=2) over the sequence of Figure 4.3. Prefix TG is extended one symbol at a
time to maintain TGTGC and TGTGG branches. A branch is traversed from ancestor
to descendant by moving from left to right. CAST array (branch) and the occur-
rences array of the deepest descendant are easily cached, since both fit into small
contiguous memory blocks.

4.2.2 CAST Algorithm

CAST extracts valid motifs as follows: (i) initialize the sub-trie prefix; then (ii)

extend the prefix as long as it leads to valid motif candidates; otherwise (iii) prune

the extension. In the rest of this section we consider sequence S from Figure 4.3

and use an example query Q with σ = 12, lmin = lmax = 5 and d = 2.

Algorithm 1 shows the details. Let branch be the sub-trie branch array. An

element branch[i] contains a symbol c, an integer F , and a pointer, as shown

in Figure 4.4. Each sub-trie has a prefix p that is extended to recover all motif

candidates sharing p. branch[i] represents motif candidate mi = pc1. . .ci, where ci

is a symbol from level i of the sub-trie (see Figure 4.2). Fi is the total frequency

of mi and the pointer refers to L(mi). Each occurrence in L(mi) is a pair 〈T,D〉,

where T is a pointer to a suffix tree node whose path label matches motif candidate
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Input: lmin, lmax, prefix p
Output: Valid motifs with prefix p

Let branch be an array of size lmax − |p|+ 11

branch[0].L← getOccurrences(p)2

branch[0].F ← getTotalFreq(branch[0].L)3

i← 14

next← DepthFirstTraverse(i)5

while next "= END do6

branch[i].C ← next7

branch[i].F ← branch[i− 1].F8

foreach occur in branch[i− 1].L do9

if occur is a full suffix tree path label then10

// check child nodes in suffix tree

foreach child of occur.T do11

if first symbol in child label "= next then12

child.D = occur.D + 113

if child.D > d then14

Discard(child)15

if branch[i].F < σ then16

Prune(branch[i])17

else18

add child to branch[i].L19

else20

// extend within label in suffix tree

if next symbol in occur.T label "= next then21

increment occur.D22

if occur.D > d then23

Discard(occur)24

if branch[i].F < f then25

Prune(branch[i])26

else27

add occur to branch[i].L28

if isValid(branch[i]) then Output(branch[i])29

i++30

next← DepthFirstTraverse(i)31

Algorithm 1: Cache efficient motif extraction (CAST)
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mi with D mismatches. branch[0] represents the fixed-length prefix of the sub-trie.

F0 is a summation of the frequency annotation from each suffix tree node in L(p).

Prefix Initialization

Algorithm 1 starts by creating the occurrences array of the given fixed-length pre-

fix before recovering motif candidates. CAST commences the occurrences array

maintenance for a prefix by fetching all suffix tree nodes at depth one. The maxi-

mum size of the occurrences array at this step is |Σ|. The distance is maintained

for the first symbol of the prefix. Then the nodes, whose distances are less than or

equal to d, are navigated to incrementally maintain the entire prefix. The number

of phases to maintain the occurrences array of prefix p is at most |p|.

For example, the sub-trie with prefix TG is initialized by CAST in two phases

using the suffix tree in Figure 4.3. Figure 4.4(a) shows the final set L(TG) of

occurrences in S. The first element in L(TG) is 〈1, 0〉 because the path label of

suffix tree node 1 is TG with no mismatches from our prefix. The second element

in L(TG) is 〈2.1, 1〉 because the first two symbols from the path label of suffix

tree node 2.1 are GG with one mismatch from our prefix. The total frequency

of TG at branch[0] is the sum of frequencies of the suffix tree nodes in L(TG):

7 + 5 + 5 + 2 + 1 + 1 + 1 = 22.

Extension, Validation and Pruning

Since TG is frequent enough, it is extended by traversing its search space sub-trie.

The depth-first traversal (DFT) of the sub-trie starts at line 5 in Algorithm 1 to

extend branch[0]; it considers all symbols of Σ at each level of the DFT. At level

i, DepthFirstTraverse returns ci to extend branch[i− 1]. Figure 4.4(b) demonstrates

the extension of branch[0] with symbols T then G.
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The maintenance of the occurrences set is a pipelined function, where L(branch[i+

1]) is constructed from its parent’s, L(branch[i]). This process is done in the loop

starting at line 9. For example, L(TGT) is created by navigating each element in

L(TG). The first element of L(TG) adds suffix tree nodes 1.1, 1.2, and 1.3 to

L(TGT) with distance 1 since their labels do not start with T. The second element of

L(TG) is added to L(TGT) since its label was not fully consumed. In node 2.2, the

next symbol of its label introduces the third mismatch. Thus, the third element

of L(TG) is discarded. The rest of L(TG) is processed in the same way. The total

frequency at branch[1] drops to 14. Similarly, L(TGTG), L(TGTGC) and L(TGTGG)

are created in Figure 4.4(b), Figure 4.4(c), and Figure 4.4(d), respectively.

A node at branch[i] can be skipped by moving back to its parent at branch[i−1],

which is physically adjacent. Therefore, our pruning process has good spatial

locality, where backtrack means move to the left. For example in Figure 4.4(c),

the total frequency of TGTGC drops below the frequency threshold σ = 10 after

discarding node 1.1 of frequency 4 from L(TGTG), i.e. 12 − 4 < σ. Since TGTGC

has frequency less than σ, we do not need to check the rest of the occurrences and

the branch is pruned (see line 16 in Algorithm 1).

After pruning TGTGC, CAST backtracks to branch[2] which will now be extended

using G. All occurrences from branch[2] are also valid for TGTGG at branch[3] with

no change in total frequency. The IF statement in line 29 returns true since the

branch represents a valid motif of length 5 and function Output is called. The next

call to DepthFirstTraverse finds that i > lmax so it decrements i until the level where

an extension is possible or the sub-trie is exhausted.

CAST supports exact-length motifs, maximal motifs, and supermaximal motifs.

Function IsValid in line 29 determines whether a branch represents a valid motif

or not as discussed in Section 4.1. For exact-length motifs, only branches of that
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length are valid. For maximal motifs IsValid returns false if: (i) branch[i] could

be extended without changing its occurrences list (i.e., not right maximal); or

(ii) none of its occurrences is a left-diverse node (i.e., not left maximal). For

supermaximal motifs, IsValid passes the right-supermaximal motifs to a combiner

that implements Algorithm 3 as discussed in Section 5.3.

4.3 Evaluation

Table 4.1 shows the specifications of the machines used to evaluate CAST. The

cache efficiency experiments were run on System#1 and the comparison exper-

iments between ACME and the other systems were run on System#2. The se-

quences used in these experiments are from the human genome DNA sequence

and the size is noted in each experiment along with the other parameters, namely,

frequency, length, and distance.

Table 4.1: Specifications of the systems used to evaluate CAST.

# Architecture Cores RAM
Cache

L1 L2 L3
1 32-bit Linux 2 @2.16GHz 2GB 64KB 1MB -
2 64-bit Linux 12 @2.67GHz 192GB 64KB 256KB 12MB

4.3.1 Cache efficiency

Existing motif extraction methods incur a lot of cache misses while traversing

the search space. ACME uses our CAST approach to represent the search space

in contiguous memory blocks. The goal of this experiment is to demonstrate the

cache efficiency of CAST. We implemented the most common traversing mechanism

utilized in the recent motif extraction methods, such as FLAME and MADMX, as

discussed in Section 4.1. We refer to this mechanism, as NoCAST.
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We used the perf Linux profiling tool to measure the L1 and L2 cache misses.

CAST significantly outperforms NoCAST in terms of cache misses and execution

time especially when the motif length, and consequently the workload, is increased,

as shown in Figure 4.5. The difference between CAST and NoCAST shows earlier

in L1 cache. However, the difference in L2 cache misses starts to show as the

motif length is increased and has the same pattern. The correlation between

cache efficiency (Figure 4.5(a) and Figure 4.5(b)) and serial execution time (Figure

4.5(c)) is clear.

4.3.2 Comparison against state-of-the-art

We compared ACME against FLAME, MADMX, and VARUN. Since the source

code for FLAME was not available, we implemented it using C++. MADMX2

and VARUN3 are available from their authors’ web sites. These systems do not

support parallel execution and are restricted to particular motif types. The follow-

ing experiments were executed on System#2. Since our competitors run serially,

2http://www.dei.unipd.it/wdyn/?IDsezione=6376
3http://researcher.ibm.com/files/us-parida/varun.zip

http://www.dei.unipd.it/wdyn/?IDsezione=6376
http://researcher.ibm.com/files/us-parida/varun.zip
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for fairness ACME uses only one core. The reported time includes the suffix tree

construction and motif extraction time; the former is negligible compared to the

extraction time. Note that we use small datasets (i.e., up to 8MB from DNA),

because our competitors cannot handle larger inputs.

ACME is evaluated against MADMX and VARUN when extracting maxi-

mal motifs. Different similarity measures are utilized by ACME, MADMX and

VARUN. Therefore, this experiment does not allow mismatches (i.e., d = 0) in

order to produce the same results. Since the workload increases proportionally to

the distance threshold, this experiment is relatively of light workload. Figure 4.6

shows that ACME is at least one order of magnitude faster than VARUN and

two orders of magnitude faster than MADMX. Surprisingly, VARUN breaks while

handling sequences longer than 1MB for this query, despite the fact that the ma-

chine has plenty of RAM (i.e., 192GB). We were not able to test the scalability

of VARUN and MADMX in terms of alphabet size because they support DNA

sequences only.

FLAME and ACME produce identical exact-length motifs. The serial exe-

cution of ACME significantly outperforms FLAME with increasing workload, as

illustrated in Figure 4.8. We vary the workload by increasing motif length (Fig-

ure 4.7(a)), sequence size (Figure 4.7(b)), frequency threshold (Figure 4.8(a)), and

alphabet size (Figure 4.8(b)). The impressive performance of our system is a result

of ACME’s cache efficiency. Note that, if we were to allow ACME to utilize all

cores, then it would be one more order of magnitude faster. For example, we tested

the query of Figure 4.7(a) when motif length is 12: FLAME needs 4 hours, whereas

parallel ACME finishes in 7 minutes. The alphabet size experiment was run using

synthetic datasets, generated with random distribution to guarantee comparative

workloads between sequences of different alphabets.
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Memory usage

The memory usage of ACME grows linearly with respect to the sequence size.

This is because the main factor is the suffix tree index; its implementation is not

optimized since it is not a contribution of ACME. Figure 4.9(a) shows that the

memory footprint of VARUN is three times higher than ACME’s. MADMX has a

low and constant memory footprint for sequences over 0.5MB but at the expense

of 2 orders of magnitude higher runtime (see Figure 4.6). Figure 4.9(b) shows that

FLAME and ACME have the same memory footprint because they share the same

suffix tree implementation. Yet, ACME performs better than FLAME because of

our cache-efficient approach, CAST (see Figure 4.7(b)).
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Chapter 5

High Degree of Parallelism

We stand at the threshold of a
many core world. The hardware
community is ready to cross this
threshold. The parallel software
community is not.

Tim Mattson

1967 CE — Present

This section presents FAST1, our efficient parallel space traversal approach

that scales to thousands of CPUs2. FAST achieves high degree of concurrency

by partitioning the search space horizontally and balancing the workload among

CPUs with minimal communication overhead. Given this improvement, we are

able to support supermaximal motifs with minimal overhead. Previously, motif

extractors that support supermaximal motifs did not exist because the straight-

forward calculation would require keeping track of all maximal motifs.

1FAST stands for Fine-grained Adaptive Sub-Tasks
2For simplicity, the discussion assumes that each CPU executes a single process. In practice,

our implementation executes one process per core.
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Figure 5.1: Architecture of parallel ACME.

5.1 Background

5.1.1 Parallel Computation Paradigm

We adopt the master-worker architecture shown in Figure 5.1. Given C CPUs, one

master generates tasks; C − 2 workers request tasks from the master and generate

right-supermaximal motifs; and one combiner receives the intermediate results

from the workers and extracts supermaximal motifs. The details are explained

below.

Master. First the master reads the sequence from the disk and sends it to the

workers. Then it decomposes the search space and starts generating tasks. The

decomposition of the search space is based on horizontal partitioning of the search

space to independent tasks. The goal is to utilize efficiently the available CPUs.

Given a decomposition, the master uses our FAST technique, discussed in Sec-

tion 5.2.2, to generate tasks. Tasks are scheduled dynamically using pull requests

from workers.

Worker. Each worker receives the input sequence and constructs the annotated

suffix tree (see Figure 4.3). Every worker needs access to the entire suffix tree,
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because occurrences of a motif candidate can occur at different branches. Once

the index is ready, the worker requests a task from the master. Tasks are processed

using our CAST technique to find right-supermaximal motifs; refer to Section 4.2

for details. The right-supermaximal motifs from each task are sent to the combiner

in batches. Results within a batch share the same prefix; therefore, the prefix is

stripped to better utilize the limited buffer space and minimize communication

cost. When a worker is free it requests a new task from the master. This simple

scheduling scheme allows workers to enter or leave the system anytime.

Combiner. The combiner implements Algorithm 3: it receives right-supermaximal

motifs from all workers and uses a trie (see Figure 5.4(c)) to generate the final re-

sult, that is the set of supermaximal motifs. We will show in the experimental

evaluation that the workload of the combiner is minimal, compared to the work-

ers’. Therefore, the combiner is not a bottleneck and does not affect the scalability

of the system.

5.2 Horizontal Search Space Partitioning

The search space depicted in Figure 4.2 can be split into independent sub-tries.

Parallelizing the trie traversal is easy in this sense. However, the motif extraction

search space is pruned at different levels during the traversal and validation process.

Therefore, the workload of each sub-trie is not known in advance. The absence of

such knowledge makes load balancing challenging to achieve. Imbalanced workload

affects the efficiency of parallel systems due to underutilized resources.

FAST decomposes the search space into a large number of independent sub-

tries. Our target is to provide enough sub-tries per CPU to utilize all computing

resources with minimal idle time. We partition horizontally the search space at a
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Figure 5.2: Combinatorial trie partitioned at depth lp = 1 into a fixed-depth sub-
trie leading to four variable-depth sub-tries, which are traversed simultaneously by
two compute nodes.

certain depth lp, into a fixed-depth sub-trie and a set of variable-depth sub-tries,

as shown in Figure 5.2; observe that lp corresponds to the prefix length. Since the

search space is a combinatorial trie, there are |Σ|lp sub-tries. The variable-depth

sub-tries are of arbitrary size and shape due to the pruning of motif candidates at

different levels.

Example. Consider the search space for extracting motifs of length exactly 15

from a DNA sequence (|Σ| = 4). The search space trie consists of 415 different

branches, where each branch is a motif candidate of length 15. If we choose to

set our horizontal partition at depth 2, our prefixes will be of length 2 and there

are 42=16 large variable-depth sub-tries. Each sub-trie consists of 413 branches

(more than 67 million). If the horizontal partition cuts at depth 8, then there

are 48=65, 536 independent and small variable-depth sub-tries with 16 thousand

branches each. !

5.2.1 Prefix length trade-off

The fixed-depth sub-trie indexes a set of fixed-length prefixes. Each prefix is

extended independently to recover a set of motif candidates sharing this prefix. A
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Figure 5.3: Search space coverage in a DNA sequence. The shaded regions em-
phasize false positive prefixes, which increase by increasing the prefix length and
decrease by increasing the input sequence size.

false positive prefix is a prefix of a set of false positive candidates, which would

be pruned if a shorter prefix was used. For example, let |Σ| = 4 and let AA be

a prefix that leads to no valid motifs. Using a prefix length of 5 (i.e., horizontal

partitioning at depth 5) introduces 64 false positive prefixes that start with AA.

Therefore, although the longer prefix increases the number of tasks (i.e., increases

the degree of concurrency), the resulting false positive prefixes introduce useless

overhead and, consequently, suboptimal utilization of resources.
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Observation 1. Given distance threshold d, all prefixes of length d are valid (i.e.,

cannot be pruned earlier).

Let S be the input sequence. Any subsequence of S of length l will not exceed

the distance threshold d for all search space branches of length l as long as l ≤ d.

For example, if a user allows up to 4 mismatches between a motif candidate and

its occurrences, then any subsequence of length 4 from the input sequence is a

valid occurrence of any prefix of length 4 in the search space. Observation 1 means

that no pruning can be done until depth d of the search space, assuming the

frequency threshold is met. We say that the search space is fully covered at depth

d. Figure 5.3(a) shows an experiment where prefixes of length up to 9 symbols

are fully covered although the sequence size is only 1MB. In this experiment, the

prefix of length 10 leads to more than 0.5M false positive prefixes, that is, useless

tasks that will be processed.

Observation 2. As the input sequence size increases, the depth of the search space

with full coverage increases.

A longer sequence over a certain alphabet Σ means more repetitions of sub-

sequences. Therefore, the probability of finding occurrences for motif candidates

increases. Our experiments show that, even for a relatively small input sequence,

the search space can be fully covered to depths beyond the distance threshold.

Figure 5.3(b) shows an experiment where the number of false positive prefixes

generated at lp = 10 in the 1MB sequence decreases by increasing the sequence

size.

Observation 3. If the search space is horizontally partitioned at depth lp, where

the average number of sub-tries per CPU leads to high resource utilization, then a

longer prefix is not desirable to avoid the overhead of false positives.
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5.2.2 FAST algorithm

FAST generates enough independent tasks per CPU, to maximize the utilization of

CPUs. A task consists of one or more sub-tries and is transferred in a fixed-length

compact form. The master horizontally partitions the search space and schedules

tasks as shown in Algorithm 2. Function GetPrefixLength in line 1 calculates the

near-optimal prefix length that will achieve the best load balance. At this point, we

use Observations 1 and 3 to choose the prefix length that creates enough small tasks

to occupy our cores. This function evaluates the equation lp = -log|Σ|(K × C)/,

where K is empirically found to be 32. The exact-length prefixes are generated

by depth first traversal of the fixed depth sub-trie. An iterator is used to recover

these prefixes by a loop that goes over all combinations of length lp from Σ. The

master process is idle as long as all workers are busy. Algorithm 2 is lightweight

compared to the extraction process carried out by workers. Hence, parallelizing

the prefix generation does not lead to any significant speedup.

5.3 Supermaximal Motifs

Supermaximal motifs are those that are not contained in any other motif. They are

very useful in practice, since they provide a compact and comprehensive represen-

tation of the set of all motifs. However, näıve methods that compute supermaximal

motifs require to maintain the complete set of maximal ones [69]. The set of maxi-

mal motifs is prohibitively large for typical inputs and queries, and the verification

process is computationally very expensive. For this reason, none of the existing

systems supports supermaximal motifs.

Below, we propose a novel algorithm for extracting supermaximal motifs with-

out storing the complete set of intermediate results. In the experimental section
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Input: Alphabet Σ, Number of CPUs C, Task size factor λ
Output: Generate and schedule tasks

// Calculate optimal prefix length

lp ← GetPrefixLength(Σ,C)1

i← 0 // An iterator over all prefixes2

// Calculate task size

t← 0λ|Σ|lp/C1 // one task contains t prefixes3

// Assign tasks

while i "= prefixes end do4

task ← GetNextPrefix(i, t)5

WaitForWorkRequest( )6

SendToRequester(task)7

i← i+ t8

// Signal workers to end

while worker exist do9

WaitForWorkRequest( )10

SendToRequester(end)11

Algorithm 2: Problem decomposition and scheduling (FAST)

we will show that our algorithm poses minimal overhead, compared to existing

methods that only find maximal motifs. Our solution is based on the following

observations:

Observation 4. Let αmβ be a supermaximal motif. The set of maximal motifs

M may contain motifs {α, αm, αmβ, m, mβ, β}.

Observation 5. The set of supermaximal motifs Ms does not contain prefixes

Mpre = {α,αm}, or suffixes Msuf = {mβ, β}, or subsequences Msub = {m}.

Example. Let the set of maximal motifs for a certain query beM = {AGTT, GTT, TT,

AGT, AG, GT, CTT, CT}. To find the set of supermaximal motifs Ms, we have to elimi-

nate maximal motifs that are subsequences of other ones. According to our obser-

vations, (i)Mpre = {AGT, AG, CT}, (ii)Msuf = {GTT, TT}, and (iii)Msub = {CT, GT}.

Therefore, Ms = {AGTT, CTT}. !
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Input: Empty trie
Output: Supermaximal motifs

while Workers Exist do1

buffer ← ReceiveFromWorker()2

foreach motif in buffer do3

reversed← Reverse(motif)4

InsertInTrie(reversed)5

SpellTrieFromLeaves()6

Algorithm 3: Extraction of supermaximal motifs

Figure 5.4: The steps for extracting the set of supermaximal motifs Ms from the
set of intermediate results Mrs.

During the depth-first traversal of the search space, motifs that share the same

prefix are grouped in the same sub-trie (see Figure 4.2); hence, we are able to easily

filter motifs that are prefixes of other ones. The longest valid branches represent

the set of maximal motifs that do not belong to Mpre or Msub. We refer to this

set as the right-supermaximal [18] set Mrs = Ms ∪Msuf . In our example, Mrs =

{AGTT, CTT, GTT, TT}. Now, we can find the supermaximal motifs by discarding all

proper suffixes from Mrs. However, computing Msuf is challenging, because motifs

in Mrs belong to different parts of the search space as they start with different

prefixes. A näıve solution would check all possible pairs in Mrs; the complexity of

such a solution is O(|Mrs|2).
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We propose Algorithm 3, which in the average case removes redundant suffixes

in O(|Mrs| log|Σ| |Mrs|) time. The algorithm reverses the contents of Mrs, effec-

tively transforming the problem from suffix- to prefix-removal. As we mentioned

earlier, the latter can be solved efficiently by utilizing a trie.

Figure 5.4(a) depicts the Mrs set for our running example; the conceptually

reversed motifs are shown in Figure 5.4(b). The reversed motifs are inserted in

a trie that is shown in Figure 5.4(c); observe that common prefixes are grouped

together. In the trie, each path from the root to a leaf corresponds to a string that

is not a prefix of any other. Our example trie has two leaves. After reversing back

the corresponding paths, the final set Ms = {AGTT, CTT} of supermaximal motifs

is shown in Figure 5.4(d).

5.3.1 Proof for Supermaximal Motifs Algorithm

The set of supermaximal motifs from Algorithm 3 is correct and complete. Let

SpellTrieFromLeaves be a function that takes as input a trie and returns the paths

from the root to each leaf. This is easily achieved using a depth-first traversal of

the trie.

Lemma 1. SpellTrieFromLeaves returns all sequences in the input trie that are not

proper prefixes of any other.

Proof. By construction of the trie.

We produce Ms in two steps: (i) we produce a right-supermaximal set of se-

quences Mrs by calling SpellTrieFromLeaves on the pruned search space, and (ii)

we pass Mrs to Algorithm 3, whose job is to eliminate proper suffixes from Mrs

to produce Ms. The outline of the proof is as follows: first we prove that Spell-

TrieFromLeaves eliminates proper prefixes from an input set of sequences, then we



92

show that SpellTrieFromLeaves can be used to eliminate proper suffixes, after that

we show that Algorithm 3, when given a right-supermaximal set of motifs Mrs,

produces the supermaximal motifs set. We conclude our proof by showing that

the input we give to Algorithm 3 is indeed right-supermaximal.

SpellTrieFromLeaves can be used to remove proper suffixes from a set of sequences.

When sequences are reversed, proper suffixes become proper prefixes, so it follows

from Lemma 1 that SpellTrieFromLeaves can be used to remove proper suffixes from

a set of sequences when it is called on a trie construed with a set Mrev of reversed

sequences, where s ∈Mrev if srev ∈M .

When the input to Algorithm 3 is a right- supermaximal set of sequences Mrs,

its output is a supermaximal set of sequences Ms. Algorithm 3 removes proper

suffixes from a set of sequences using SpellTrieFromLeaves and the input set Mrs

does not have sequences that are proper prefixes or proper subsequences of other

sequences (proof in next paragraph), which means that the output set Ms does not

have sequences that are proper prefixes, proper subsequences, or proper suffixes of

other sequences in Ms, that is, Ms is a supermaximal set of motifs.

In this paragraph we show that the input to Algorithm 3 is a right-supermaximal

set of sequences. This set is produced by calling SpellTrieFromLeaves on the pruned

search space trie that has all the valid motifs. It follows from the discussion in

Section 4.1 that if a sequence is a valid motif, all its subsequences, including all its

proper suffixes are valid motifs. We use this, together with Lemma 1 to show that

calling SpellTrieFromLeaves produces the right-supermaximal set of motifs Mrs, i.e.

if a motif m is in Mrs, any other motif in Mrs is neither a proper prefix (follows

directly from Lemma 1) nor a proper subsequence of m. We show next that if

a sequence is in Mrs it is not a proper subsequence of any other string in Mrs.

Assume m is a valid motif in Mrs, and msub is a proper subsequence of m. msub is
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Table 5.1: Specifications of the systems used to evaluate FAST.

# Architecture Cores RAM
Cache

L1 L2 L3
1 64-bit Linux 12 @2.67GHz 192GB 64KB 256KB 12MB
2 64-bit Linux SMP 32 @2.27GHz 624GB 64KB 256KB 24MB

3
IBM Blue Gene/P 16,384 × 4 4GB each

64KB 2KB 8MB
supercomputer @850MHz 64TB total

4
64-bit HPC

480 @2.1GHz
6GB each

128KB 512KB 5MB
Linux cluster 3TB total

a proper prefix of some other sequence that is a proper suffix of m, and all proper

suffixes of m are in the pruned search space trie, so it follows from Lemma 1 that

msub can not be in Mrs.

5.4 Evaluation

Table 5.1 shows the specifications of the machines used to evaluate FAST. The

parallel scalability experiments were run on System#4 and System#3 and the

comprehensive motif extraction support experiments were run on System#1 and

System#2. The sequences used in these experiments are from the human genome

DNA sequence and protein sequences. The size is noted in each experiment along

with the other parameters, namely, frequency, length, distance, and prefix length.

5.4.1 Parallel scalability

This section investigates ACME’s parallel scalability. We test the so-called strong-

scalability, where the number of cores is increased while the problem size is fixed.

We first compare ACME against PSmile, the only parallel competitor. PSmile

uses grid-specific libraries to parallelize a previous sequential motif extraction al-

gorithm. Speedup efficiency (SE) is a metric for measuring resource utilization by
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Table 5.2: Scalability of PSmile on System#4 using the DNA dataset. The speedup
efficiency of PSmile is hindered by load imbalance due to improper search space
partitioning and static scheduling (SE < 0.8 is considered low).

Q(|S|=32MB, σ=10K, lmin=10, lmax=15, d=3)
Time (sec) Speedup Efficiency

Cores PSmile ACME PSmile ACME
5 19,972 18,883 1.00 1.00
10 9,894 8,476 0.90 0.99
20 4,869 3,978 0.86 0.99
40 2,786 1,969 0.74 0.98
80 1,787 989 0.57 0.97
160 1,130 580 0.44 0.82

dividing serial time over parallel time multiplied by number of cores. Calculating

SE from the experiments reported in the PSmile paper, the utilization drops to

0.72 when using 4 nodes only. In practice SE < 0.8 is considered low. We sus-

pected that the bad performance was partially due to inefficient implementation.

For fairness we implemented the search space partitioning and task scheduling

scheme of PSmile within ACME, utilizing our cache-efficient trie traversal algo-

rithms.

Table 5.2 shows the results, using our optimized implementation of PSmile.

The experiment was run on System#4 (refer to Table 5.1). Due to resource man-

agement restrictions, the minimum number of cores used in this experiment was 5;

therefore, speedup efficiency is calculated relative to a 5-core system. PSmile does

not scale efficiently not even on 40 cores, due to problematic space partitioning and

scheduling, which creates load imbalance. In contrast, for this particular query,

ACME scales easily to more than 160 cores.

The next experiment investigates ACME’s scalability to the extreme, by uti-

lizing up to 16,384 cores on a supercomputer. We use the Protein dataset, which

results to a much larger search space than DNA because of the larger alphabet (i.e.,
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Table 5.3: Scalability of ACME on a supercomputer for the Protein dataset.
ACME scales to tens of thousands of cores with high speedup efficiency.

Q(|S|=32MB, σ=30K, lmin=12, lmax=∞, d=3)
Cores Time (Hrs.) Speedup Efficiency

256 19.83 1.00
1,024 4.97 0.99
2,048 2.51 0.98
4,096 1.29 0.96
8,192 0.68 0.91
16,384 0.31 0.98

20 symbols). With larger alphabets, a small prefix length creates enough tasks; in

this case lp = 5. The experiment was run on System#3. Due to resource manage-

ment restrictions, the minimum number of cores used in this experiment was 256

cores; hence, speedup efficiency is calculated relatively to a 256-core system. The

results are shown in Table 5.3 and demonstrate the excellent scalability of ACME

to thousands of cores. On 256 cores, the query takes almost 20 hours to execute;

whereas with 16,384 cores it finishes in only 18.6min, achieving almost perfect (i.e.,

0.98) speedup efficiency. It is worth mentioning that the same query on a high-end

12-core workstation (i.e., System#1 ) takes more than 7 days. Recall that each

core of the workstation is much faster (i.e., 2.67GHz) than a supercomputer core

(i.e., 850MHz).

5.4.2 Comprehensive motif extraction support

In addition to supermaximal motifs, ACME extracts maximal and exact-length

ones. The following paragraphs evaluate ACME’s scalability in terms of input size

and query complexity; and compare ACME against state of the art systems for

maximal and exact-length motifs.
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Table 5.4: Supermaximal Motifs from the complete DNA for the human genome
(2.6GB) categorized by length. The total number of supermaximal motifs is more
than total number of exact-length motifs.

Q(|S|=2.6GB, σ=500K, lmin=15, lmax=var, d=3)
Supermaximal Exact-length

(lmax =∞) (lmax = lmin)
Len Count Len Count Len Count Len Count
15 359,293 20 30,939 25 443 15 446,344
16 82,813 21 33,702 26 143
17 22,314 22 12,793 27 37
18 7,579 23 5,289 28 2
19 2,288 24 2,435

Total 560,070 Total 446,344

Table 5.5: Analysis of three sequences of different alphabets, each of size 1GB.
Query Motifs Longest Time

DNA σ=500K, l=12−∞, d=2 5,937 20 0.6 m
Protein σ=30K, l=12−∞, d=1 96,806 95 2.1 m
English σ=10K, l=12−∞, d=1 315,732 42 3.5 m

Table 5.6: The overhead of extracting supermaximal motifs over maximal mo-
tifs is not critical due to ACME’s pipelined strategy for filtering motifs that are
subsequences of others.

Q(|S|=1.5GB, σ=500K, lmin=15, lmax=∞ d=3)
Time Motifs

Maximal motifs 303.7 min 144,952
Supermaximal 313.7 min 87,680
Difference 10 min 57,272
Percentage 3.3% 39.5%
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Figure 5.5: Supermaximal vs Exact-length motifs extraction using ACME.
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Gigabyte-long sequences and varying alphabets

The experiments discussed in this section were run on System#1 and System#2

(refer to Table 5.1). Table 5.4 shows the count of all supermaximal motifs (i.e.,

no bound for lmax), grouped by length, that appear at least σ = 500K times

in the entire human DNA (i.e., 2.6GB). For reference, the count of all maximal

motifs with length 15 is also shown. The longest supermaximal motif is 28 symbols

long. This means that the CAST array size did not exceed 252 bytes in a 32-bit

system (28 elements of 9 bytes each). With current CPU cache sizes, not only

the CAST array will fit in the cache but most probably the occurrences array

too. Consequently, ACME handles the extra workload of extracting maximal and

supermaximal motifs efficiently.

Observe that, in the entire human genome, there are around 20% more super-

maximal motifs of length 15 and more, compared to the number of motifs with

exact length 15. Figure 5.5(a) shows the corresponding counts by varying the size

of the input sequence (i.e., using prefixes of the entire DNA). The number of su-

permaximal motifs is in all cases significantly more than the exact-length ones.

Figure 5.5(b) compares the time to extract exact-length versus all supermaximal

motifs. The difference is negligible (i.e., around 4%), confirming the efficiency of

our supermaximal extraction algorithm.
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ACME supports different alphabet sizes. Table 5.5 shows the results of extract-

ing supermaximal motifs from 1GB sequences of different alphabets. Notice that

the number of extracted motifs increases with respect to the alphabet size. This

is because given approximate matches, more motifs are discovered. The lengths

of these motifs are however not related to the alphabet size but to the nature of

the underlying sequences. For instance, it is difficult to have very long motifs in

English but not in Protein. We also extracted maximal and supermaximal motifs

from 1.5GB of the DNA sequence. Table 5.6 shows that ACME’s pipelined strat-

egy for filtering motifs that are subsequences of others introduces an overhead of

3.3% over the maximal motifs extraction time. In this process, about 40% of the

maximal motifs are discarded because they are subsequences of other ones.
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Chapter 6

Automatic Tuning and Elasticity

Try to be a rainbow in
someone’s cloud.

Maya Angelou

1928 — 2014 CE

This chapter introduces the automatic tuning feature that allows ACME to

efficiently utilize thousands of cores on a supercomputer without user specifying

decomposition or number of cores. The chapter also discusses our elasticity model

that suggests the appropriate amount of cloud resources to rent while meeting

the user’s requirements in terms of processing time and financial cost. Finally, a

generalization of our method to bag-of-tasks applications is discussed and evaluated

using two different applications.
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6.1 Background

The goal of automatic tuning is to find a good decomposition of the search space

(i.e., parameter lp) that minimizes runtime, while achieving high utilization of

computational resources. To minimize runtime, we need to utilize efficiently as

many CPUs as possible, which translates to: (i) enough tasks per CPU, in order

to achieve good load balance; and (ii) few false positives, in order to avoid useless

work. As explained in the previous section these goals contradict each other.

Therefore, we need to solve the following optimization problem:

Problem. Find the value of parameter lp that maximizes scalability (i.e., number

of CPUs) under the constraint that speedup efficiency SE ≥ SEmin.

Let C be the number of workers, T1 is the time to execute the query using

one worker (i.e., serial execution) and TC is the time to execute the query using C

workers. For example, if a query executes serially in 10 minutes, then optimally it

would execute in 1 minute using 10 cores. Speedup efficiency is defined as:

SE =
T1

C · TC
(6.1)

In practice there are always overheads, therefore we require SE ≥ SEmin, where

SEmin is a user-defined threshold. Typically, SEmin = 0.8 is considered good in

practice.

Since the processing time of each task is not known in advance, it is difficult

to find an analytical solution for Problem 6.1; therefore our solution is based on

heuristics. Note that the accuracy of the results is not affected; our algorithm will

still return the correct and complete set of supermaximal motifs. If our heuristics

fail to achieve optimal space decomposition, then only the execution time will be

affected, due to sub-optimal utilization of computational resources.
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Figure 6.1: Speedup efficiency of ACME for a query on the human DNA. Each
line corresponds to a different decomposition of the same query. Too few tasks
(i.e., 16,384) cannot achieve load balance. Too many tasks (i.e., 1,048,576) result
in useless computation. For this particular combination of dataset and query
parameters, the optimal decomposition generates 262,144 tasks.

We ran ACME on an IBM BlueGene/P supercomputer for different decompo-

sitions, varying the number of cores; the results are shown in Figure 6.1. When

there are too few tasks, the granularity is not fine enough to balance the work-

load. Hence, the program does not scale to more than 2,048 cores. Surprisingly,

if the problem is decomposed into too many tasks, scalability again suffers. This

happens because many CPUs performing useless computation by processing false

positive branches of the tree. We will further investigate this issue in Section 6.3.2.

The best speedup efficiency up to 8,192 cores is achieved for a moderate number

of 262,144 tasks. Note that the optimal decomposition cannot be determined in

advance because it depends on the input sequence and the query parameters (e.g.,

minimum frequent pattern support, or maximum errors allowed) [72].
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Table 6.1: Example query Q running on 240 workers. For lp = 2, we cannot achieve
load balance. For lp = 4, there are too many false positive tasks. The optimal
search space decomposition is found using lp = 3, achieving very good speedup
efficiency SE = 0.91.

Q(|S|=32MB, σ=30K, lmin=7, lmax=∞, d=2)
Prefix

Length (lp)
Tasks
(|Σ|lp)

Average
Tasks/Worker

Speedup
Efficiency

2 400 1.66 0.47
3 8,000 33.33 0.91
4 160,000 666.66 0.22

6.1.1 Distribution of Workload Frequency

In the following, we will analyze the workloads of different decompositions of

the same example query and their respective scalability. Table 6.1 shows basic

statistics.

Let us start with prefix length lp = 2 that decomposes the search space of

Q into 202 = 400 tasks (recall that the alphabet contains 20 symbols). We run

each task on one CPU and measure its execution time. The results are shown in

Figure 6.2(a), which represents the workload frequency distribution for the com-

bination of Q and lp. For a point (x, y), x represents execution time, whereas y

represents the number of tasks that require time x to run. The total execution

time for Q is given by the area under the curve.

The coarse decomposition of the search space leads to an irregular distribution

with many “heavy” tasks. For instance, there are about 70 tasks that run in less

than 100sec, but there are also around 130 tasks that need more than 300sec; some

extreme cases need more than 500sec. Even with dynamic scheduling, balancing

such a workload on a parallel system is challenging. We executed Q with varying

number of CPUs and measured the speedup efficiency SE; the results are shown in

Figure 6.2(b). Assuming the threshold for good speedup efficiency is SEmin = 0.8,
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Figure 6.2: For example query Q and lp = 2, the search space is decomposed to
400 large tasks. Load balancing is poor and the speedup efficiency drops when
using more than 60 CPUs.
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the figure shows that this particular decomposition does not allow Q to scale

efficiently to more than 60 CPUs. Note that, if more than 60 CPUs are used the

total execution time for Q will decrease, but due to load imbalance many CPUs will

be underutilized, so computational resources will be wasted. In our experiment, if

instead of 60 we use 480 CPUs (i.e., 8x increase), the total execution time will drop

from 30min to 10min (i.e., only 3x improvement). This is the practical meaning

of low SE values.

Our scheduling corresponds to an instance of the online dynamic bin packing

problem. When items are few and large (i.e., coarse decomposition of search space),

bins cannot be filled optimally. Intuitively, more and smaller objects are needed.

This corresponds to a longer prefix length, resulting in a finer decomposition. We

run again the same experiments for lp = 3, which generates 203 = 8, 000 tasks.

The workload frequency distribution is shown in Figure 6.3(a); it resembles a

leptokurtic and positively skewed non-symmetric distribution. While we do not

know the processing time of tasks beforehand, we expect their execution time to

decrease monotonically as they are further decomposed. Indeed, the figure shows

that the majority of tasks run in around 5sec, whereas very few need from 40 to

60sec. Consequently, there are enough small tasks to keep all CPUs busy while

the few larger ones are executed. Moreover, the probability of a large task being

executed last is low because there are only a few of them; therefore, we expect good

load balance. Figure 6.3(b) shows the speedup efficiency for a varying number of

CPUs. Observe that the algorithm scales well (i.e., SE ≥ 0.8) up to about 500

CPUs, which is an order of magnitude more, compared to Figure 6.2(b).

It is tempting to generate an even finer search space decomposition in order

to scale to more CPUs. Figure 6.4(a) shows the workload frequency distribution

for lp = 4. The graph resembles a power-law distribution. Out of the 160,000
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Figure 6.3: For example query Q and lp = 3, the search space is decomposed to
8,000 tasks. Load balancing is near optimal and the speedup efficiency is high up
to 500 CPUs.
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160,000 tasks. Since most tasks are false positive prefixes, speedup efficiency is
poor even at 2 CPUs.
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generated tasks, very few take 3 to 5sec, whereas the vast majority (i.e., around

130,000 tasks) are very small with execution time close to zero. Unfortunately,

many of these tasks are false positives that generate useless work. Although the

overhead per false positive task is small, because of their sheer number, the cumu-

lative overhead is high. Figure 6.4(b) shows the speedup efficiency for a varying

number of CPUs. SE is always less than SEmin; therefore, for this decomposition

the system cannot scale efficiently not even on 2 CPUs.

6.2 Tuning ACME

6.2.1 Automatic Decomposition

We solve Problem 6.1 as follows: We partition the search space at a specific prefix

length lp and draw a random sample of tasks to run, in order to estimate the

speedup efficiency SE. We repeat this process with different prefix lengths until we

find the one that allows scaling to the largest number of CPUs with SE ≥ SEmin.

The initial decomposition parameter value affects efficiency, but not the final result.

Algorithm 4 describes the process. In line 1, lp is initialized to the minimum

motif length lmin. We start with the longest prefix length possible, that is the

minimum length of valid motifs; then we try shorter prefixes. This way we arrive

to the optimal lp faster, because longer prefixes produce smaller tasks that run

faster. If lp is decremented to the distance value d without meeting the stopping

criterion (see line 7), lp is set to d+ 1 and the algorithm terminates. This follows

from Observation 1 in Section 5.2.1. To reduce the overhead of the automatic

tuning process, sample prefixes can be generated and evaluated in parallel (i.e.,

lines 4 and 5). In practice, the main loop of the algorithm is executed only a few

times before finding a near-optimal decomposition.
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Input: Sequence S; query Q(|S|,σ, lmin, lmax, d); threshold SAmin

Output: Prefix length lp; number of CPUs Cmax

lp ← lmin1

Cmax ← 12

while lp > d do3

// randomly draw x prefixes of length lp
sample← RandomPrefixes(x, lp)4

sample times← ExtractMotifs(sample)5

tC ← EstSpdupEff(sample times, SEmax)6

if tC < Cmax then7

break8

else9

lp ← lp − 110

Cmax ← tC11

lp ← lp + 112

Algorithm 4: Automatic Tuning

Function EstSpdupEff in line 6 is the heart of the algorithm. Given a decom-

position, for a specific number C of CPUs, it estimates the corresponding speedup

efficiency. The function iterates over a range of values for C and returns the one

that achieves the maximum SE for the given space decomposition. The follow-

ing paragraphs explain how to estimate the serial (i.e., T1) and parallel (i.e., TC)

execution times, which are required by EstSpdupEff.

Estimating Serial Execution Time

From the previous analysis, it follows that the workload frequency distribution of a

good space decomposition should be similar to the one in Figure 6.3(a). It should

contain a lot of fairly small tasks, in order to achieve load balance, but should

avoid very small ones, since they tend to be false positives. A Gamma distribution

[73] is flexible enough to approximate different workload distributions.
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A Gamma distribution Γ is characterized by a shape parameter α and a scale

parameter β. Recall that line 4 of Algorithm 4 generates a sample of tasks for prefix

length lp. According to our heuristic, we assume that the sample approximates Γ.

Therefore, we can use the sample to calculate approximations for the mean µΓ and

standard deviation σΓ of Γ. Then, we calculate α and β as follows [73]:

α =
µ2
Γ

σ2
Γ

, β =
µΓ

α
(6.2)

The probability density function (PDF) of Γ is defined as:

Γ(x;α, β) =
βαxα−1e−βx

(α− 1)!
(6.3)

Let Λ(ti, tj) be the expected number of tasks (in the entire space for a given

lp) with runtime between ti and tj. Given Γ, Λ is calculated as follows:

Λ(ti, tj) = |Σ|lp
∫ tj

ti

Γ(x;α, β) dx (6.4)

The serial execution time T1 is the summation of the execution times of all

tasks. The lower bound of runtime for a task is zero, but the upper bound is

unknown. Let x be an integer time unit. Then T1 is defined as:

T1 =
∞∑

x=0

2x+ 1

2
Λ(x, x+ 1) (6.5)

Estimating Parallel Execution Time

We employ the queuing theory [74] to estimate the parallel execution time TC. We

model the motif extraction process as a finite-source queue of |Σ|lp tasks served

by C servers (i.e., CPUs). Without loss of generality, we assume homogeneous

servers. Since our population is finite, numerically simulating the queue provides
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an accurate representation of the real system [75].

ACME implements a discrete event simulator. We start with all tasks in the

queue as tasks are generated by simply enumerating prefixes. The workloads of

the tasks follow the workload frequency distribution of our sample prefixes. Equa-

tion 6.4 is used to create bins of tasks. The servers randomly consume tasks from

different workload bins until all bins are empty. The output of the simulator is our

estimation for the parallel execution time TC.

6.2.2 Elastic Deployment

The elasticity model of ACME furnishes users with an accurate estimation of the

minimum amount of resources required to process a query within specific con-

straints. User constraints may involve the maximum allowed execution time; max-

imum amount of CPU hours, if the system is deployed in a typical shared research

computing infrastructure; or a limit on the financial cost, if a commercial cloud

computing provider is used.

Algorithm 5 describes the elasticity model. It takes the execution time of each

of the tasks in the random sample (see Section 6.2.1) and the user constraints

as input, and outputs the number of CPUs to use, together with the estimated

time and speedup efficiency. In line 5, a queue is setup by randomly taking tasks

with workloads according to our probability density function. The execution of

the query is simulated using a certain number of CPUs. This simulation is done

in a loop where the number of CPUs is varied until the user constraints are met.

Given the expected performance variability on public clouds [76], users should

be able to reevaluate the situation online and adapt accordingly. Our serial time

estimation may be reevaluated at runtime to guide user decisions and meet their

constraints. A slight modification of Equation 6.4 is used to account only for the
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Input: Sample times sample t, user constraints
Output: Suggested number of cores Cp, estimated parallel time TC

// estimate PDF from sample execution times

α← (Mean(sample t)/StDev(sample t))21

β ←Mean(sample t)/α2

// predict serial time left

T1 ←
∞∑
t=0

(2t+1
2 Λ(t, t+ 1))

3

// predict parallel time and utilization

while user constraints "= TRUE do4

SetupQueue(user constraints, Cp)5

(TC , Cp)← SimulateQueue(sample t)6

Algorithm 5: Elasticity

tasks not executed yet. We substitute |Σ|lp with |Σ|lp − k, where k is the number

of already completed tasks.

The output of our model can be used in many ways. For example, if the pricing

scheme of a cloud computing provider is given, our model can predict accurately

the expected financial cost. We evaluate such a case in Section 6.4.

6.3 Generalization to Bag-of-Tasks Applications

Many scientific and commercial applications, such as chemoinformatics [77] and

bioinformatics [78], are designed to leverage large scale parallel computing infras-

tructures. In bag-of-tasks applications [79], a large computational problem is de-

composed into many (i.e., thousands or millions) loosely coupled tasks, which are

executed on many CPUs on a private cluster, a supercomputer, or a commercial

cloud. Typically, users request computational resources according to their budget.

In a research environment, budget is an awarded amount of core-hours, whereas

budget represents actual financial cost on a commercial cloud. In both cases, there
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Figure 6.5: Speedup efficiency of VinaLC using four subsets, DS1 to DS4, of 2,000
lead-like compounds each (i.e., same dataset and same size). DS3 scales very well
to 256 cores and beyond. On the other hand, assuming SEmin=0.8, DS2 does not
scale efficiently to more than 128 cores.

is an incentive to efficiently utilize the computational resources.

Users predict the expected scalability of a program by consulting studies on

typical workloads [80]. Consider the following example from computational chem-

istry: VinaLC [77] computes dockings between molecules. The developers state

that VinaLC “scales up to more than 15K CPUs” [77], which is true for their

dataset and computing infrastructure. We extracted four subsets, DS1 to DS4,

each containing 2,000 lead-like compounds1 from the ZINC dataset. Each com-

pound was docked against the Thermus thermophilus gyrase B complex. We exe-

cuted VinaLC on a local Linux cluster by varying the number of cores; the resulting

speedup efficiencies are shown in Figure 6.5.

Interestingly, although all subsets come from the same dataset and contain the

same number of compounds, the execution times of their tasks vary significantly.

On the one hand, DS3 achieves excellent speedup efficiency for 256 cores and

1See Section 6.4 for details about the experimental settings and datasets.
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beyond. Therefore, it is advisable to employ more cores in order to finish execution

faster. On the other hand, the speedup efficiency of DS2 drops below 0.8 (i.e.,

our cutoff point) after 128 cores; using more cores would waste resources. This

experiment demonstrates that the scalability study in the VinaLC paper is too

generic for accurate predictions in practical usage scenarios.

6.3.1 Scientific Applications

We consider two representative scientific applications for molecular docking and

sequence alignment. The chosen parallel systems are VinaLC [77] and P-SSW (an

MPI version of SSW [81]). Unlike ACME, VinaLC and P-SSW handle static task

decomposition problems.

Molecular Docking: VinaLC

Molecular docking predicts the structural orientation in which two chemical molecules

bind to make a stable complex [82]. It is used to discover new drugs and assist

in drugs repositioning [83]. There are about 30,000 genes in the human genome

that can bind to known drug molecules [84]. It is estimated that 1060 drug-like

molecules exist [85]. To dock m molecules against n protein structures, m × n

docking operations are required.

We integrated our framework with VinaLC [77]. VinaLC is the MPI imple-

mentation of Vina [86], a popular serial molecular docking system. Each docking

operation is treated as a task that gets scheduled independently. However, docking

operations vary in execution times, as shown in Figure 6.5. Users do not know

the workload of their tasks in advance. Hence, it is challenging to choose the ideal

degree of parallelism for high resource utilization and better response time.
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Sequence Alignment: P-SSW

The problem of aligning sequences involves arranging sequences to identify regions

of similarity. It is the first step in studying functional, structural, or evolutionary

relationships between DNA, RNA, or protein sequences [87, 88]. Multiple sequence

alignment is an NP-hard problem [89]. A preprocessing step for multiple sequence

alignment is to find pairwise alignments between all input sequences. Given a

dataset of n sequences, the number of pairwise alignments is
(
n
2

)
= n2−n

2 . So

aligning 1,000 sequences requires 499,500 independent pairwise alignments.

We integrated APlug in P-SSW, our parallel implementation of the SSW [81]

alignment tool. SSW is a recent extension of Farrar’s implementation [90] of the

optimal pairwise alignment algorithm, the Smith-Waterman dynamic program-

ming algorithm [91]. P-SSW adopts a dynamic scheduling policy to assign tasks

to workers, where each pairwise alignment is a task. This policy guarantees better

load balancing when processing pairwise alignments of arbitrary workloads.

Static process decomposition

Following our VinaLC example, docking four subsets of lead-like molecules against

Thermus thermophilus gyrase B resulted in different speedup efficiencies. Figure 6.5

shows the speedup efficiencies, where DS3 is best and DS2 is worst. Figure 6.6

illustrates the workload frequency distributions of DS2 and DS3.

The tasks from DS2 have an irregular workload frequency distribution with

many “heavy” tasks. Over half of the 2,000 tasks run in more than 200 seconds.

It is hard to balance the workload of DS2 tasks since the probability of a large

task being executed last is very high, rendering most cores idle towards the end. In

contrast, only 67 DS3 tasks run in more than 200 seconds with most tasks finishing

in less than a minute. Hence, most of the cores will be busy processing a large
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Figure 6.6: Workload frequency distributions for 2 datasets of lead-like compounds
(i.e., same dataset and same size).

number of small tasks, i.e., workload is balanced.

6.3.2 The APlug Framework

APlug is a practical and easy to plug framework due to our novel idea of automatic

tuning based on modeling workload frequency distributions. The performance of

parallel systems is significantly affected by the workload density and skew in a set

of tasks. Our novel idea facilitates the shift toward truly integrated estimation

models, where regression analysis per parallel system is avoided. APlug infers

the workload frequency distribution to: (i) adapt the parallelism of the scientific

applications that vary dynamically, and (ii) tune dynamic process decompositions

automatically. This section presents the workflow and algorithms of APlug.

The Framework Overview

An abstract workflow diagram of APlug is shown in Figure 6.7. APlug’s inputs

are user constraints and task decomposition type. A random sample of tasks from
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Figure 6.7: A simple flowchart of the APlug framework.

class APlug {
public:

void setNumOfTasks(int numOfTasks);

void setSampleSize(int sampleSize);

void loadSamples(double[] sampleTimes);

int changeDecomposition(int last);

int getRecCores(double tLimit, int cLimit);

double getSerialTime(void);

double getParallelTime(int cores);

double getSpeedupEff(int cores);

};

Figure 6.8: The APlug C++ API foundation.
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the entire dataset is executed to find the sample workload (i.e., runtimes). The

decomposition type is either static or dynamic. For a static decomposition, APlug

directly adapts the parallelism. For a dynamic decomposition, APlug automati-

cally tunes the decomposition by finding the decomposition parameter leading to

the highest scalability in terms of number of cores while the utilization threshold

is satisfied.

6.3.3 API and Integration

The complete C++ source code of APlug, including its standalone utility program,

is implemented in less than 800 lines of code. The framework is available for

download2 and as a public Amazon Machine Image3. This section highlights the

most important aspects of our implementation. We present the main C++ API and

discuss the integration of APlug in scientific applications. Most APlug methods

shown in Figure 6.8 are implemented and ready to use with any application.

A typical scenario for integrating APlug with an application starts by including

the APlug class and overriding changeDecomposition(), if needed. Users with

an application of a fixed number of tasks do not need to implement or use this

method. If the process can be decomposed dynamically, APlug needs to know how

different decompositions are achieved. For example, decomposing an application

with a tree-based search space involves using prefixes to partition the search space

into sub-trees.

APlug uses sample tasks to predict workloads and adapt parallelism accord-

ingly. The user needs to execute a random sample of tasks and pass their workloads

to the framework using loadSamples(). The sampled tasks can (and should) be

2http://cloud.kaust.edu.sa/pages/aplug.aspx
3Amazon Machine Image ID: ami-df556bb6

http://cloud.kaust.edu.sa/pages/aplug.aspx
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part of the final results. Calling the method getRecCores() provides the number

of cores needed to meet user constraints. The rest of the framework methods are

provided for users to use them as needed and to customize their experience.

We integrated APlug with the three scientific applications discussed in Sec-

tion 6.3.1. We did not reuse the samples in order to minimize code modifica-

tion. Note that the overhead of running the sample is minimal compared to

the gain from tuning. In the case of integrating APlug with VinaLC and P-

SSW, only 20 lines of code were added or changed in their source codes. The

method changeDecomposition() was not used because the number of tasks is

fixed. In the case of ACME, the process decomposition is not fixed. We integrated

APlug with ACME in less than 50 lines of code including overriding the method

changeDecomposition().

The APlug framework comes with a standalone utility program. This is useful

in cases where the application source code is not available or if code integration

is not preferred. The APlug utility accepts a file of sample tasks workloads and

takes user constraints as input. The utility will output useful statistics including

expected execution times, speedup efficiencies, and recommended number of cores.

6.4 Evaluation

Our APlug framework and the datasets detailed below are available for download

online2 and on Amazon EC23. We evaluate APlug in the three different scientific

applications discussed in Section 6.3.1. The accuracy of APlug’s predictions and

APlug’s minimal overhead are shown. We conduct sensitivity analysis experiments

to study the effects of the sample size on APlug. The effective scalability of the

applications after integrating APlug with them is then demonstrated.
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Experimental Setting

Datasets

We used real datasets to test APlug. (i) For molecular docking, similar to the au-

thors of VinaLC, we dock lead-like compounds from the ZINC database [92] against

Thermus thermophilus gyrase B4. (ii) For sequence alignment, 71,501 human pro-

tein sequences5 and 65,685 random shotgun sequences6 of Shewanella oneidensis

bacteria [93]. (iii) For pattern mining, 2.6GB DNA7 for the entire human genome.

Systems

We used various systems with different architectures. Namely, we used a supercom-

puter, a Linux cluster, and a public cloud cluster. The supercomputer is an IBM

Blue Gene/P with 16,384 quad-core PowerPC processors @850MHz with a total

memory of 64TB. The Linux cluster is an HP system of 480 cores @2.1GHz with

each 24 cores sharing 148GB of RAM. The public cloud cluster was rented from

Amazon EC2 and consisted of 40 on-demand M3 large instances8. Each instance

had 2 cores and 7.5GB RAM.

Queries

For the molecular docking experiments, we randomly chose 10,000 lead-like com-

pounds from the ZINC dataset to dock against Thermus thermophilus gyrase B.

For sequence alignments, we created over 1 million tasks (1,000,405 pairwise align-

ments) using 1,415 random Human protein sequences. All the experiments with

4http://www.rcsb.org/pdb/explore.do?structureId=1KIJ
5ftp://ftp.ncbi.nih.gov/refseq/H sapiens/mRNA Prot/human.protein.faa.gz
6ftp://ftp.cbcb.umd.edu/pub/data/asmg benchmark/
7http://webhome.cs.uvic.ca/ thomo/HG18.fasta.tar.gz
8http://aws.amazon.com/ec2/instance-types/

http://www.rcsb.org/pdb/explore.do?structureId=1KIJ
ftp://ftp.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot/human.protein.faa.gz
ftp://ftp.cbcb.umd.edu/pub/data/asmg_benchmark/Shewanella_oneidensis_MR1.tar.gz
http://webhome.cs.uvic.ca/~thomo/HG18.fasta.tar.gz
http://aws.amazon.com/ec2/instance-types/
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VinaLC and P-SSW were run on the Linux cluster. VinaLC could not run on the

supercomputer because of library incompatibilities and P-SSW uses architecture

specific SIMD operations. In the case of pattern mining, the number of tasks is

not fixed and we test our decomposition tuning. On EC2, we chose a light pattern

mining query that ends in reasonable time. APlug partitioned the search space

tree of this query to 4,096 tasks (using prefixes of length 6). For the supercom-

puter, a pattern mining query that has enough workload to scale to thousands of

cores was used. This query was decomposed automatically by APlug to 262,144

tasks (using prefixes of length 9).

Baseline

The baseline implementation that we compare to is the näıve solution to the degree

of parallelism problem. Given the runtimes of a sample of the tasks, the serial

time is estimated by multiplying the average sample runtime by the total number

of tasks. The parallel runtime is then calculated by dividing the estimated serial

time by the number of cores. The samples used are the ones used with APlug and

in the case of decomposition tuning we use APlug’s decomposition.

6.4.1 Accuracy

It is not difficult to predict runtimes of highly scalable applications when tasks have

similar workloads. Indeed, Table 6.2 shows that the baseline method achieves fair

accuracy in predicting the runtimes of P-SSW up to 256 cores. The query was

to align 1,415 shotgun sequences from the Shewanella oneidensis bacteria dataset.

Over a million tasks are run but most of the alignments have similar workloads

because the sequences are of similar lengths. While we do not know this fact in

advance, it is risky to use the baseline method. Generally, it is not common to
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Table 6.2: The baseline method provides fairly accurate parallel time estimations
when tasks workloads are uniform. In this experiment, P-SSW is used to alig 1,415
random DNA shotgun sequences from the Shewanella oneidensis bacteria. Most
shotgun sequences have similar lengths and tasks workloads are close to uniform.

Cores
Actual time APlug error Baseline error

(hours) (%) (%)
16 45 0.8 0.9
32 23 0.8 0.8
64 12 0.8 0.9
128 6 0.9 1.0
256 3 0.9 1.0

Table 6.3: Accuracy of APlug and the baseline compared to actual parallel times
of P-SSW on the Linux cluster.

Cores
Actual time APlug error Baseline error

(hours) (%) (%)
16 145 0.1 7.4
32 73 0.1 7.5
64 36 0.2 7.5
128 18 0.2 7.5
256 9 0.3 7.5
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Table 6.4: Accuracy of APlug and the baseline compared to actual parallel times
of VinaLC on the Linux cluster.

Cores
Actual time APlug error Baseline error

(hours) (%) (%)
16 31 0.4 8.2
32 16 0.4 8.1
64 8 0.4 7.8
128 4 0.4 7.0
256 2 0.3 5.3

Table 6.5: Accuracy of APlug and the baseline method compared to actual parallel
times of ACME on Amazon EC2.

Cores
Actual time APlug error Baseline error
(minutes) (%) (%)

4 130 0.9 17.8
8 66 0.9 17.9
16 33 0.8 18.1
32 17 1.2 18.8
64 9 1.8 20.3

have queries with uniform workload frequency distributions in practice. Next, we

show queries for sequence alignment, molecular docking, and pattern mining where

tasks workloads are skewed, which is the common case.

We verify the accuracy of APlug and compare it to the baseline method on

different architectures. For each application, we run the same query using different

numbers of cores and compare the actual runtimes with the estimations from APlug

and the baseline method. The query for Table 6.3 has the same number of tasks

as in Table 6.2 only this time we align sequences from the human protein dataset,

where sequences are of variable lengths leading to skewed task workloads. APlug

captures workload skewness to better estimate runtimes and accurately predict

speedup efficiencies. Similarly, Tables 6.4 and 6.5 show that APlug significantly

outperforms the baseline method.

Figures 6.9, 6.10, and 6.11 show the actual workload frequencies and the PDFs
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Figure 6.9: P-SSW query from Table 6.3 comparing actual workload frequency
distribution and PDF used by APlug.
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Figure 6.10: VinaLC query from Table 6.4 comparing actual workload frequency
distribution and PDF used by APlug. While a single Gamma distribution can not
have the shape of the actual workload frequency distribution, it captures workload
skewness and approximates the total runtimes accurately.
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Figure 6.11: ACME query from Table 6.5 comparing actual workload frequency
distribution and PDF used by APlug.

Table 6.6: The different speedup efficiencies of ACME on the supercomputer
using different decompositions. APlug consistently chooses the best decomposition
(256K tasks).

Cores
Speedup Efficiency wrt #Tasks
16K 64K 256K 1024K

512 0.94 0.97 0.98 0.81
1,024 0.87 0.97 0.97 0.83
2,048 0.83 0.92 0.97 0.83
4,096 0.46 0.76 0.92 0.76
8,192 0.25 0.46 0.76 0.46

APlug used to predict them. Since we care about the total runtime, the shapes

of the actual workload frequencies and the PDFs need not be similar. The total

runtime is a function of the area under the curves. The values of the corresponding

integrals are similar, leading to low estimation errors. APlug achieves this by

implicitly considering the infrastructure performance properties using the runtimes

of the sample tasks.

The next experiment shows the accuracy of APlug decomposition tuning. Table

6.6 shows the speedup efficiencies when different decompositions are used for our



126

Table 6.7: Accuracy of the estimated parallel time (and cost) of ACME on Amazon
EC2 cloud. APlug is able to predict time so users can meet budget and time
constraints.

Number of Amazon EC2 Instances
1 10 20 30 40

Cores 2 20 40 60 80
Cost/Hour 0.24 2.40 4.80 7.20 9.60
Est. Time 2.5 Days 5.9 Hr 3.1 Hr 2.1 Hr 1.5 Hr
Act. Time 2.9 Days 5.1 Hr 4.3 Hr 2.3 Hr 1.6 Hr
Est. Cost 14.40 14.40 19.20 21.60 19.20
Act. Cost 16.80 14.40 24.00 21.60 19.20

query. APlug chooses the decomposition that results in the best speedup efficiency

using different numbers of cores. However, the default decomposition method of

ACME fails in most cases because it considers number of cores to decompose the

problem.

Accurate decomposition and runtime prediction saves money for users of su-

percomputing centers and clouds. Our next experiment shows how APlug guides

user decisions to stick to their budget. We decompose and adapt the parallelism

of a pattern mining query given a pricing scheme. The user needs to mine human

DNA for patterns in less than 3 hours and without spending more than 20. Table

6.7 shows that renting 10 instances meets the budget but not the time constraint.

Similarly, renting 30 instances meets the time constraint but not the budget. It is

interesting that renting more instances, in this case 40, meets both constraints. It

is not straightforward to arrive at this conclusion without utilizing APlug capabil-

ities.

During execution, APlug guides users if scaling out or in is desired. Table

6.8 shows that APlug provides good expected runtimes and speedup efficiencies

online. The error in APlug’s online predictions is slightly higher than its initial

run because it is difficult to capture the execution of the tasks that are running
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Table 6.8: APlug provides users with accurate predictions for adding (or removing)
resources online. In this experiment 2,000 VinaLC tasks are started with 130 cores
then after half the tasks were done, APlug was consulted to add more cores.

Additional Total Time (min) Speedup Efficiency
Cores Actual Predicted Actual Predicted

0 33.23 34.43 0.95 0.92
100 28.85 27.78 0.62 0.64
200 28.17 25.13 0.44 0.49
300 26.80 24.58 0.35 0.38

during online prediction. Initially, 130 cores were used. Additional cores were

added after half the tasks were done. Counterintuitively, adding cores at this

stage negatively affects speedup efficiency since the remaining tasks do not have

enough workload to fully utilize a larger number of cores. In this experiment,

adding 300 cores improves the time by less than 7 minutes at the cost of a drop

in efficiency from 0.95 to 0.35. APlug accurately provides online facts for users to

make informed decisions.

6.4.2 Sensitivity Analysis

APlug is expected to be sensitive to the sample size because it uses sample tasks

to build its workload model. We use random sampling, the simplest form of prob-

ability sampling, where all tasks have the same probability of being in the sample.

Random sampling is preferred in cases where the information we know about the

total population (i.e., tasks) is little. Statistically, the precision of the estimator

given a large number of total tasks depends on sample size, and not sample per-

centage of the total tasks [94]. For example, the precision of a random sample

of 100 tasks from 100,000 tasks and from a million tasks is the same. For each

experiment in this section, we note the sample margin of error range for a 95%

confidence interval.
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Table 6.9: Sensitivity analysis of the sample size used in APlug to estimate the
execution time of VinaLC using 256 cores on the Linux cluster. The actual time
was over 2 hours. The sample margin of error is between 9% and 3%.

Sample size Sample time APlug error Baseline error
(%) (minutes) (%) (%)
1 2 8.0 13.9
2 3 4.7 10.9
4 5 0.4 5.3
8 10 0.3 4.2

Table 6.10: Sensitivity analysis of the sample size used in APlug to estimate the
execution time of P-SSW using 256 cores of the Linux cluster. The actual time
was over 9 hours. The sample margin of error is between 1% and 0.3%.

Sample size Sample time APlug error Baseline error
(%) (minutes) (%) (%)
1 5 0.5 7.2
2 11 0.6 7.1
4 22 0.2 7.5
8 44 0.1 7.7

Table 6.11: Sensitivity analysis of the sample size used in APlug to estimate the
serial execution time of ACME on Amazon EC2 cloud. The actual time was over
8.5 hours. The sample margin of error is between 15% and 5%.

Sample size Sample time APlug error Baseline error
(%) (minutes) (%) (%)
1 6 13.5 42.0
2 11 11.5 32.4
4 21 1.2 10.8
8 41 1.4 10.2
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Table 6.12: Sensitivity analysis of sample size in ACME’s decomposition tuning.
Best decomposition empirically found to be 262,144 tasks. The sample margin of
error is between 21% and 7%.

Sample Size Tuning cost Suggested decomposition
(# Tasks) (seconds) (# Tasks)

10 9 16,384
20 11 16,384
40 7 65,536
80 4 262,144
160 6 262,144
320 12 262,144

Tables 6.9, 6.10, and 6.11 show that practically acceptable accuracy is achieved

with small sample sizes. The overhead of running samples increases with sample

size but is not steep. The overhead is basically the runtimes of the sample tasks,

which is dependent on sample workload not only sample size. The time it takes

to run the sample tasks is orders of magnitude lower than the total runtime. The

accuracy of APlug is significantly better than the baseline even for small samples

because APlug captures the workload skewness and irregularity of tasks workloads.

The next experiment studies APlug’s decomposition tuning with respect to dif-

ferent sample sizes. We empirically find the best decomposition by exhaustively

using different prefix lengths to partition the search space tree of a pattern min-

ing query. Decomposing the example process to 262,144 tasks creates the most

fine-grained tasks with minimal useless work. Table 6.12 shows that APlug finds

the optimal decomposition with small sample sizes. The tuning time is minimal,

especially when compared to the full query execution time.

6.4.3 Effective Scalability after using APlug

Guided by APlug; P-SSW, VinaLC, and ACME adapt their parallelism to achieve

high speedup efficiencies with minimal overhead. Tables 6.13, 6.14, and 6.15 show
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Table 6.13: APlug accurate prediction for VinaLC on the Linux cluster.

Cores
Predicted Actual

Speedup Efficiency Speedup Efficiency
15 1.00 1.00
30 0.99 0.98
60 0.99 0.97
120 0.99 0.95
240 0.98 0.94
480 0.96 0.93

Table 6.14: APlug accurate prediction for P-SSW on the Linux cluster.

Cores
Predicted Actual

Speedup Efficiency Speedup Efficiency
15 1.00 1.00
30 0.99 0.98
60 0.99 0.98
120 0.99 0.96
240 0.98 0.95
480 0.97 0.93

that APlug is able to accurately adapt the parallelism of different applications on

different architectures. Due to time constraints, speedup efficiencies are calculated

according to a 15-core system for VinaLC and P-SSW and to a 256-core system

for ACME. No manual tuning for ACME on the supercomputer was needed as its

decomposition is automatically tuned by APlug. VinaLC was not run on the su-

percomputer because of library incompatibilities. P-SSW uses architecture specific

SIMD operations that prevents it from running on the supercomputer.
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Table 6.15: ACME is able to scale to 16,384 cores with high speedup efficiency
on the supercomputer using APlug’s automatic decomposition tuning. APlug ac-
curately predicts speedup efficiency of ACME using thousands of cores.

Cores
Predicted Actual

Speedup Efficiency Speedup Efficiency
256 1.0 1.00

1,024 0.99 0.99
2,048 0.99 0.98
4,096 0.98 0.96
8,192 0.98 0.91
16,384 0.97 0.98
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Chapter 7

Concluding Remarks

There is a point in every contest
when sitting on the sidelines is
not an option

Dean Smith

1931 — 2015 CE

This chapter concludes this dissertation with a summary of our contributions

and an outlook on possible future research directions.
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7.1 Summary of Contributions

String queries are computationally demanding and require parallel execution to

finish in reasonable times. Many database management concepts will need to be

rethought before being applied to a string database system. In this dissertation, we

introduced a scalable and extensible string data model and a declarative query lan-

guage for strings. We then proposed an architecture of a large-scale string database

system and demonstrated StarDB, a distributed database system for large-scale

string analytics. We aim to kick-start many string database management systems.

To deal with the challenges of large-scale string analytics, we focus on motif

extraction as a core operation that is well studied. Many important applications,

such as bioinformatics, time series and log analysis, depend on motif extraction

from one long sequence. Existing methods for extracting motifs from a single

sequence are cache inefficient and serial.

We introduced ACME, a combinatorial method for extracting motifs repeated

in a single long string. First, we target the effective utilization of memory caches.

We devise CAST, a cache-aware search space traversal technique that arranges

the search space in contiguous blocks; taking advantage of the cache hierarchy in

modern architectures. Equipped with CAST, ACME is orders of magnitude faster

than existing motif extractors.

Motif extraction can be computationally demanding even for relatively short

strings. The next step was to scale out ACME in order to perform tasks in reason-

able times. To this end, we introduce FAST, a fine-grained problem decomposition

technique that allows ACME to scale with minimal overhead. In our experiments

we demonstrated that ACME handles the entire DNA sequence for the human

genome on a single high-end multi-core machine; this is 3 orders of magnitude
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longer compared to the state-of-the-art. We also showed that ACME can be de-

ployed in a variety of large scale parallel architectures, including Amazon EC2 and

a supercomputer with 16,384 CPUs.

To run on thousands of cores, tuning and execution time estimation become

critical. We Introduce APlug, an automatic tuning framework for large-scale par-

allel applications with many independent tasks. APlug adapts the degree of paral-

lelism and automatically decomposes the parallel process to enable users to achieve

efficient utilization of CPU resources. We studied the correlation between the

workload frequency distributions of a set of tasks and the resource utilization.

Our models are based on this correlation.

APlug facilitates the shift towards truly integrated estimation models. Our

experiments show the viability of our framework for molecular docking, sequence

alignment, and pattern mining using 16,384 cores in a supercomputer, 480 cores

in a Linux cluster, and 80 cores from a public cloud. APlug estimates the serial

and parallel times to suggest the best degree of parallelism in very short time with

less than 10% error. Users can use APlug to optimize various quantities; such as,

runtime and financial cost.
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7.2 Future Research Directions

Currently ACME is an in-memory system. We are working on a disk-based ver-

sion that will allow ACME to support longer strings. A general nonresident stor-

age manager is needed in distributed environments where local memory is limited

and I/O is slow. We started working on handling nonresident data and already

achieved three orders of magnitude speedup compared to the näıve approach. The

nonresident storage manager uses the collective distributed memory in a large in-

frastructure as system storage. Large distributed memory is used as if it was local

to every machine. This will be accomplished by predicting and prefetching data

to emulate an in-memory scenario.

While many commercial and scientific applications have independent tasks, we

intend to extend APlug to work with tasks that have inter-dependencies. It is

challenging to predict dependencies because they differ according to data size, de-

composition, and execution environment. We attempt to address tasks dependen-

cies by two ways: profiling the code, and collecting data during runtime. Machine

learning techniques can then be used to construct models for typical application

behaviors.
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