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ABSTRACT
Network communication is the slowest component of many
operators in distributed parallel databases deployed for large-
scale analytics. Whereas considerable work has focused on
speeding up databases on modern hardware, communica-
tion reduction has received less attention. Existing parallel
DBMSs rely on algorithms designed for disks with minor
modifications for networks. A more complicated algorithm
may burden the CPUs, but could avoid redundant trans-
fers of tuples across the network. We introduce track join,
a novel distributed join algorithm that minimizes network
traffic by generating an optimal transfer schedule for each
distinct join key. Track join extends the trade-off options be-
tween CPU and network. Our evaluation based on real and
synthetic data shows that track join adapts to diverse cases
and degrees of locality. Considering both network traffic and
execution time, even with no locality, track join outperforms
hash join on the most expensive queries of real workloads.

1. INTRODUCTION
The processing power and storage capacity of a single

machine can be large enough to fit small to medium scale
databases. Nowadays, servers with memory capacity of more
than a terabyte are common. Packing a few multi-core CPUs
on top of shared non-uniform access (NUMA) RAM provides
substantial parallelism, where we can run database opera-
tions (i.e. sort, join, and group-by) on RAM-resident data
at rates of a few gigabytes per second [2, 3, 29, 34, 36].

Database research has also evolved to catch up to the
hardware advances. Fundamental design rules of the past
on how a DBMS should operate are now being revised due
to their inability to scale and achieve good performance on
modern hardware. Special purpose databases are now popu-
lar against the one-size-fits-all approach [32], while accelera-
tors [26] are the implicit manifestation of the same concept.
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The advances in database design for storage and execution
on modern hardware have not been met by similar advances
in distributed parallel database design. When the most fun-
damental work on distributed and parallel databases was
published [5, 11, 20], hardware advances of today like multi-
core parallelism had not yet occurred. Techniques to speed
up short-lived distributed transactions [32] target distributed
commit protocols, which suffer from network latencies rather
than throughput. Queries where communication is inevitable
are less popular research topics or are left for data-centric
generic distributed systems for batch-processing [7, 24].

The latest network technologies may be slow relative to
main-memory-resident processing. A 40 Gbps InfiniBand
measured less than 3 GB/s real data rate per node dur-
ing hash partitioning. If done in RAM, partitioning to a few
thousand outputs runs close to the memory copy bandwidth
[29, 34]. For instance, a server using 4X 8-core CPUs and
1333 MHz quad-channel DDR3 DRAM achieves a partition
rate of 30–35 GB/s, more than an order of magnitude higher
than the InfiniBand network. Recent work [3] achieves a
hash join rate of 4.85 GB/s of 32-bit key, 32-bit payload tu-
ples on 4X 8-core CPUs. Such high-end hardware is common
in marketed configurations for large-scale analytics.

Network optimization is important for both low-end and
high-end hardware. In low-end platforms where the network
is relatively slow compared to local in-memory processing,
we expect the execution time to be dominated by network
transfers. Thus, any network traffic reduction directly trans-
lates to faster execution. In high-end platforms, given that
the network still cannot be as fast as the RAM bandwidth,
completion times are also reduced if the reduction in net-
work traffic is comparable with the increase in CPU cycles.

In order to show how much time databases can spend on
the network, we give an example of a real analytical work-
load from a large commercial vendor, using a market-leading
commercial DBMS. Using 8 machines connected through 40
Gbps InfiniBand (see Section 4 for more details of the con-
figuration), we found that the five most expensive queries
spend ≈ 65–70% of their time transferring tuples on the
network and account for 14.7% of the total time required to
execute the entire analytical workload with more than 1500
queries. All five queries have a non-trivial query plan (4–6
joins), but spend 23%, 31%, 30%, 42%, and 43% of their
total execution time on a single distributed hash join.

A sophisticated DBMS should have available options to
optimize the trade-off between network and CPU utiliza-
tion. One solution would be to apply network optimiza-
tion at a higher level treating the network as a less desired



route for data transfers, without modifying the underlying
algorithms. These approaches are common in generic dis-
tributed processing systems [7]. A second solution would be
to employ data compression before sending data over the
network. This solution is orthogonal to any algorithm but
can consume a lot of CPU resources without always yielding
substantial compression. A third solution is to create novel
algorithms for database operator evaluation that minimize
network communication by incurring local processing cost.
This approach is orthogonal and compatible with compres-
sion and other higher level network transfer optimizations.

Grace hash join [9, 17] (throughout the paper we will use
the term hash join to refer to Grace hash join on network
[9], rather than disk [17]) is the predominant method for
executing distributed joins and uses hash partitioning to
split the initial problem into shared-nothing sub-problems
that can proceed locally per node. Partitioning both tables
works almost independently of the table sizes. However,
hash join is far from network-optimal because it transfers
almost the full size of both tables over the network. Using
pre-determined hash functions guarantees load balancing,
but limits the probability that a hashed tuple will not be
transferred over the network to 1/N on N nodes.

We introduce track join, a novel algorithm for distributed
joins that minimizes transfers of tuples across the network.
The main idea of track join is to decide where to send rows
on a key by key basis. The decision uses information about
where records of the given key are located. Track join has
the following properties: it (i) is orthogonal to data-centric
compression, (ii) can co-exist with semi-join optimizations,
(iii) does not rely on favorable schema properties, such as
foreign key joins, (iv) is compatible with both row-store and
column-store organization, and (v) does not assume favor-
able pre-existing tuple placement. We implement track join
to evaluate the most expensive join operator in the most ex-
pensive queries of real workloads. We found that track join
reduces the network traffic significantly over known meth-
ods, even if pre-existing data locality is removed and all data
are used in optimally compressed form throughout the join.

Section 2 describes the track join algorithm presenting
three variants starting from the simplest. In Section 3, we
discuss costs for query optimization, tracking-aware hash
joins, and semi-join filtering. Section 4 presents our exper-
imental evaluation using both synthetic datasets and real
workloads. In Section 5 we briefly discuss future work. In
Section 6 we discuss related work and conclude in Section 7.

Algorithm 2-phase track join: processR − R to S

TR ← {}
for all <keyR|S k, payloadR pR> in table R do

if k not in TR then
send k to processT (hash(k) mod N)

end if
TR ← TR + <k, pR>

end for
barrier
while any processT nT sends do

for all <keyR|S k, processS nS> from nT do
for all <k, payloadR pR> in TR do

send <k, pR> to nS

end for
end for

end while

2. ALGORITHMIC DESCRIPTION
Formally, the problem under study is the general dis-

tributed equi-join. The input consists of tables R and S split
arbitrarily across N nodes. Every node can send data to all
others and all links have the same performance. We present
three versions of track join gradually evolving in complexity.

The first version discovers network locations that have at
least one matching tuple for each unique key. We then pick
one side of the join and broadcast each tuple to all locations
that have matching tuples of the other table for the same
join key. We use the term selective broadcast for this process.

The second version gathers not only an indicator whether
a node has tuples of a specific join key or not, but also the
number and total size of these tuples. We pick the cheapest
side to be selectively broadcast independently for each key.

The third and full version of track join extends the sec-
ond version by generating an optimal join schedule for each
key achieving minimum payload transfers, without hashing
or broadcasting. The schedule migrates tuples from one ta-
ble to potentially fewer nodes than the original placement,
before selectively broadcasting tuples from the other table.

The algorithm will be described in this section using a
pipelined approach. We assume three processes (R, S op-
erating on tables R and S, and T that generates schedules)
running simultaneously on all nodes, but once per node. A
non-pipelined approach is also possible (see Section 4).

The algorithmic display convention used throughout this
paper intentionally shows types next to variables when their
values are being assigned. Unless a new value assignment
is explicitly written, the variable was previously assigned a
value now used as an input parameter. |x| denotes set size.

2.1 2-Phase Track Join
The 2-phase (or single broadcast) is the simplest version

of track join. The first phase is the tracking phase, while
the second phase is the selective broadcast phase.

In the first phase, both R and S are projected to their
join key and sent over the network. The destination is de-
termined by hashing the key, in the same way that hash
join sends tuples. Duplicates are redundant and are elim-
inated. Every node receives unique keys and stores them
alongside the id of the source node. In our display of the al-
gorithm, this operation is done by a different process named
T , which also generates the transfer schedules. The loca-
tion of processT is determined by hashing the join key, thus,
distributing the task of scheduling equally across all nodes.

Algorithm 2-phase track join: processS − R to S

TS ← {}
for all <keyR|S k, payloadS pS> in table S do

if k not in TS then
send k to processT (hash(k) mod N)

end if
TS ← TS + <k, pS>

end for
barrier
while any processR nR sends do

for all <keyR|S k, payloadR pR> from nR do
for all <k, payloadS pS> in TS do

commit <k, pR, pS>
end for

end for
end while



Algorithm 2-phase track join: processT − R to S

TR|S ← {}
while any processR or any processS nR|S sends do

for all <keyR|S k> from nR|S do
TR|S ← TR|S + <k, nR|S>

end for
end while
barrier
for all distinct keyR|S k in TR|S do

for all <k, processR nR> in TR|S do
for all <k, processS nS> in TR|S do

send <k, nS> to nR

end for
end for

end for

In the second phase, we only transfer tuples from one ta-
ble. Assuming we transfer R tuples, node T (processT ) sends
messages to each location with matching R tuples, including
the key and the set of S tuples’ locations. Finally, R tuples
are selectively broadcast to the tracked S locations, instead
of all nodes in the network, and are joined locally.

Choosing whether to send R tuples to S tuple locations,
or S tuples to R locations, has to be decided by the query
optimizer before the query starts executing, similar to the
traditional inner–outer relation distinction of hash join.

2-phase track join transfers payloads from one table only.
If the input tables have mostly unique keys and the selectiv-
ity is high, the cost comprises of tracking plus min(|R|, |S|).

Algorithm 3-phase track join: processT

barrier
TR|S ← {}
while any processR or any processS nR|S sends do

for all <keyR|S k, count c> from nR|S do
TR|S ← TR|S + <k, nR|S , c>

end for
end while
barrier
for all distinct keyR|S k in TR|S do

R, S ← {}, {}
for all k, processR nR, count c> in TR|S do

R← R + <nR, c · widthR>
end for
for all k, processS nS , count c> in TR|S do

S ← S + <nS , c · widthS>
end for
RScost ← broadcast R to S
SRcost ← broadcast S to R
if RScost < SRcost then

for all <k, processR nR> in TR|S do
for all <k, processS nS> in TR|S do

send <k, nS> to nR

end for
end for

else
for all <k, processS nS> in TR|S do

for all <k, processR nR> in TR|S do
send <k, nR> to nS

end for
end for

end if
end for

Algorithm 3-phase track join: processS

... symmetric with processR of 3-phase track join ...

Algorithm 3-phase track join: processR

TR ← {}
for all <keyR|S k, payloadR pR> in table R do

TR ← TR + <k, pR>
end for
barrier
for all distinct keyR|S k in TR do

c← |k in TR|
send <k, c> to processT (hash(k) mod N)

end for
barrier
while any processS or any processT sends do

if source is processT nT then
for all <keyR|S k, processS nS> from nT do

for all <k, payloadR pR> in TR do
send <k, pR> to nS

end for
end for

else if source is processS nS then
for all <keyR|S k, payloadS pS> from nS do

for all <k, payloadR pR> in TR do
commit <k, pR, pS>

end for
end for

end if
end while

2.2 3-Phase Track Join
In the 3-phase (or double broadcast) track join, we can

decide whether to broadcast R tuples to the locations of S
tuples, or vice versa. The decision is taken per distinct join
key. In order to decide which selective broadcast direction
is cheaper, we need to know how many tuples will be trans-
ferred in each case. Thus, instead of only tracking nodes
with at least one matching tuple, we also track the number
of matches. To generalize for variable lengths, we transfer
the sum of matching tuple widths, rather than a count.

Bi-directional selective broadcast can distinguish cases in
which moving S tuples would transfer fewer bytes than mov-
ing R tuples. The decision whether to selectively broadcast
R → S or vice versa is taken for each distinct key indepen-
dently and we do not rely on the optimizer to pick the least
expensive direction overall for the entire join.

The cost estimation for one selective broadcast direction
is shown below. In practice, we compute both directions and
pick the cheapest. The complexity is O(n), where n is the
number of nodes with at least one matching tuple for the
given join key. The total number of steps required is less
than the number of tuples. Thus, the theoretical complex-
ity is linear. The messages that carry location information,
logically seen as key and node pairs, have size equal to M .

Algorithm track join: broadcast R to S

Rall ←
∑

i |Ri|
Rlocal ←

∑
i |Ri|, where |Si| > 0

Rnodes ← |i, where |Ri| > 0 ∧ i 6= self |
Snodes ← |i, where |Si| > 0|
RScost ← Rall · Snodes −Rlocal + Rnodes · Snodes ·M
return RScost



…                              …

Hash Join (cost = 10)            2-Phase Track Join (cost = 12)       3-Phase Track Join (cost = 8)           4-Phase Track Join (cost = 6)

R 2 0 4 0 0

…                              …S 0 3 0 1 0

…                              …2 0 4 0 0

…                              …0 3 0 1 0

…                              …2 0 4 0 0

…                              …0 3 0 1 0

…                              …2 0 4 0 0

…                              …0 3 0 1 0

Figure 1: Example of network transfers in hash join and track join per distinct join key

2.3 4-Phase Track Join
In the full version of track join, the join is logically de-

composed into single key (cartesian product) joins for each
unique key. By minimizing the network cost of each carte-
sian product, we reduce the network cost of the entire join.
If we omit the cost of tracking which we cannot optimize,
4-phase track join transfers the minimum amount of payload
data possible for an early-materialized distributed join.

4-phase track join extends 3-phase track join by adding
a more complicated scheduling algorithm and a migration
phase. It ensures that when tuples from one table are selec-
tively broadcast to matching tuple locations from the other
table, we have already migrated tuples to a subset of nodes,
minimizing the total network transfers. We will prove that
optimal network traffic scheduling still takes linear time.

In Figure 1 we show an example of how the different algo-
rithms behave for a single key join. In hash join, we assume
the hash destination is the fifth node. In 2-phase track join
we selectively broadcast R tuples to matching S tuple lo-
cations and in 3-phase track join we choose the opposite
direction, since it is cheaper. The 4-phase track join first
migrates R tuples, before selectively broadcasting S tuples.

The schedules by 4-phase track join sometimes exhibit
behavior similar to that of hash join, where all tuples are
sent into a single node to perform the join. Even in such
a case, the node will be the one with the most pre-existing
matching tuples, as seen in Figure 1, maximizing locality.

Algorithm 4-phase track join: processS

... symmetric with processR of 4-phase track join ...

Algorithm 4-phase track join: processR

... identical to the 1st phase of 3-phase track join ...
barrier
... identical to the 2nd phase of 3-phase track join ...
barrier
while any processT or any processR sends do

if source is processT nT then
for all <keyR|S k, processR nR> from nT do

for all <k, payloadR pR> in TR do
send <k, pR> to nR

TR ← TR − <k, pR>
end for

end for
else if source is processR nR then

for all <keyR|S k, payloadR pR> from nR do
TR ← TR + <k, pR>

end for
end if

end while
barrier
... identical to the 3rd phase of 3-phase track join ...

We formalize the problem of network traffic minimization
for a single key (cartesian product) join, assuming for sim-
plicity that the plan is known to every node and no location
messages are sent. Assume that xij is the binary decision
of sending R tuples from node i to node j, while yij is the
binary decision of sending S tuples from j to i. |Ri| repre-
sents the total size of R tuples residing in node i, while |Sj |
is the total size of S tuples in node j. Since each schedule
is on a single key, we have to join every Ri data part with
every Sj data part. One way is by sending R tuples from i
to j, setting xij = 1. The second way is by sending S tuples
from j to i, setting yij = 1. The last way is by sending both
Ri and Sj to a common third node. In short, we need some
node k, where xik = 1 and ykj = 1. Local sends do not
affect network traffic, thus, all xii and yjj are ignored.

min:
∑
i

∑
j 6=i

xij · |Ri|+ yij · |Sj | s.t. ∀i, j
∑
k

xik · ykj ≥ 1

Algorithm 4-phase track join: processT

barrier
... identical to the 2nd phase of 3-phase track join ...
barrier
for all distinct keyR|S k in TR|S do

R, S ← {}, {}
for all <k, processR nR, count c> in TR|S do

R← R + <nR, c · widthR>
end for
for all <k, processS nS , count c> in TR|S do

S ← S + <nS , c · widthS>
end for
RScost, Smigr ← migrate S & broadcast R
SRcost, Rmigr ← migrate R & broadcast S
if RScost < SRcost then

for all <k, processS nS> in Smigr do
dS ← any processS not in Smigr

send <k, dS> to nS

TR|S ← TR|S − <k, nS , count cmigr>
TR|S ← TR|S − <k, dS , count cdest>
TR|S ← TR|S + <k, dS , cmigr + cdest>

end for
else

for all <k, processR nR> in Rmigr do
dR ← any processR not in Rmigr

send <k, dR> to nR

TR|S ← TR|S − <k, nR, count cmigr>
TR|S ← TR|S − <k, dR, count cdest>
TR|S ← TR|S + <k, dR, cmigr + cdest>

end for
end if

end for
barrier
... identical to the 3rd phase of 3-phase track join ...



…                              …

Selective Broadcast (cost = 0+33)       Migrate 4? Yes (cost = 4+24)    Migrate 9? No (cost = 13+16)         Migrate 6? Yes (cost = 10+14)

R 0 4 8 9 6

…                              …S 0 2 5 3 1

…                              …0 4 8 9 6

…                              …0 2 5 3 1

…                              …0 4 8 9 6

…                              …0 2 5 3 1

…                              …0 4 8 9 6

…                              …0 2 5 3 1

max

Figure 2: Example of 4-phase track join optimal schedule generation per distinct join key

We solve the traffic minimization problem by optimizing
selective broadcasts using migrations. Before the R → S
selective broadcast, we migrate S tuples across nodes, de-
pending on whether the cost of the later broadcast of R tu-
ples is reduced. The mechanism allows only S tuples to be
transferred, thus, we can easily decide whether the S tuples
of some node should stay in place, or be transferred some-
where with more S tuples. We reduce the cost of the later
selective broadcast also considering the migration cost. The
algorithm shown below includes location messages of size M .

Algorithm track join: migrate S & broadcast R

Rall ←
∑

i |Ri|
Rlocal ←

∑
i |Ri|, where |Si| > 0

Rnodes ← |i, where |Ri| > 0 ∧ i 6= self |
Snodes ← |i, where |Si| > 0|
RScost ← Rall · Snodes −Rlocal + Rnodes · Snodes ·M
maxS ← i, where |Si| > 0 ∧ ∀j : |Ri|+ |Si| ≥ |Rj |+ |Sj |
Smigr ← {}
for i← 1 to |{S1, S2, ...}| do

if |Si| > 0 and i 6= maxS then
∆← |Ri|+ |Si| −Rall −Rnodes ·M
if i 6= self then

∆← ∆ + M
end if
if ∆ < 0 then

RScost ← RScost + ∆
Smigr ← Smigr+ {i}

end if
end if

end for
return RScost, Smigr

Theorem 1. We can generate optimal selective broadcast
schedules (R→ S) by allowing the migration of (S) tuples.

Proof. We want to compute a set of nodes Smigr ⊆ S,
where any node i in Smigr migrates local matching tuples.
Observe that the migration destination does not affect the
network cost, thus, can be any node in S−Smigr. Let zi be
the binary decision whether node i keeps all local matching
S tuples or migrates them (zi = 0 ⇔ i ∈ Smigr). The cost
of migrating selective broadcast from R to S is then:

(
∑
|Ri|) · (

∑
zi)− (

∑
|Ri| · zi) +

∑
|Si| · (1− zi)

The
∑
|Ri| term is the total size of R tuples, the

∑
zi is the

number of locations with S tuples, the
∑
|Ri| · zi are the R

tuples that were local during broadcast and
∑
|Si| · (1− zi)

is the cost of migrating S tuples. Since
∑
|Ri|(≡ R) and∑

|Si|(≡ S) are independent of all zi, the formula can be
minimized by checking each zi independently. Finally, since
Smigr cannot contain all nodes, we force the node with the
largest |Ri| + |Si| and |Si| > 0, out of Smigr (zi = 1).

Theorem 2. The minimum optimized selective broadcast
direction (R→ S, or S → R) is also the minimum network
traffic schedule for single key (cartesian product) joins.

Proof. Given a computed Smigr, migrating any Rx to
any Ry can only increase the cost. If y ∈ S−Smigr, the cost
remains the same, as we moved Rx once, but now it is local
to Sy and skip y during the selective broadcast. If y ∈ Smigr,
we increase the cost of the migrating phase by |Rx|, but the
cost of the selective broadcast remains the same.

In Figure 2 we show an example of 4-phase track join
schedule generation for a single key. We start from the cost
of selective broadcast and check for each node whether mi-
grating all matching tuples reduces the cost. As shown,
nodes with no matching tuples are not considered at all.

The time to generate each schedule depends on the num-
ber of tuples per join key. The input is an array of triplets:
key, node, and count (or size). If a node does not contain a
key, the triplet is not considered at all. Thus, scheduling is
in the worst case linear in the total number of input tuples.

Using multiple threads per process is allowed and is, of
course, essential to achieve good performance on CPU in-
tensive tasks. Track join allows all in-process operations
across keys to be parallelized across threads freely, since all
local operations combine tuples with the same join key only.

2.4 Traffic Compression
Track join, as described so far, makes absolutely no ef-

fort to reduce the data footprint by compression. Modern
analytical database systems employ distinct column value
dictionaries [26, 35]. The compression process can occur off-
line, and data are processed in compressed form throughout
the join. In this section, we briefly discuss some techniques
that can further reduce network traffic on top of track join.

The simplest case is delta encoding [18, 31]. With suffi-
cient CPU power, we can sort all columns sent over the net-
work. Track join imposes no specific message order for all
types of messages, besides the barrier synchronization across
phases. Thus, the potential compression rate increases.

A second technique is to perform partitioning at the source
to create common prefixes. For instance, we can radix parti-
tion the first p bits and pack (w−p)-bit suffix with a common
prefix. We can even tune the compression rate, by employ-
ing more partition passes to create wider prefixes. Each pass
has been shown to be very efficient on memory-resident data,
close to the RAM copy bandwidth [29, 34]. If the inputs re-
tain dictionary encoding through the join, the number of
distinct values using the same prefix is maximized.

A similar optimization we can use for track join is to avoid
sending node locations alongside keys by partitioning in cor-
responding groups. We avoid sending the node part in mes-
sages containing key and node pairs by sending many keys
with a single node label after partitioning by node.



3. QUERY OPTIMIZATION
The formal model of track join is used by the query op-

timizer to decide whether to use track join in favor of hash
join or broadcast join. We prove track join superior to hash
join, even after making the latter tracking-aware using glob-
ally unique record identifiers. Finally, we discuss how track
join interacts with semi-join filtering on selective joins.

3.1 Network Cost Model
In this section, we assume a uniform distribution of tuples

across nodes for simplicity. This is the worst case for track
join since it precludes locality. Track join optimization is
not limited to one distribution as we will explain shortly.

The network cost of the ubiquitous hash join, omitting
the 1/N in place transfer probability on N nodes, is:

tR · (wk + wR) + tS · (wk + wS)

where tR and tS are the tuple counts of tables R and S, wk is
the total width of the join key columns used in conjunctive
equality conditions, while wR and wS are the total width of
relevant payload columns later used in the query.

To define the network cost of 2-phase track join, we first
determine the cost of tracking. The number of nodes that
contain matches for each key is upper bounded by N and
is t/d, in the worst case when equal keys are randomly dis-
tributed across nodes, where t is the number of tuples and d
is the number of distinct values. We refer to these quantities
as nR ≡ min(N, tR/dR) and nS ≡ min(N, tS/dS).

We define the input selectivity (sR and sS) as the per-
centage of tuples of one table that have matches in the other
table, after applying all other selective predicates. The num-
ber of distinct nodes with matching payloads also includes
the input selectivity factor. We assume that the selective
predicates do not use the key column and the number of
distinct keys is unaffected. We refer to these quantities as
mR ≡ min(N, (tR · sR)/dR) and mS ≡ min(N, (tS · sS)/dS).

Using the above terms, the cost of 2-phase track join is:

(dR · nR + dS · nS) · wk (track R & S keys)

+dR ·mS · wk (transfer S locations)

+tR · sR ·mS · (wk + wR) (transfer R → S tuples)

For 3-phase track join, we transfer counters during track-
ing. The t/(d · s) fraction gives the average repetition of
keys on each node if the distribution and node placement
is assumed to be uniform random. We use this metric to
estimate how many bits to use for representing counters
(or tuple widths). We refer to the counter lengths using
cR ≡ log(tS/(dS · nS)) and cS ≡ log(tS/(dS · nS)). If some
keys’ repetitions exceed the maximum count, we can aggre-
gate at the destination. The cost of 3-phase track join is:

dR · nR · (wk + cR) + dS · nS · (wk + cS) (tracking)

+dR1 ·mS1 · wk + tR1 · sR1 ·mS1 · (wk + wR1) (R1 → S1)

+dS2 ·mR2 · wk + tS2 · sS2 ·mR2 · (wk + wS2) (S2 → R2)

In this formula, we assume the tuples are split into two sepa-
rate classes R1, S1 and R2, S2. The tuples of R1 are defined
based on whether the R → S direction is less expensive
than the S → R direction at distinct join key granularity.
We briefly explain how these classes are estimated, shortly.

The query optimizer should pick 2-phase track join rather
than 4-phase when both tables have almost entirely unique

keys, which is enabled by the distinct values estimation.
Simple broadcast join can be better if one table is very small.

If actual numbers are required, instead of relative com-
parison of available algorithms, we can estimate the network
cost of track join using correlation classes. For example, the
R1 and R2 classes used in the cost of 3-phase track join rep-
resent the percentages of tuples of R that are joined using
the R → (for R1), or the S → R (for R2) selective broad-
cast direction. To populate the classes, we can use correlated
sampling [37], a recently proposed technique that preserves
the join relationships of tuples, is independent of the distri-
bution, and can be generated off-line. The sample is aug-
mented with initial placements of tuples. Besides computing
the exact track join cost, we incrementally classify the keys
to correlation classes based on traffic levels, and combine
their cardinality and average traffic. A simplified version of
4-phase cost is shown below, using the classes that combine
3-phase track join (R1, S1, R2, S2) with hash join (R3, S3):

dR · nR · (wk + cR) + dS · nS · (wk + cS) (tracking)

+dR1 ·mS1 · wk + tR1 · sR1 ·mS1 · (wk + wR1) (R1 → S1)

+dS2 ·mR2 · wk + tS2 · sS2 ·mR2 · (wk + wS2) (S2 → R2)

+dR3 · nR3 · wk + tR3 · sR3 · (wk + wR3) (R3 → h(k))

+dS3 · nS3 · wk + tS3 · sS3 · (wk + wS3) (S3 → h(k))

These three correlation classes merge hash join with 3-phase
track join and are the most common in real queries. More
classes can be defined by combining them in a step function.

A limitation of track join is that it invests significant time
working with keys compared to hash join. When the pay-
loads are small, we expect track join to perform worse than
hash join, unless there is locality. For instance, if the joined
tables have equal cardinality (tR = tS) and entirely unique
keys, in order to not transfer more than hash join, we need:

4 · wk + min(wR, wS) ≤ 2 · wk + wR + wS

⇔ 2 · wk ≤ max(wR, wS)

i.e., the larger payload width must be two times bigger than
the join key width, assuming there is no pre-existing locality.

3.2 Tracking-Aware Hash Join
Late materialization is a popular approach for designing

main memory databases. The technique is typically used in
column stores [26, 31], but can also be viewed as an opti-
mizer decision, whether deferring column access and carry-
ing record identifiers (rids) costs less than early material-
ization. An analysis of tuple reduction by interleaving late
materializated operations is out of the scope of this paper.

In the simple case, keys are hashed, rids are implicitly
generated, and payloads are fetched afterwards. The cost is:

(tR + tS) · wk + tRS · (wR + wS + log tR + log tS)

where tRS is the number of output joined tuples.
When distributed, rids contain a local id and a node id. To

use the implicit tracking information carried in a rid would
be to migrate the result to the tuple location, instead of
fetching the tuples where the rid pair is. For instance, as-
sume a join of R and S, where fetching S payloads is costlier
than R. Using the R rid, we migrate the R rid where the R
tuple resides. The S tuple is sent to the location of the R
tuple, after a request with the S rid and the R destination.

Assuming that no later operation precedes payload fetch-
ing, we can further elaborate the improvement by redoing



the join on the final destination. In the above example, we
send one local id to the R node and the local id to the S
node, alongside the node id of the R node. Sending the node
id can be avoided as in track join. The payload brought from
the S node will be coupled with the join key. The R rid will
access the tuple and rejoin it with the incoming tuple from
the S node. The network cost of the resulting method is:

(tR + tS) · wk + tRS · (min(wR, wS) + wk + log tR + log tS)

We prove that this approach is less effective than track
join. Initially, it transfers the key column without any du-
plicate elimination or reordering to allow implicit rid gen-
eration. In contrast, track join transfers either the distinct
keys of each node only, or an aggregation of keys with short
counts. Afterwards, track join performs optimal transfers
overall. The rid-based hash join transfers payloads from the
shorter side to all locations of the larger side where there is
a match, the same schedule as 2-phase track join. Instead,
track join resends keys, which, unless uncompressed, have
shorter representation than rids. Thus, the simplest 2-phase
track join subsumes the rid-based tracking-aware hash join.

The extra cost of transferring rids is non trivial. As shown
in our experiments, real workloads may use less than 8 bytes
of payload data while globally unique rids must be at least
4 bytes. The rids of both tables together may be wider than
the smaller payloads, making late materialization less effec-
tive for distributed compared to local in-memory processing.

3.3 Semi-Join Filtering
When join operations are coupled with selections, we can

prune tuples both individually per table and across tables.
To that end, databases use semi-join [4, 22] implemented
using Bloom filters [6], which are optimized towards network
traffic. In our analysis, we assume a two-way semi-join.

When a false positive occurs, hash join transfers the whole
tuple in vain. In track join, the matches are determined
when the keys are tracked. All join keys with no matches are
discarded up front using the key projection; no location or
tuples are transferred thereafter. Whereas late materialized
hash join reduces the penalty of filter errors by using key and
rid pairs, track join sends less than the key column alone.

Assuming the length per qualifying tuple in the filter to
be wbf , the cost of filtered early materialized hash join is:

(tR · sR + tS · sS) ·N · wbf (broadcast filters)

+tR · (sR + e) · (wk + wR) (transfer S tuples)

+tS · (sS + e) · (wk + wS) (transfer R tuples)

where e is the relative error of the Bloom filters.

The cost of filtered late materialized hash join, is:

(tR · sR + tS · sS) ·N · wbf (broadcast filters)

+tR · (sR + e) · (wk + log tR) (transfer S pairs)

+tS · (sS + e) · (wk + log tS) (transfer R pairs)

+tRS · (wR + wS + log tR + log tS) (fetch payloads)

where tRS includes the standard output selectivity factor.
The cost of 2-phase track join, using Bloom filtering, is:

(tR · sR + tS · sS) ·N · wbf (broadcast filters)

+dR · (sR + e) ·meR · wk (track filtered R)

+dS · (sS + e) ·meS · wk (track filtered S)

+dR · sR ·mS · wk (transfer S locations)

+tR · sR ·mS · (wk + wR) (transfer R tuples)

where meR ≡ min(N, tR ·(sR+e)/dR) and similarly for meS .
The cost of broadcasting the filters can exceed the cost of

sending a few columns for reasonable cluster size N . Track
join does perfect semi-join filtering during tracking. Thus, it
is more likely to subsume the Bloom filtering step compared
to early materialized hash join, which sends all columns, and
late materialized hash join, which sends keys and rids.

4. EXPERIMENTAL EVALUATION
Our evaluation is split into two parts. First, we simulate

distributed joins to measure network traffic across encoding
schemes (Section 4.1). Second, we implement and measure
track join against hash join execution times (Section 4.2).

4.1 Simulations
In the simulations we assume 16 nodes and show 7 cases:

broadcast R→ S (BJ-R) and S → R (BJ-S), hash join (HJ),
2-phase track join R → S (2TJ-R) and S → R (2TJ-S), 3-
phase track join (3TJ), and 4-phase track join (4TJ).

In the three experiments shown in Figure 3, the tuple
width ratio of R and S are 1/3, 2/3, and 3/3. The key width
is included in the tuple width and is 4 bytes. The tables
have equal cardinality (109) and almost entirely unique keys.
Thus, track join selectively broadcasts tuples from the table
with smaller payloads to the one matching tuple from the
table with larger payloads and the 2-phase version suffices.

In the general case hash join has 1/Nk probability in order
for all k matching tuples to be on the same node that was
the result of hashing the key. For track join, this probability
is 1/Nk−1 because the collocation can occur in any node.
When both tables have almost unique keys, the difference is
maximized since k ≈ 2 is the lower bound for equi-joins.
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Figure 3: Synthetic dataset of 109 vs. 109 tuples with ≈ 109 unique join keys
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Figure 4: Synthetic dataset of 2 · 108 unique vs. 109 tuples (single side intra-table collocated)

In Figure 4, we show how locality can affect track join
performance. We assume S to have 1 billion 60-byte tuples
and R to have 200 million 30 byte tuples with unique keys.
S repeats each key 5 times but key locations follow patterns
specified below each chart. The pattern 5,0,0,... means all
5 key repeats are on a single node. The pattern 2,2,1,0,0,...
represents 2 nodes with 2 repeats of the same key and 1
node with 1 repeat. The pattern 1,1,1,1,1,0,0,... means all
repeats are on different nodes. This placement is artificially
generated to represent different degrees of locality.

As shown in the left part of the result, when all repeats
are collocated on the same node, regardless of which node
that may be, track join will only transfer matching keys to a
single location. When the tuple repeats follow the 2,2,1 pat-
tern, still better than uniform placement, the traffic is still
reduced compared to hash join. Note that random place-
ment collocates repeats to some degree.

We do the same experiment using small tables for both
inputs. Each table has 40 million tuples with unique keys
and repeats each key 5 times. Since each key has 5 repeats
on each table, we generate 25 output tuples per unique key.
These numbers were picked so that the outputs on all figures
of the current page are of the same size. In Figure 4 we
produce 1 billion tuples as output. In Figures 5 and 6 we
use 200 million tuples with 40 million distinct join keys for
both tables, thus each key has 25 output tuples. The tuple
widths are still 30 bytes for R and 60 bytes for S.

The difference between Figure 5 and Figure 6 is whether
the tuples across tables are collocated. In the first, the
5,0,0,... configuration means all repeats from R are on a
single node and all repeats from S are on a (different) sin-
gle node. We term this case, shown on Figure 5, intra-table
collocation. When same key tuples from across tables are
collocated, locality is further increased. We term this case,
shown on Figure 6, inter-table collocation. When all 10 re-
peats are collocated, track join eliminates all transfers of
payloads. Messages used during the tracking phase can only
be affected by the same case of locality as hash join.

Figures 4, 5, and 5 show the weakness of 2-phase and 3-
phase track join to handle all possible equi-joins. If both ta-
bles have values with repeating keys shuffled randomly with
no repeats in the same node, 4-phase track join is similar
to hash join. However, track join sends far less data when
matching tuples are collocated, inside or across tables.

In the rest of our experimental evaluation, for both simu-
lation and our implementation of track join, we use queries
from real analytical workloads. We did extensive profiling
among real commercial workloads with one sophisticated
commercial DBMS. The commercial bundle hardware of the
DBMS is an 8-node cluster connected by 40 Gbps Infini-
Band. Each node has 2X Intel Xeon E5-2690 (8-core with
2-way SMT) CPUs at 2.9 GHz, 256 GB of quad-channel
DDR3 RAM at 1600 MHz, 1.6 TB flash storage with 7 GB/s
bandwidth, and 4X 300 GB hard disks at 10,000 RPM.
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Figure 5: Synthetic dataset with 2 · 108 tuples per table with 4 · 107 unique keys (intra collocated)
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Figure 7: Slowest join sub-query of slowest query (Q1) of real workload X (original tuple ordering)

In the next experiment we use the slowest query (Q1) from
a real workload (X). All query plans were generated by the
same commercial DBMS. Q1 includes a hash join that we
profiled to take 23% of the total execution time. The two
join inputs, shown in table 1, are both intermediate relations
and consist of 769,845,120 and 790,963,741 tuples. The join
output has 730,073,001 tuples. Q1 joins 7 relations, after
applying selections on 4, and performs one final aggregation.

Column name Distinct values Bits

R

J.ID (key) 769,785,856 30
T.ID 53 6
J.T.AMT 9,824,256 24
T.C.ID 297,952 19

S

J.ID (key) 788,463,616 30
T.ID 53 6
S.B.ID 95 7
O.U.AMT 26,308,608 25
C.ID 359 9
T.B.C.ID 233,040 18
S.C.AMT 11,278,336 24
M.U.AMT 54,407,160 26

Table 1: R (≈ 770M tuples) 1 S (≈ 791M tuples)

In Figure 7, we use 3 different encoding schemes, fixed
byte (1, 2 or 4 byte) codes, fixed bit dictionary codes, and
variable byte1 encoding. The input displayed locality, since
broadcasting R transferred ≈ 1/3 of R tuples compared to
hash join. We would expect both to transfer the whole R
table. We shuffle and repeat the experiments in Figure 8.

Workload X contains more than 1500 queries and the
same most expensive hash join appears in the five slowest
queries, taking 23%, 31%, 30%, 42%, and 43% of their ex-
ecution time. The slowest five queries require 14.7% of the
total time required for all queries in the workload (> 1500)
cumulatively and spend ≈ 65–70% of their time on the net-
work. Time was measured by running the entire X workload

on the commercial DBMS we use. The hash join in all five
queries operates on the same intermediate result for the key
columns, but each query uses different payloads. Queries
Q2–Q5 are similar to Q1 and do 4–6 joins followed by ag-
gregation. We study the same expensive join as in Q1.

All columns of the join are of number type and would use
variable byte encoding if left uncompressed, which is expen-
sive for network use. As shown in Figures 7 and 8, where we
presented results for the most expensive query (Q1), using
uncompressed keys increases the cost of track join. Since
we cannot optimize the tracking phase, it is preferable to
compress the key columns rather than the payload columns.
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Figure 9: Common slowest join sub-query in slowest
queries 1–5 of X (optimal dictionary compression)

In Figure 9, we compare hash and track join on the slowest
five queries, using dictionary coding with the minimum num-
ber of bits, which is also the optimal compression scheme
that we can apply here. The total bits per tuple for R:S are
79:145, 67:120, 60:126, 67:131, and 69:145 respectively. The
network traffic reduction is 53%, 45%, 46%, 48%, and 52%
respectively. Here, both inputs have almost entirely unique
keys. Thus, assuming we pick the table with shorter tuples
(R here) as the one we selective broadcast during 2-phase
track join, all track join versions have similar performance,
sending each tuple from table with shorter tuples to the sin-
gle location of the match from the table with wider tuples.
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Figure 10: Slowest join in slowest query of uncom-
pressed variable byte1 Y (original tuple ordering)

In the X workload, the key columns have less than 1 bil-
lion distinct values, and thus, fit in a 32-bit integer if dictio-
nary encoded. However, the actual values do not fit in the
32-bit range. In some cases, we can effectively reduce the
data width using simple compression schemes [18] that allow
fast decompression and do not require accessing large dictio-
naries that are unlikely to remain CPU-cache-resident. On
the other hand, dictionaries reduce the width of data types
and, if sorted, can perform equality and ordering operations
with the dictionary index. Decoding arbitrary n-bit dictio-
nary indexes can be implemented efficiently [18, 35]. How-
ever, in many operations, including non-selective equi-joins,
dictionary accesses are redundant. In our results for com-
pressed workload X, we omit dictionary dereference traffic
as the join can proceed solely on compressed data.

In all experiments we omit dictionary dereference traffic as
the join can proceed solely on compressed data. Dictionar-
ies are also compressed before the join using the minimum
number of bits required to encode the distinct values of the
intermediate relation. This is the optimal encoding scheme,
when most keys are unique and have no specific value or-
dering. If the dictionaries are not compressed at runtime,
we need to rely on the original dictionary that encodes all
distinct values of original tables. Encoding to the optimal
compression is not always the best choice as the total gain
may be outweighed by the total time needed to re-compress.
The decision to compact the dictionary and re-compress an
intermediate relation, is taken by the query optimizer.

In our last simulation we use a second real workload (Y ).
We isolate the most expensive hash join out of 9 joins from
the slowest query out of the ≈ 90 analytical queries in Y .
According to our profiling, the top query takes 20% of the
time required to run all queries cumulatively and the hash
join takes about 36% of the total query execution time.

In Figure 10 we show the running time using the orig-
inal data ordering. The R table has 57,119,489 rows and
the S table has 141,312,688 rows. The join output consists
of 1,068,159,117 rows. The data are uncompressed and use
variable byte encoding. The tuples are 37 and 47 bytes wide,
the largest part of which is due to a character 23-byte char-
acter column. The large output of the query makes it a good
example of high join selectivity that has different character-
istics from foreign and candidate key joins. Late material-
ization could cause this query to be excessively expensive, if
payloads are fetched at the output tuple cardinality.

The last experiment is a good example of the adaptiveness
of track join. We need many repeated keys since the output
cardinality is 5.4 times the input cardinality which also ap-
plies per distinct join key. The näıve selective broadcast of
2-phase and 3-phase track join almost broadcasts R.
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Figure 11: Slowest join in slowest query of uncom-
pressed variable byte1 Y (shuffled tuple ordering)

In Figure 11, we re-run the experiment on the same work-
load as Figure 10, but first we shuffle the input to remove all
locality. The 4-phase version is better than hash join, while
the other versions almost broadcast R due to key repetitions.

The 2-phase track join can be prohibitive if there is no
locality and we choose to broadcast S tuples to R tuple
locations. This is due to sending S tuples to too many nodes
to match with R and is shown in Figure 11. The opposite
broadcast direction is not as bad, but is still three times
more expensive than hash join. 4-phase track join adapts to
the shuffled case and transfers 28% less data than hash join.

4.2 Implementation
For the next set of experiments, we implement hash join

and track join in C++ using system calls but no libraries.
The network communication uses TCP and all local process-
ing is done in RAM. We use four identical machines con-
nected through 1 Gbit Ethernet, each with 2X Intel Xeon
X5550 (4-core with 2-way SMT) CPUs at 2.67 GHz and
24 GB ECC RAM. The RAM bandwidth is 28.4 GB/s for
reading data from RAM, 16 GB/s for writing data to RAM,
and 12.4 GB/s for RAM to RAM copying. We compile with
GCC 4.8 using -O3 optimization, the OS is Linux 3.2, and
we always use all 16 hardware threads on each machine.

In Table 2 we show the CPU and network use for hash
join and all track join versions. Our platform is severely
network bound since each edge can transfer 0.093 GB/s, if
used exclusively. Although track join was presented using a
pipelined approach in Section 2, we separate CPU and net-
work utilization by de-pipelining all operations of track join.
Thus, we can estimate performance on perfectly balanced
and much faster networks by dividing the time of network
transfers accordingly. We assume the data are initially on
RAM and the join results are also materialized on RAM.2

Input Time HJ 2TJ3 3TJ 4TJ

X
Orig.

CPU 4.308 5.396 6.842 7.500

Network 87.754 38.857 44.432 44.389

Shuf.
CPU 4.598 6.457 7.601 8.290

Network 87.828 61.961 67.117 67.518

Y
Orig.

CPU 2.301 2.279 3.355 2.400

Network 30.097 10.800 11.145 10.476

Shuf.
CPU 2.331 2.635 3.536 2.541

Network 30.191 28.674 29.520 18.230

Table 2: CPU & network time (in seconds) on the
slowest join of the most expensive query of X and Y

1 The variable byte scheme of X, Y uses base 100 encoding.
2 We materialize Y in chunks as it does not fit in RAM.
3 2TJ uses the R→ S direction for selective broadcasts.



Step Description
Workload X Workload Y
Orig. Shuf. Orig. Shuf.

Hash partition R tuples 0.347 0.350 0.054 0.054

Hash partition S tuples 0.478 0.477 0.167 0.167

Transfer R tuples 29.464 29.925 7.197 7.392

Transfer S tuples 57.199 57.142 22.550 22.945

Local copy tuples 0.115 0.115 0.039 0.039

Sort received R tuples 1.145 1.288 0.176 0.179

Sort received S tuples 1.627 1.777 0.535 0.572

Final merge-join 0.601 0.602 1.322 1.321

Table 3: Distributed hash join steps (in seconds)

Our implementation supports fixed byte widths. For X,
we use 4-byte keys, 7-byte payloads for R, and 18-byte pay-
loads for S. For Y , we use 4-byte keys, 33-byte payloads for
R, and 43-byte payloads for S. The node locations use 1
byte and the tracking counts use 1 byte for X and 2 for Y .

Using workload X in the original order, 2-phase track join
increases the CPU time by 25%, but reduces the network
time by 56% compared to hash join. 3-phase and 4-phase
track join increases the CPU time by 59% and 74%, but do
not reduce network more than 2-phase track join. If X is
shuffled, 2-phase track join, the best version here, increase
the CPU time by 40% reduces the network time by 29%.

Using Y in the original order, 2-phase track join suffices
to reduce the network time by 64% compared to hash join
without affecting the CPU time. If Y is shuffled, 2-phase
and 3-phase track join increase the CPU time without saving
network, due to key repetitions. In fact, we would transfer
more data than hash join, as shown Figure 11, if we used
more nodes. 4-phase track join, the only useful version here,
increases the CPU time by 9% and reduces network by 40%.

We project track join performance on 10X faster network
(10 Gbit Ethernet) by scaling the network time. For X, we
project track join to be ≈ 29% faster than hash join. For Y ,
track join would be ≈ 37% faster. Note that the hardware
bundle of the commercial DBMS uses both faster CPUs (2X
8-core CPUs at 2.9GHz) and network (40 Gbit InfiniBand).

Tables 3 and 4 show the times per step for hash join and
4-phase track join. We use sort-merge-join (MSB radix-sort)
for local joins. Data movement is separated between remote
and local transfers. For track join, we sort both tables and
aggregate the keys. We shuffle keys and counts across the
network and generate schedules by splitting pairs of nodes
into four distinct parts for migrating and broadcasting R
and S. The transferred pairs are merge-joined to translate
nodes into payloads. The payloads are shuffled and the final
join occurs. For X, scheduling takes half the time of local
hash join, but is redundant since 2-phase track join suffices.
For Y , scheduling is crucial and takes almost negligible time.

5. FUTURE WORK
The original ordering of tuples in X exhibits locality skew

among nodes, reducing the potential for improvement over
hash join. If some nodes exhibit more locality than oth-
ers, we need to take into account the balancing of transfers
among nodes and not only aim for minimal network traffic.

A pipelined implementation can reduce end-to-end time
by overlapping CPU and network [16]. Track join is more
complex than hash join, offering more choices for overlap.
Thus, investigating alternative implementations that over-
lap CPU and network to minimize time is a crucial problem.

Step Description
Workload X Workload Y
Orig. Shuf. Orig. Shuf.

Sort local R tuples 0.979 1.300 0.182 0.182

Sort local S tuples 1.401 1.792 0.534 0.565

Aggregate keys 0.229 0.227 0.022 0.025

Hash part. keys, counts 0.373 0.372 0.011 0.018

Transfer key, count 26.800 27.339 0.977 1.378

Local copy key, count 0.034 0.034 0.093 0.001

Merge recv. key, count 0.506 0.507 0.015 0.022

Generate schedules and
1.627 1.650 0.035 0.047

partition by node

Tran. R → S keys, nodes 7.277 10.913 0.346 0.532

Tran. S → R keys, nodes 6.046 1.562 0.135 0.247

Local copy keys, nodes 0.016 0.016 0.000 0.000

Merge rec. keys, nodes 0.237 0.235 0.007 0.012

Merge-join R → S keys,

0.315 0.456 0.068 0.098nodes ⇒ payloads

and partition by node

Merge-join S → R keys,

0.355 0.204 0.067 0.082nodes ⇒ payloads

and partition by node

Transfer R → S tuples 2.664 27.532 6.086 9.600

Transfer S → R tuples 0.001 0.001 3.235 6.462

Local copy R → S tuples 0.067 0.017 0.007 0.009

Local copy S → R tuples 0.138 0.037 0.021 0.008

Merge rec. R → S tuples 0.161 0.531 0.045 0.067

Merge rec. S → R tuples 0.141 0.066 0.043 0.045

Final merge-join R → S 0.419 0.555 0.822 0.793

Final merge-join S → R 0.342 0.161 0.518 0.556

Table 4: Track join (4-phase) steps (in seconds)

6. RELATED WORK
The foundations of distributed query processing and data-

base implementation [5, 8, 10, 11, 20] have been laid some
decades back. The baseline hash join algorithm we also use
in our work is the version presented in the Grace database
machine [17], later parallelized by the Gamma project [9].
Distributed algorithms that filter tuples to reduce network
traffic have been extensively studied, namely semi-joins [4,
28, 30], Bloom-joins [22], and other approaches [19].

Contemporary databases, as mentioned, shift from the
one-size-fits-all paradigm [32] and are designed as optimized
programs for specific needs, the most important cases be-
ing analytical and transactional systems. Transactional dis-
tributed databases are targeting higher transaction through-
put, by eliminating unnecessary network communication [32]
due to latency induced delays of distributed commit proto-
cols. Storage managers have also been improved since [13,
14] to keep up with the increasing speed. Analytical systems
have evolved into column stores [26, 31] and query execu-
tion works primarily in RAM [21]. Using the latest hardware
platforms, the network bandwidth remains an order of mag-
nitude lower than the RAM bandwidth. There has also been
significant work towards optimizing main-memory resident
database operators, namely linear scans [18, 35], joins [2, 3,
15], group-by aggregations [36], and sorting [25, 29, 34].

In distributed sorting [16], CPU and network time can
be overlapped by transferring keys and payloads separately.
If the response time is important, a modified hash join has
been proposed [33]. On faster networks, distributed joins
have been evaluated [12], but the network was not the bottle-



neck for the algorithm used. Recent work discusses network
time optimization [27] covering joins. The optimization is
NP-complete and therefore cannot be applied per-key. In
contrast, track join minimizes network volume using linear
scheduling applied per key, achieving a finer granularity op-
timum. While completion time is not necessarily a better
metric than network volume when partial results can be con-
sumed as soon as they are generated, track join can utilize
the temporal scheduling of [27] to reduce end-to-end time.

Popular generic distributed systems [7, 24] have been used
for database operations such as joins [1, 23], minimizing net-
work transfers by carefully mapping “map” and “reduce” op-
erators to the most relevant data. However, “tracking” is
still required to achieve high granularity collocation. Based
on our non-pipelined implementation, track join can be re-
implemented for MapReduce. Thus, network optimizations
can occur both at a coarse-grain granularity by the frame-
work and at a fine-grain granularity by using track join.

7. CONCLUSION
We presented track join, a novel algorithm for distributed

joins that minimizes communication and therefore, network
traffic. To minimize the number of tuples transferred across
the network, track join generates an optimal transfer sched-
ule for each distinct join key after tracking initial locations of
tuples. Track join makes no assumptions about data organi-
zation in the DBMS and does not rely on schema properties
or pre-existing favorable data placement to show its merits.

We described three versions of track join, studied cost es-
timation for query optimization, compared the interaction
with semi-join filtering, and showed track join to be better
than tracking-aware hash join. Our experimental evaluation
shows the efficiency of track join at reducing network traffic
and shows its adaptiveness on various cases and degrees of
locality. Our evaluation shows that we can reduce both net-
work traffic and total execution time. The workloads were
extracted from a corpus of commercial analytical workloads
and the queries were profiled as the most expensive out of all
the queries in each workload using a market-leading DBMS.
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