
HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 1

Hardware Transactional Memory

• transactions normally associated with databases

• in this context, think of a transaction as the atomic update of a number of memory
locations [eg. atomic update of a data structure]

• a transaction is a finite sequence of machine instructions that read and write
memory locations, executed by a single thread, satisfying the following properties:

• serializability: transactions appear to execute serially, meaning that the steps of
one transaction never appear to be interleaved with the steps of another

• committed transactions are never observed by different threads to execute in
different orders

• atomicity: each transaction makes a sequence of tentative changes [NOT visible
to other threads] to memory and the architectural state [CPU registers] and
then either

 COMMITS - making its tentative changes visible to other threads

 ABORTS - causing its tentative changes to be discarded

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 2

Hardware Transactional Memory

• Transactional Memory: Architectural Support of Lock-Free Data Structures
Maurice Herlihy and J. Eliot B. Moss
Proceedings of the 20th Annual International Symposium on Computer Architecture
1993

• motivations

 lock free operations on a data structure will not be prevented if other threads stall
mid execution

 avoids common problems with mutual exclusion
 out performs best known locking techniques

• takes advantage of the first level cache and the cache coherency protocol

• tentative changes made to the first level cache [and architectural state] ONLY

• tentative changes made visible atomically on a successful commit

https://www.scss.tcd.ie/Jeremy.Jones/CS4021/herlihy93transactional.pdf

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 3

Hardware Transactional Memory

• typical transactional code

• will describe Intel Transactional Synchronization eXtension [TSX]

• implemented 20 years after original Herlihy and Moss paper

• support for hardware lock elision [HLE] and restricted transactional memory [RTM]

• first Haswell CPU with TSX released Jun-13 [Aug-14 bug reported in first implementation]

• NOT all later CPUs support TSX [need to test CPUID.07H.EBX.RTM [bit 11] = 1]

start transaction start transaction

< UPDATE SHARED DATA STRUCTURE > < UPDATE SHARED DATA STRUCTURE >

commit transaction commit transaction

retry on failure retry on failure

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 4

Intel TSX

• 4 new assembly language instructions for RTM

 xbegin transaction begin
 xend transaction end
 xabort transaction abort
 xtest test if in a transaction

• example transactional code [IA32/x64 assembly language]

xbegin L0
< INSTRUCTIONS TO UPDATE SHARED DATA STRUCTURE >
xend
< HERE ON SUCCESSFUL COMMIT >

L0: < HERE ON ABORT > [eax contains RTM abort status]

• eager conflict detection
• transaction fails as soon as a conflict is detected

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 5

Intel RTM

• why does a transaction abort?

• instructions inside a transaction read and write memory locations

• transaction read set and write set

• transaction will abort if any other CPU...

 reads a location in its write set
 writes to a location in its read or write set

• transactions may also abort due to hardware limitations, context switches, interrupts,
page faults, update of PTE Accessed and Dirty bits, ...

• ​MUST provide a non transactional execution path that can be executed if a
transaction fails continuously

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 6

Intel RTM...

• RTM abort status in eax

• NB: an aborted transaction can return 0 in eax [NO bits set]

eax bit

0 set if abort caused by XABORT instruction

1 transaction may succeed on retry [always clear if bit 0 set]

2 set if another logical processor conflicts with read or write set

3 set if internal buffer overflowed

4 set if debug breakpoint was hit

5 set if abort occurred during a nested transaction

6:23 reserved

24:31 ABORT argument [only valid if bit 0 set]

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 7

TSX Instrinsics

• _xbegin() and _xend() intrinsics

• not so easy to follow without examining generated code

• consider following code to increment a shared global variable g using a transaction

while (1) { // keep trying
int status = _xbegin(); // set status = -1 and start transaction
if (status == _XBEGIN_STARTED) { // status == XBEGIN_STARTED == -1

(*g)++; // non atomic increment of shared global variable
_xend(); // end transaction
break; // break on success

} else { //
… // code here executed if transaction aborts

} //
}

• no code provide here for ​non transactional path, BUT it is required
• non transactional path could update data structure using a lock (hopefully a rare event)

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 8

TSX Instrinsics...

• examine generated code using debugger
• NB: can't debug [single step] code in the body of transaction
• status stored in eax

RETRY: or eax, 0FFFFFFFFh
xbegin L0

L0: cmp eax, 0FFFFFFFFh
jne L1
inc qword ptr [rbp]
xend
jmp L2

L1: <else part>
jmp RETRY

L2:

• NB: works because if transaction aborts, eax will not be -1

status = -1

L0: jump here on transaction abort (eax != -1)

code here executed on abort

end transaction and jump to L2 on success

non atomic increment of 64 bit counter

start transaction

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 9

TSX Instrinsics...

• void _xabort(const unsigned int imm)

forces transaction to abort
the low 8 bits of imm will be returned in bits 24:31 of RTM abort status

• unsigned char _xtest(void)

returns 1 if currently executing a transaction, otherwise 0

• transactions can be nested up to an implementation limit [MAX_RTM_NEST_COUNT]

xbegin L0 // nesting count 1
xbegin L1 // nesting count 2 [L1 ignored if nesting count != 1]
xend // nesting count 1
xend // nesting count 0

• transaction only committed if nesting count is 0 [partial support of nested transactions]

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 10

 8 8

shared
memory

CPU 0

MESI cache coherent bus

CPU 1

64

data cache 0

64

data cache 1

TSX Level 1 Cache Support

• Haswell level 1 data cache

• 32K L=64 K=8 N=64

• 512 cache lines [8 x 64]

• each hyper-threaded CPU
has its own L1 cache

• MESI cache coherency

• cache line states Modified, Exclusive, Shared and Invalid

• additional T bit which is set if cache line is part of a transaction

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 11

TSX Level 1 Cache Support...

• consider the following transaction [assume initially a0 = 10 and a1 = 20]

xbegin
a0 += 4; // add 4
a1 -= 4; // subtract 4

xend

• simulates atomically transferring €4 from one bank account to another

• transaction involves two memory locations a0 and a1

• transactions can be executed concurrently [will abort if a conflict detected]

• assume address of a0 maps to level 1 data cache set 0 and a1 to set 1

• assume ALL cache lines initially Invalid with T = 0

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 12

TSX Level 1 Cache Support...

• CPU0 starts transaction
• CPU0 reads a0 into cache [Exclusive] and sets T bit [a0 added to transaction read set]
• CPU0 writes a0 [a0 += 4] in cache ONLY [Modified] [a0 added to transaction write set]
• CPU0 reads a1 into cache [Exclusive] and sets T bit [a1 added to transaction read set]

• CPU0 writes a1 [a1 -= 4] in cache ONLY [Modified] [a1 added to transaction write set]
• xend executed and...
• transaction commits by clearing T bits [instantaneously] [and its read and write sets]
• modified cache lines are now visible and accessible [Modified]

6

4

6

4

 8 8
M a0 14 T

E a1 20 T

I

data cache 0

I I

data cache 1

I I

I I

I

I

I

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 13

TSX Level 1 Cache Support...

• imagine CPU0 and CPU1 execute the transaction concurrently and that...
• CPU0 is ahead of CPU1 and is about to write to a1 when CPU1 starts its transaction
• assume that the data caches are in the following state

• CPU1 tries to read a0 into its cache
• CPU0 detects a conflict because CPU1 is attempting to read a Modified cache line

that is part of its transaction [T and Modified bits set meaning that a0 is a member
of CPU0's write set]

6

4

6

4

 8 8
M a0 14 T

E a1 20 T

I

data cache 0

I I

data cache 1

I I

I I

I

I

I

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 14

TSX Level 1 Cache Support...

• CPU0 aborts transaction by invalidating all Modified cache lines involved in the
transaction [those marked with a T bit] and clearing all T bits

• CPU1 will read a0 directly from memory [CPU0 will NOT intervene to supply data]]

• even though CPU0 had nearly completed its transaction, it is CPU0 that aborts

• CPU0 would also abort if CPU1 reads a0 outside of a transaction

• CPU0 detects a conflict if another CPU reads a location in its write set or writes to a
location in either its read or write set

6

4

6

4

 8 8
I a0 14

E a1 20

I

data cache 0

E a0 10 T

I I

data cache 1

I

I

I I I

I

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 15

TSX Level 1 Cache Support...

• CPU detects conflicts at the granularity of a cache line

• replacement [eviction] of a cache line in the write set causes a transaction to abort

• replacement [eviction] of cache lines in the read set are tracked by unspecified
implementation specific hardware and may not cause an abort [victim cache??]

• since the Haswell level 1 cache is 8 way, a transaction that writes to 9 locations
which map to the same set will always abort

• remember that a hyper-threaded CPU share the first level cache [thus reducing the
effective size of a thread's read and write set]

• how exactly is a modified cache line, which subsequently becomes part of a
transaction, handled? must write to memory before being overwritten as part of a
transaction so original value can read from memory if transaction aborts

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 16

Hardware Lock Elision [HLE]

• makes use of transactional memory to speculatively update a shared data structure
that is normally protected by a lock

• can be easily retro-fitted to existing code base [by modifying lock code]

• instead of acquiring lock, update shared data structure speculatively

• use transactional memory to detect conflicts

• if conflict detected, re-execute by acquiring lock for real

acquire lock

update shared
data structure

release lock

acquire lock

update shared
data structure

release lock

acquire lock

update shared
data structure

release lock

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 17

Hardware Lock Elision...

• two new TSX instructions needed to support HLE

xacquire – used as a prefix to the instruction acquiring lock
xrelease – used as a prefix to the instruction releasing lock

• xacquire must precede XCHG or a LOCK prefix
• xrelease must precede XCHG, a LOCK prefix, MOV mem, reg or MOV mem, imm
• xacquire and xrelease are treated as NOPs on CPUs which do not support TSX

• how does HLE work?

• IF XACQUIRE EXECUTED NORMALLY IT WILL ELIDE (ALTER) THE FOLLOWING INSTRUCTION

• IF XACQUIRE EXECUTED AS THE RESULT OF A TRANSACTION ABORT IT IS IGNORED

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 18

Hardware Lock Elision...

• normal execution of xacquire starts a transaction
• following instruction executed with elision [normally an instruction to obtain lock]
• writing of lock not visible externally [has side effect of reducing bus traffic]
• address of lock, its original value and new value saved in an internal elision buffer
• address of lock added to the transaction readset
• other CPUs will continue to read the lock as being free [unless they have also

obtained the lock with elision], but this CPU will see the lock as taken [reads new
value from elision buffer]

• if NO conflicts detected while updating the shared data structure…

• xrelease commits the transaction and ALL changes become visible instantaneously
• instruction following xrelease will not write to the lock if it is going to overwrite it

with its original value [original value saved in elision buffer] also reducing bus traffic
• other CPUs will NOT observe the write and hence their transactions will NOT abort

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 19

Hardware Lock Elision...

• if multiple threads obtain the lock by elision and then do not interfere with each
other, updates to the shared data structure can occur in parallel

• without HLE there is NO parallelism

• if a conflict is detected, the transaction aborts and the xacquire instruction is re-
executed, but ignored, resulting in the following lock instruction also being executed
normally [without elision]

• writing to the lock without elision results in conflicting transactions being aborted as
it writes to the readset of conflicting transactions

acquire lock

update shared
data structure

release lock

acquire lock

update shared
data structure

release lock

acquire lock

update shared
data structure

release lock

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 20

Hardware Lock Elision...

• Sample assembly language code

mov eax, 1 ; eax = 1
retry: xacquire ; xacquire prefix hint

xchg eax, lock ; exchange eax and lock in memory
test eax, eax ; test eax if lock free [0] …
jz locked ; jmp to locked otherwise…

wait: pause ; causes transaction to abort
cmp lock, #1 ; should get here outside of a transaction
je wait ; wait until lock free
jmp retry ; retry using HLE

locked: < UPDATE SHARED DATA STRUCTURE>

xrelease ; xrelease prefix hint
mov lock, 0 ; clear lock
ret ; return

jump here on transaction
abort, but xacquire is ignored

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 21

Hardware Lock Elision...

• what is the function of the pause instruction?

• if the lock is already set when executing the lock instruction with elision, the thread
will spin waiting for the lock to become free INSIDE A TRANSACTION

• when the lock is freed by the thread holding the lock [written with 0], the waiting
threads will abort and then try to obtain the lock without elision

• NOT good as thread might have been able to update the shared data structure
transactionally by obtaining lock with elision

• obtaining lock without elision inhibits parallelism

• can easily get into a state where the lock is always obtained without elision unless
there is a break when no threads are trying to obtain the lock

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 22

Hardware Lock Elision...

• the pause instruction causes transaction to abort

• the instruction to obtain the lock is then re-executed without elision and if the lock
is still taken the “do while” loop will be executed non transactionally

• when the lock is freed, an attempt is made to obtain lock with elision

• approach reduces the number of times lock taken without elision

• what happens if locked freed before pause executed? there is a race, the
consequence of which is that the lock will be obtained without elision

• Tutorial 3 will help determine the effectiveness of HLE locks

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 23

HLE Instrinsics

• Microsoft VC++ HLE intrinsics

long _InterlockedExchange_HLEAcquire(long* addr, long v) // acquire lock using HLE

void _Store_HLERelease(long *addr, long v); // release lock using HLE

• equivalent Microsoft VC++ for previous assembly language code

while (_InterlockedExchange_HLEAcquire(&lock, 1)) {
do {

_mm_pause(); // aborts transaction
} while (lock == 1);

}

< UPDATE SHARED DATA STRUCTURE >

_Store_HLERelease(&lock, 0); // release lock

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 24

Transaction Code Example

• doubly linked list
• head and tail

• operations to add and remove an item from head or tail
• when list NOT empty, operation modifies head or tail, but NOT both
• when list empty, operation modifies head and tail

• difficult to extract parallelism using locks
• protecting list with a single lock means that concurrent operations at either end of list

are NOT possible

• extracting concurrency straightforward with transactions

head 0

0

tail

next

prev

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 25

Transaction Code Example...

void DLList::addTail(Node *nn) {
xbegin();
nn->next = NULL; // (1)
nn->prev = tail; // (2)
if (tail == NULL) {

head = nn; // (3)
} else {

tail->next = nn; // (4)
}
tail = nn; // (5)
xend();

}

• similar code needed for addHead(), removeHead() and removeTail()
• extracts maximum concurrency

• MUST provide a non transactional path

head 0

0

tail

nn

(1)

(2)

(4)

(5)

0
nn

(1)

(2)

(4)

(5)

head
0

tail

head 0

tail

nn
0

(1)

(5)

(2)

(3)

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 26

Implementing Transactional and Non Transactional Paths

• consider the following approach

 use the same code for transactional and non transactional paths

 delay between attempts

 if transaction continues to fail after a given number of attempts, update data
structure using a lock

 need to read lock in transactional path [add lock to readset] so that if any other
thread sets the lock, the transaction will be aborted

 need to consider races between transactional and non transactional paths

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 27

Sample Code for Transactional and Non Transactional Paths
void DLList::addTail(Node *nn) {

int state = TRANSACTION; // TRANSACTION = 0 LOCK = 1
int attempt = 1; // number of attempts
while (1) {

UINT status =_XBEGIN_STARTED; // initialise status _XBEGIN_STARTED = -1
if (state == TRANSACTION) { // if state == TRANSACTION ...

status = _xbegin(); // execute transactionally ...
} else { // otherwise ...

while (InterlockedExchange(&lock, 1)) { // obtain testAndtestAndSet lock and ...
do { // execute non transactionally

_mm_pause();
} while (lock == 1);

}
}
if (status == _XBEGIN_STARTED) { // test status

if (state == TRANSACTION && lock) // if executing transactionally, add lock to readset so transaction will abort if lock obtained by another thread
_xabort(0xA0); // ALSO abort immediately if lock already set

< UPDATE SHARED DATA STRUCTURE >

if (state == TRANSACTION) { // if executing transactionally ...
_xend(); // end transaction ...

} else { // otherwise ...
lock = 0; // release lock

}
break;

} else { // HERE on a transaction abort
if (lock) { // if lock set ...

do { // wait until released
_mm_pause();

} while (lock);
} else { // otherwise

volatile UINT64 wait = attempt << 4; // initialise wait and delay by ...
while (wait--); // decrementing until zero (NB: initially wait should be > 0)

}
if (++attempt >= MAXATTEMPT) // increment attempt and if greater than or equal MAXATTEMPT

state = LOCK; // execute non transactionally by obtaining lock
}

} // while
}

• one approach
• back off and number of

attempts need to be tuned

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 28

Using an HLE Lock

void DLList::addTail(Node *nn) {
while (_InterlockedExchange_HLEAcquire(&lock, 1)) {

do {
_mm_pause(); // aborts transaction

} while (lock == 1);
}
nn->next = NULL;
nn->prev = tail;
if (tail == NULL) {

head = nn;
} else {

tail->next = nn;
}
tail = nn;
_Store_HLERelease(&lock, 0);

}

declared as part of DLLIist class

xrelease
mov lock, 0

intrinsic

intrinsic

which is better??
RTM more flexible, probably a poor strategy to
give up after only one attempt at trying to make
change with a transaction as per HLE

HARDWARE TRANSACTIONAL MEMORY

CS4021/4521 © 2017 jones@tcd.ie School of Computer Science and Statistics, Trinity College Dublin 24-Nov-17 29

Learning Outcomes

• you are now able to

 explain exactly what a transaction is in this context

 describe the operation of the Intel TSX instruction set

 explain how the level 1 cache detects conflicts between transactions

 write lockless algorithms using RTM transactions

 write lockless algorithms using Hardware Lock Elision (HLE)

