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ABSTRACT
64-bit address spaces are increasingly important for modern
applications, but they come at a price: pointers use twice
as much memory, reducing the effective cache capacity and
memory bandwidth of the system (compared to 32-bit ad-
dress spaces). This paper presents a sophisticated, auto-
matic transformation that shrinks pointers from 64-bits to
32-bits. The approach is “macroscopic,” i.e., it operates on
an entire logical data structure in the program at a time. It
allows an individual data structure instance or even a subset
thereof to grow up to 232 bytes in size, and can compress
pointers to some data structures but not others. Together,
these properties allow efficient usage of a large (64-bit) ad-
dress space. We also describe (but have not implemented)
a dynamic version of the technique that can transparently
expand the pointers in an individual data structure if it ex-
ceeds the 4GB limit. For a collection of pointer-intensive
benchmarks, we show that the transformation reduces peak
heap sizes substantially by (20% to 2x) for several of these
benchmarks, and improves overall performance significantly
in some cases.

Categories and Subject Descriptors
D.3.4 [Processors]: Compilers, Optimization, Memory
management

General Terms
Algorithms, Performance, Experimentation, Languages

Keywords
Recursive data structure, data layout, cache, static analysis,
pointer compression

1. INTRODUCTION
64-bit computing is becoming increasingly important for

modern applications. Large virtual address spaces are im-
portant for several reasons, including increasing physical
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Figure 1: Linked List of 4-byte values

Figure 2: Pointer Compressed Linked List

memory capacity, rapidly growing data sets, and several ad-
vanced programming techniques [15, 18, 6].

One problem with 64-bit address spaces is that 64-bit
pointers can significantly reduce memory system perfor-
mance [12] compared to 32-bit pointers. In particular,
pointer-intensive programs on a 64-bit system will suffer
from (effectively) reduced cache/TLB capacity and mem-
ory bandwidth for the system, compared to an otherwise
identical 32-bit system. The increasing popularity of object
oriented programming (which tends to be pointer intensive)
amplify the potential problem. We observe that the primary
use of pointers in many programs is to traverse linked data
structures, and very few individual data structures use more
than 4GB of memory, even on a 64-bit system. The ques-
tion therefore is how can we use pointers more efficiently to
index into individual data structures?

This paper presents a sophisticated compiler transforma-
tion, Automatic Pointer Compression, which transparently
converts pointers to use a smaller representation (e.g. from
64-bits to 32-bits) for a subset of the data structures in a
program. Pointer Compression builds on a previously pub-
lished technique called Automatic Pool Allocation [10] to
modify the program to allocate and free objects from pools
of memory within the system heap. Automatic Pool Al-
location attempts to segregate heap objects from distinct
data structures into separate pools. It guarantees that ev-
ery static pointer variable or pointer field pointing into the
heap is mapped to a unique pool descriptor at compile time.
Pointer Compression compresses a 64-bit pointer by replac-
ing it with a smaller integer index from the start of the
corresponding pool.

Consider a simple linked list of integers. Figure 1 illus-
trates the list compiled without pointer compression, and
Figure 2 illustrates the memory organization with pointers
compressed to 32-bit integer indexes. In this example, each



node of the list originally required 16 bytes of memory1 (4
bytes for the integer, 4 bytes of alignment padding, and
8 bytes for the pointer), and the nodes may be scattered
throughout the heap. In this (extreme) example, pointer
compression reduces each node to 8 bytes of memory (4 for
the integer, and 4 for the index that replaces the pointer).
Each index holds the byte offset of the target node from the
start of the pool instead of an absolute address in memory.

We describe and evaluate a “static” version of pointer
compression that limits individual pools to 2k bytes each,
for some k < 64 (e.g., k = 32), fixed at compile-time for each
pool. It can be applied selectively, i.e., other pools can grow
to the full 264 bytes. We show that this transformation pro-
vides substantial reductions in memory consumption and, in
some cases, significant net performance improvements over
pool allocation alone (even though pool allocation itself has
already improved memory hierarchy performance substan-
tially in many cases).

We also describe an optional “dynamic” version of the
transformation that can expand indices for a particular pool
transparently at run-time from k to 64 bits when a pool ex-
ceeds 2k bytes. This transformation ensures that the tech-
nique is fully transparent, but is restricted in applicability
to type-safe data structures where pointers do not point into
the middle of objects.

We begin by describing two underlying techniques - a
pointer analysis (called Data Structure Analysis) and Au-
tomatic Pool Allocation - that provide the foundation for
Pointer Compression. We then describe the static and dy-
namic versions of the technique, several simple optimizations
that can improve its performance, and finally experimental
results and related work.

2. BACKGROUND INFORMATION
The broad goal of Automatic Pool Allocation is to enable

macroscopic compiler transformations by giving the com-
piler information and control over data structure layouts.
Pointer Compression is one such client. Both Pool Alloca-
tion and Pointer Compression operate on a common points-
to graph representation with specific properties, which we
refer to as DS Graphs. Below, we describe the DS Graph
representation and then briefly summarize the Pool Alloca-
tion transformation. The precision (but not the correctness)
of both transformations is affected by how DS graphs are
computed. Therefore, we also very briefly describe relevant
aspects of the pointer analysis we use to compute DS graphs,
which we call Data Structure Analysis (DSA) [7].

Figure 4 shows a simple linked-list example and the DS
graphs computed by DSA for the three functions in the ex-
ample. We will use this as a running example in this Section
and the next.

2.1 Points-to Graph Representation: DS Graphs
The key properties of the points-to graph representation

(DS graphs) required for this work are as follows. Like any
points-to graph, a DS graph is a directed graph that pro-
vides a compile-time representation of the memory objects
in a program and the points-to relationships between them.
Each node within a DS graph represents a distinct set of
memory objects. The current work assumes four key prop-
erties for the graph:

1
Not including the header added by malloc, typically 4 bytes.

Figure 3: Pool-allocated Linked List

1. Type information: Each node, n, is associated with
a type, n.τ , that is some program-defined type, or ⊥
representing an unknown type. Any DS node with
τ 6= ⊥ represents a set of objects of a single type, τ ,
i.e., the compiler has proven that that all operations
on pointers to the node are consistent with τ . We
refer to such nodes as type-homogeneous (TH) nodes.
If τ = ⊥, this is treated like an unknown-size array of
bytes and is shown as τ = byte plus an A(rray) flag
in the figures. Figure 4 shows that DSA constructs a
TH node for the objects of type τ = list in functions
MakeList and Length and for the A list in function
Testlists. It marks the B list as non-TH because a
location in a B list object is accessed as a character.

2. Memory classes: Memory objects are distinguished
into four classes: Heap, Stack, Global and Unknown.
For each node, this is represented as a set of flags,
M ⊆ {H,S,G,U}. A node with U ∈ M must be
assigned type τ = ⊥. Functions are treated simply
as Global objects so that function pointers are repre-
sented uniformly in the graph.

3. Field-sensitive points-to information: An edge in a DS
graph is a 4-tuple {s, fs, t, ft}. s and t are DS nodes,
while fs and ft are field numbers of s.τ and t.τ respec-
tively. Only structure types have multiple fields, i.e.,
scalar or array types are treated as a single field.

4. Single target for each pointer : Every pointer variable
or field has a single outgoing edge, i.e., all objects
pointed to by a common pointer must be represented
by a single node. The benefits of this property for the
two transformations are explained in the next subsec-
tion.

In computing DS graphs as defined above, the naming
scheme used to distinguish heap objects can have a strong
influence on the outcome of transformations such as Pool
Allocation and Pointer Compression, both of which focus
on heap objects. In particular, in order to segregate dis-
tinct data structures into separate pools (and apply pointer-
compression to each data structure separately), the pointer
analysis must use a fully context-sensitive naming scheme
for heap objects, i.e., distinguish heap objects by acyclic
call paths. This is necessary in order to segregate two in-
stances of a data structure (e.g., two distinct binary trees)
created and processed by common functions. Both trans-
formations would work with a less precise naming scheme,
e.g., one based on allocation sites, but would not segregate
objects from two such data structures.

We have developed a very fast context-sensitive pointer
analysis algorithm we call “Data Structure Analysis” (DSA) [7]
to compute the DS graphs used by pool allocation and
pointer compression. DSA analyzes programs of 100K-200K
lines of code in 1-3 seconds, and takes a small fraction of the
time (about 5% or less) taken by gcc -O3 to compile the
same programs. DSA distinguishes heap objects by entire
acyclic call paths, as described above. For example, in func-
tion Testlists, this property enables DSA to distinguish



struct list { int X; list *Next; };

list *MakeList(int N) {
list *Result = 0;
for (int i = 0; i != N; ++i) {

list *Node =
malloc(sizeof(list));

Node->Next = Result;
Node->X = i+’A’;
Result = Node; }

return Result; }

int Length(list *L) {
if (L == 0) return 0;
return Length(L->Next)+1;

}

int Testlists() {
list *A = MakeList(100);
list *B = MakeList(20);
int Sum = Length(A) + Length(B);
((char*)B)[5] = ’c’; // not type safe!
return Sum; }

(a) Original
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(b) BU DS graph for MakeList
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(d) BU DS graph for Testlists

struct list { int X; list *Next; };

list *MakeList(Pool *PD, int N) {
list *Result = 0;
for (int i = 0; i != N; ++i) {

list *Node =
poolalloc(PD, sizeof(list));

Node->Next = Result;
Node->X = i+’A’;
Result = Node; }

return Result; }

int Length(list *L) {
if (L == 0) return 0;
return Length(L->Next)+1;

}

int Testlists() {
Pool P1, P2;
poolinit(&P1, sizeof(list));
poolinit(&P2, 0 /*no size hint known*/);
list *A = MakeList(&P1, 100);
list *B = MakeList(&P2, 20);
int Sum = Length(A) + Length(B);
((char*)B)[5] = ’c’;
pooldestroy(&P1); pooldestroy(&P2);
return Sum; }

(e) After Pool Allocation
Figure 4: Simple linked list example

the objects in the lists A and B (and prove the lists are
disjoint), even though they are created and manipulated by
common functions. If heap objects were instead named by
allocation site, A and B would point to a single node in the
graph and objects of the two lists would not be distinguish-
able.

A second feature of DSA is that, like many other context-
sensitive pointer analyses, e.g., [5, 4, 11, 13], it actually
computes two points-to graphs for each function in a pro-
gram - a bottom-up (BU) graph representing a function and
its callees (but not any callers), and a final top-down (TD)
graph representing the effects of both callees and callers.
The TD graph is the final result of the pointer analysis. The
BU graph, however, provides a more precise basis for both
Pool Allocation and Pointer Compression because two dis-
tinct pointer arguments in a function may be aliased (point
to the same DS graph node) in one calling context but not
in another. Using the BU graph allows the transformations
to distinguish (and therefore) segregate objects in the latter
case. Therefore, pointer compression operates largely using
the BU graph, except where noted, and pool allocation only
uses the BU graph [10].

The example graphs also illustrate other basic but relevant
features of DSA. The algorithm detects that the structure
is recursive (the cycle in the graph), and that the point-
ers in the functions point to the list objects. In MakeList,
DSA also detects that heap objects are allocated (H) and
returned, whereas in Length, memory is not allocated or
freed (no H flag). (The M and R flags shown in the figures
can be ignored for this work.)

2.2 Automatic Pool Allocation
Given a program with calls to malloc and free, Auto-

matic Pool Allocation modifies the program to allocate and
free memory from pools within the standard system heap. A
pool is represented in the program by a pool descriptor. Au-
tomatic Pool Allocation creates one distinct pool descriptor
for each node marked H in a function’s DS graph, effectively
partitioning objects in the heap as they were partitioned in
the DS graph by pointer analysis. Calls to malloc and free

struct list_pc32 { int X; int Next; };

static int MakeList_pc32(Pool *PD, int N) {
int Result = 0;
for (int i = 0; i != N; ++i) {
int Node = poolalloc_pc(PD, 1);
int *tmp1 = PD->poolbase+Node+offsetof(list_pc32, Next);
*tmp1 = Result;
int *tmp2 = PD->poolbase+Node+offsetof(list_pc32, X);
*tmp2 = i+’A’;
Result = Node; }

return Result; }

static int Length_pc32(Pool *PD, int L) {
if (L == 0) return 0;
int *tmp = PD->poolbase+L+offsetof(list_pc32, Next);
return Length_pc32(PD, *tmp)+1;

}

int Testlists() {
Pool P1, P2;
poolinit_pc(&P1, sizeof(list_pc32));
poolinit_pc(&P2, 1);
int A = MakeList_pc32(&P1, 100);
int B = MakeList_pc64(&P2, 20);
int Sum = Length_pc32(&P1, A) + Length_pc64(&P2, B);
((char*)B)[5] = ’c’;
pooldestroy_pc(&P1); pooldestroy_pc(&P2);
return Sum; }

Figure 5: Example after static compression

are simply replaced with calls to poolalloc and poolfree,
passing in the pool descriptor corresponding to the DS node
pointed to by the relevant pointer. This implies that the
lifetime of individual objects allocated from the pool stay
exactly the same as the original program (except for some
leaked objects as explained below).

The pool runtime library provides functions poolinit

and pooldestroy to initialize and destroy a pool descrip-
tor. pooldestroy also releases any remaining pool memory
to the system heap. (Note that this can reclaim memory for
objects that were never freed in the original program, i.e.,
were previously leaked.) Each pool is a fully general heap,
providing equivalents for all standard heap functions, includ-
ing poolalloc, poolfree, poolrealloc and poolmemalign.
A pool internally obtains and frees memory off the system
heap in large slabs using malloc and free.



Figure 3 shows the result of pool-allocating the linked
list in Figure 1. The linked list has been placed into one
memory pool, containing two slabs of memory, each holding
two nodes (in practice, many more nodes would fit in each
slab).

Pool allocation also uses the DS graph to identify which
memory objects do not escape from a function (e.g. the
“A” and “B” lists in Testlists). The pools for these DS
nodes are created and destroyed at the entry and exits of the
function. For nodes pointed to by a global variable, no such
function will be found and the pool create/destroy calls are
inserted into main. (Note that this only affects the lifetime
of the pool, and not the individual objects within the pool.)

Figure 4(e) shows the example code transformed by pool
allocation. Because the MakeList function allocates heap
memory and returns it (thus escaping from the function), a
pool descriptor argument is added to the function indicating
the pool of memory to allocate from. If a function calls
any other functions that require pool arguments (e.g. as
Testlists calls MakeList), pool descriptors are passed into
the function call. The length function is unmodified by pool
allocation because it does not allocate or free any memory
(nor do any callees). Note that pool allocation does not
require type-safety, allowing it to pool allocate the “B” list.

Automatic Pool Allocation, combined with DSA, provides
some key properties for this work:

• Because of the context-sensitivity of DSA, Automatic
Pool Allocation will segregate objects from distinct
data structures (identified by DSA) into different
pools. For example, lists A and B are allocated out of
distinct pools in Figure 4(e).

• Because of the “single-target” property of DS graphs,
Automatic Pool Allocation guarantees that every vari-
able or field pointing into the heap points to a single
pool, known at compile time. This ensures that the
mapping between a pointer and a pool descriptor does
not have to be tracked dynamically, which can be com-
plex and inefficient for pointers stored in memory.

Below, we use Node(p) for the DS node corresponding
to pointer expression p, Pool(n) for the pool descrip-
tor corresponding to DS node n, and Pool(p) as an
abbreviation for Pool(Node(p)).

• A TH node (with τ 6= ⊥) in the DS graph generates a
pool where all objects are of type τ or (if the A flag is
set) arrays of τ . Every individual τ item is identically
aligned, i.e., the compiler knows the exact layout of
items relative to the pool base.

3. STATIC POINTER COMPRESSION
Static pointer compression reduces the size of pointers in

data structures in two steps. First, it replaces pointers in
data structures with integers representing offsets from a pool
base (i.e., indexes into the pool). Second, in order to com-
press this index, it attempts to select an integer type that is
smaller than the pointer size (e.g. by using a 32-bit integer
on a 64-bit host). We refer to these as “index conversion”
and “index compression” respectively. The latter step may
fail because it requires somewhat stronger safety guaran-
tees2.

2
Note that index conversion alone may also be useful for purposes

Static pointer compression will cause a runtime error if
the program allocates more than 2k bytes from a single pool
using k-bit indices. Techniques to deal with this in the static
case are discussed briefly in Section 3.5. Alternatively, this
problem is solved by the dynamic algorithm in Section 4,
but that algorithm is more restrictive in its applicability.

For our list example of Figure 4(a), the static pointer com-
pression transformation transforms the code to that in Fig-
ure 5. Both the A and B lists are index-converted. Indices
in the A list to itself are compressed whereas those in the
B list to itself are not, for reasons explained below. This
also requires that distinct function bodies be used for the A

and B lists (those for the former are shown). By shrinking
pointers from 64-bits to 32-bits (which also reduces intra-
object padding for alignment constraints), each object of
the A list is reduced from 16 to 8 bytes – effectively reducing
the cache footprint and bandwidth requirement by half for
these nodes. The dynamic memory layout of the A list is
transformed from that of Figure 3 to Figure 2.

Below, we first describe changes required to the pool al-
location runtime to support pointer compression. We then
describe the transformation in three stages: the legality cri-
teria, the transformation for data structures that are never
passed to or returned from functions, and finally the ap-
proach to handle function calls.

3.1 Pointer Compression Runtime Library
The pointer compression runtime library is almost identi-

cal to the standard pool allocator runtime described briefly
in Section 2.2 and in more detail in [10]. The only two func-
tionality differences are that it guarantees that the pool is
always contiguous (discussed in Section 5.1) and that it re-
serves the 0th node to represent the null pointer. The library
interface is also cosmetically different in that the memory al-
location/free functions take indices instead of pointers. The
API is listed Figure 6, below.

void poolinit pc(Pool* PP, unsigned NodeSize);
Initialize the pool descriptor; record node size

void pooldestroy pc(Pool* PP)
Release pool memory and destroy pool descriptor

int poolalloc pc(Pool* PP, uint NumBytes)
Allocate NumBytes bytes.

void poolfree pc(Pool* PP, int NodeIdx)
Mark the object identified by NodeIdx as free.

void* poolrealloc pc(Pool* PP, int NodeIdx ptr, uint NumNodes)
Resize an object to NumNodes nodes.

Figure 6: Pool Compression Runtime Library

3.2 Safety Conditions for Static Pointer Com-
pression

The two steps of pointer compression (index conversion
and index compression) have separate legality criteria. A
key point to note is that these two sets of criteria apply to
potentially different pools. For example, consider the points-
to graph in Figure 12(a). Compressing the pointers from
list2 to the int objects requires (i) making the int pool
an indexed pool (i.e., using indices instead of pointers to
objects in this pool), but (ii) compressing the indices stored
in the list2 pool. Therefore, the legality criteria for index
conversion apply to the int pool and for index compression

other than pointer compression because it provides “position inde-
pendent” data structures that can be relocated in memory without
rewriting any pointers other than the pool base.



apply to the list2 pool. We refer to these as the indexed

pool and the source pool, respectively. Of course, for point-
ers within recursive data structures (e.g., the pointer from
list2 to itself), both pools are the same.

A common criterion for both index conversion and index
compression is that pointers to a pool must not escape from
the available program to unavailable functions such as an
external library. This criterion is already guaranteed by
pool allocation because the compiler cannot pool-allocate
objects that escape.

Index Conversion: A pool is safe to access via indexes in-
stead of pointers if the DS node corresponding to the pool
represents only heap objects and no other class of memory
(Global, Stack or Unknown). This condition can be deter-
mined directly from the memory flags in the DS node. It is
required because stack and global data are not allocated out
of a heap pool, and pointers to such objects cannot easily
be converted into offsets relative to the base of such a pool.

Each indexable pool identified by this criterion will be
used to hold at most 2k bytes, k < n, where n is the pointer
size for the target architecture (e.g., k = 32 and n = 64).
All valid pointers into such pools are replaced with indexes
at compile time (by transforming all instructions that use
these pointers, as described in the next two subsections).
Only some of these indexes, however, can be compressed to
use a k < n bit representation; the others must still use a
full n bit representation (i.e., 0-extended from k to n bits).

Index Compression: An index variable contained in an ob-
ject is safe to compress if the compiler can safely change the
layout of the enclosing object. This is possible for objects
represented by TH nodes in the points-to graph since all
operations on such objects use a known, consistent program
type, τ (see Section 2.1). Index values in such objects are
stored using k-bits. For example, in Figure 4, the A list ob-
jects can be reorganized and therefore can hold compressed
indices whereas the B list objects cannot (this would still be
true if both lists pointed to a common indexed pool). Note
that this criterion applies to DS nodes representing heap,
global or stack objects, i.e., indexes in any of these locations
can be compressed when the criterion is met.

It is important to note that type homogeneity in a pool is
sufficient but not necessary for changing the layout of objects
in the pool. In particular, if objects in a pool are of multiple
types but all objects are provably accessed in a type-safe
manner (e.g., when using a type-safe language), then index
compression would be safe. This is particularly important
for object oriented languages because, in such languages,
it may be common for pools to contain objects of multiple
different types derived from a common base type.

3.3 Intraprocedural Pointer Compression
Given the points-to graph and the results of automatic

pool allocation, intraprocedural static pointer compression
is relatively straight-forward. The high level algorithm is
shown in Figure 7. Each function in the program is inspected
for pools created by the pool allocator. (Pools passed in via
arguments or passed to or received from callees are ignored
for now, and considered in the next subsection.) If index-
conversion is safe for such a pool, any instructions in the
function that use a pointer to objects in that pool are rewrit-
ten to use indexes off the pool base. These indexes are stored
in memory in compressed form (k bits) when safe, otherwise

pointercompress(program P )
1 poolallocate(P ) // First, run pool allocator
2 ∀F ∈ functions(P )
3 set PoolsToIndex = ∅
4 ∀p ∈ pools(F ) // Find all pools
5 if (safetoindex(p)) // index-conversion safe for p?
6 PoolsToIndex = PoolsToIndex ∪ {p}
7 if (PoolsToIndex 6= ∅)
8 rewritefunction(F , PoolsToIndex)

Figure 7: Pseudo-code for pointer compression

left in uncompressed form (i.e., 0-extended to 64 bits). The
pool is also marked to limit its aggregate size to 2k bytes.

Once the indexable pools and the compressible index vari-
ables have been identified in the function, a single linear
scan over the function is used to rewrite instructions that
address the indexable pools. Assuming a simple C-like rep-
resentation of the code which has been lowered to individual
operations, the rewrite rules are shown in Figure 8. Oper-
ations not shown here are unmodified. In particular, any
operations that cast pointers to and from integers or per-
form arithmetic on integers do not need to be modified for
the transformation.

Original Statement Transformed Statement
P = null ⇒ P ′ = 0
P1 = P2 ⇒ P ′

1
= P ′

2

cc = P1 <> P2 ⇒ cc = P ′

1
<> P ′

2
, <>∈ {<,≤, >,≥, ==}

P1 = &P2->field ⇒ P ′

1
= P ′

2
+ newoffsetof(field)

P1 = &P2[V ] ⇒ P ′

1
= P ′

2
+ V*newsizeof(P2[0])

If node(P ) is non-TH or τ not a pointer (P : τ∗):
V = *(τ*)P ⇒ Base = PD->PoolBase

V = *(τ*)(Base+P ′)
*((τ*)P ) = V ⇒ Base = PD->PoolBase

*(τ*)(Base+P ′) = V
If node(P ) is TH and τ is a pointer (P : τ∗):

P1 = *P ⇒ Base = PD->PoolBase
P ′

1
= *(IdxType*)(Base+P ′)

*P1 = P ⇒ Base = PD->PoolBase
*(IdxType*)(Base+P ′

1
) = P ′

P = poolalloc(PD, N) ⇒ Tmp = (N/OldSize)*NewSize
P ′ = poolalloc pc(PD, Tmp)

poolfree(PD, P ) ⇒ poolfree pc(PD, P ′)
poolinit(PD, Size) ⇒ Tmp = (Size/OldSize)*NewSize

poolinit pc(PD, Tmp)
pooldestroy(PD) ⇒ pooldestroy pc(PD)

Figure 8: Rewrite rules for pointer compression

In the rewrite rules, P and P ′ denote an original pointer
and a compressed index. V is any non-compressed value in
the program (a non-pointer value, a non-converted pointer,
or an uncompressed index). IdxType is the integer type
used for compressed pointers (e.g. int32 t if k = 32). All P ′

values are of type IdxType. Indexes loaded from (or stored
to) non-TH pools are left in their original size whereas those
from TH pools are cast to IdxType.

The rules to rewrite addressing of structures and arrays
lower addressing to explicit arithmetic, and use new offsets
and sizes for the compressed objects, not the original. Mem-
ory allocations scale (at runtime) the allocated size from
the old to the new size. The most common argument to
a poolalloc call is a constant that is exactly “OldSize”,
allowing the arithmetic to constant fold to NewSize. The
dynamic instructions are only needed when allocating an
array of elements from a single poolalloc site, or when a
malloc wrapper is used (in the interprocedural case).

3.4 Interprocedural Pointer Compression
Extending pointer compression to support function calls

and returns requires three changes to the algorithm above.



First, a minor change is needed to the pool allocation trans-
formation to pass pool descriptors for all pools accessed in a
callee (or it’s callees), not just those pools used for malloc or
free in the callee [10]. In Figure 4 for example, the Length

function now gets a pool descriptor argument for “L.” Sec-
ond, the rewrite rules in Figure 9 must be used to rewrite
function calls and returns. These rules simply pass or re-
turn a compressed (i.e., k-bit) index value for every pointer
argument or return value pointing to an indexable pool.

Original Statement Transformed Statement
P1 = F (P2, V, P3, ...) ⇒ P ′

1
= Fc(P

′

2
, V, P ′

3
, ...)

V1 = F (V2, P2, ...) ⇒ V1 = Fc(V2, P ′

2
, ...)

F (V1, V2, ...) ⇒ F (V1, V2, ...)
return P ⇒ return P ′

Figure 9: Interprocedural rewrite rules.
Pool descriptor args. added by pool allocation are not

shown. They are ignored during pointer compression.

Third, and most significantly, interprocedural pointer
compression must handle the problem that a reference in
a function may use either compressed or non-compressed
indices in different calling contexts. This problem arises be-
cause the same points-to graph node in a callee function can
correspond to different pools in different calling contexts.
One context may pass a TH pool and another a non-TH
pool, requiring different code to load or store pointers in
these two pools. We propose two possible solutions to this
problem. The first is to generate conditional code for loads
and stores of such index values (uses of these indexes are
not a concern because they are always used as n-bit values).
The second is to use function cloning and generate efficient,
unconditional code in each function body. As explained in
the next section, dynamic pointer compression requires con-
ditional code sequences in any case to handle dynamic pool
expansion, and we describe the former solution there. Our
goal with static pointer compression is to present a very effi-
cient solution that works in most common cases, and there-
fore we focus on the latter solution (function cloning) here.
In practice, we believe that relatively little cloning would be
needed for many programs.

Figure 4 shows a case when cloning must be used. In par-
ticular, Testlists in Figure 4 calls MakeList and Length

and passes or gets back data from indexed pools into each
of them. Since the A list indices are compressed but the
B list ones are not, the transformation needs to create two
versions of MakeList and Length, one for each case. The A

list version (denoted by suffix “ pc32”) is shown; the second
version is the same except it uses the uncompressed rewrite
rules for loads and stores of pointers in Figure 9. Only two
versions are needed for each function because only one pool
within each function (the list node) is accessed in multiple
ways. In the worst case, cloning can create an exponential
number of clones for a function: one clone for each com-
bination of compressed or uncompressed pools passed to a
function. In practice, however, we find that we rarely en-
counter cases where TH and non-TH pools containing heap
objects point to a common indexed pool or are passed to
the same function.

Given the extensions described above, interprocedural
static pointer compression is a top-down traversal of the
program call graph, starting in main and cloning or rewrit-
ing existing function bodies as needed. All together, applied

to the example in Figure 4, static pointer compression pro-
duces the code in Figure 5.

Our implementation of static pointer compression does
not support indirect function calls, so a single callee occurs
at each call site. However, transforming indirect function
calls and their potential callees should not be technically
difficult. This is because Automatic Pool Allocation already
merges the DS graphs of all functions at any indirect call site
into a single graph so as to pass identical pool arguments to
all such functions via the call. By using this merged graph,
all potential callees and the call site will automatically be
consistently transformed.

3.5 Minimizing Pool Size Violations with Static
Compression

Static compression is not a completely safe transforma-
tion because a correct program may fail if it tries to allocate
more than 2k bytes from a pool that uses k-bit indices. Nev-
ertheless, we believe this transformation can be used safely
in practice on many programs. First, each pool only holds
a single instance of a data structure or even a subset of an
instance (if the data structure consists of multiple nodes in
the points-to graph). This means that part or all of a sin-

gle DS instance must exceed 2k bytes (e.g., 4GB for k=32)
before an error occurs.

Second, many pools can be indexed by objects instead
of bytes, thus expanding the effective maximum pool size
greatly3. Node indexing is safe to use for TH pools holding
objects for which the address of a field is not taken (i.e., all
pointers point to the start of pool objects). This criterion
is met by many objects in C and C++ programs, and all
those in Java programs.

Third, a compiler could use profiling runs (and simple
runtime pool statistics) to identify pool instances that grow
unusually large compared with other pools in a program and
simply disable pointer compression for those pools. Finally,
programmers could use options or #pragmas to specify that
pools created in certain functions should not undergo index
compression.

4. DYNAMIC POINTER COMPRESSION
Dynamic pointer compression aims to allow an indexed

pool to grow beyond the limit of 2k bytes (or 2k objects) by
expanding compressed indices in source pools transparently
at run time. Compared with static compression, this tech-
nique has a higher runtime overhead and may require more
pointers not to be compressed in C and C++ programs (this
is not a problem in Java programs).

There are several possible ways to implement dynamic
pointer compression. To make it as simple as possible to
grow pools at run time, we impose three restrictions on the
optimization. First, we allow only two possible index sizes
to be used for a pool: the initial k bits (e.g., 32) and the
original pointer size, n (e.g,. 64).

Second, we compress and dynamically expand indices
within objects in a source pool only if it is also an indexed

pool, and it meets the criteria for object-indexing mentioned

above: it must be a TH pool and the address of a field is
not taken. This is important because expanding objects in
a pool does not change their object index, although it does

3
Object-indexing is actually required for dynamic compression, and

is described below.



change their byte offset (the specific run-time operations are
described below). Therefore, when objects in a source pool
are expanded (and the source pool itself is indexed), the
node index values in the source pool do not need to change,
only their sizes increase.

Third, for any object containing compressible indices, we
allow only two choices: all indices are compressed or all are
uncompressed. For example, in list list1 in Figure 12, either
both index fields (the edge to list2 and the back edge to
the list1) are stored in compressed form or both are stored
in uncompressed form. Note that because our pools mirror
the static DS graph, a particular pointer field in all objects
in a pool will point to objects in some common pool. This
property plus the third restriction together imply that a
single boolean flag per pool is sufficient to track whether
indices in objects in the pool are compressed or not.

Section 4.1 describes the modified rewrite rules for dy-
namic pointer compression, Section 4.2 describes changes to
the runtime, and Section 4.3 describes the needed changes
to the interprocedural transformation.

4.1 Intraprocedural Dynamic Compression
Intraprocedural dynamic pointer compression is largely

the same as static compression but more complex load/store
code sequences are needed for objects containing compressed
indices, since these indices may grow at run time. In each
source pool, we store a boolean value, “isComp,” which is
set to true when objects in the pool hold compressed in-
dices and false otherwise. If a source pool is also an indexed
pool, all index values pointing to the pool held in registers,
globals, or stack locations are represented using the full n

bits (the high bits are zero when isComp = true). Without
this simplification, pointer compression would have to ex-
pand the indices in all such objects when the pool exceeded
2k nodes. This is technically feasible for global and stack
locations (using information from the points-to graph) but
probably isn’t worth the added implementation complexity.

Figure 11 shows the main4 rewrite rules used for dynamic
pointer compression. The transformed version of the Length
function in the example is shown in Figure 10. Because we
do not compress pool indexes if the address of a field is taken,
the code for addressing the field and loading it is handled
by one rule. The generated code differs from the static com-
pression case in two ways: 1) both compressed and expanded
cases must be handled; and 2) object-indexing rather than
byte-indexing is used, i.e., the pool index is scaled by the
node size before adding to PoolBase. The object size and
field offsets are fixed and known at compile-time for each
case.

/* Length with dynamic pointer compression (64->32 bits) */
static int Length(Pool *PD, long L) {
if (L == 0) return 0;
long Next=(PD->isComp)? (long)*( int*)(PD->PoolBase + L*8 + 4)

: *(long*)(PD->PoolBase + L*16 + 8);
return Length(PD, Next)+1;

}

Figure 10: Example after dynamic compression

The rewrite rules use a branch sequence even for non-

pointer values (V ). By recording the object size in the pool,
however, we can use a branch-free sequence for loads and

4
We only show the rules for loads of structure fields. Stores are iden-

tical except for the final instruction, and array accesses are similar.

stores of non-pointer values, and can tune the sequence for
the possible object sizes since these are known at compile
time. For example, if a load of L->X occured in the Length()
function above, it could be translated to:

int X = *(int*) (PD->PoolBase +

L << PD->LogObjSize + 0);

where PD->LogObjSize is either 3 or 4 corresponding to the
compressed and uncompressed cases. (If the size is not an
exact power of 2, a sequence of shifts and adds would be
needed, but the code sequence can still be generated at
compile-time.) Furthermore, since the pool is TH, we can
safely reorder fields within the pool data type, τ , so that

all non-pointer fields occur before any pointer fields. This
would ensure that the field offset for every non-pointer field
is a fixed compile-time constant (e.g., the offset was 0 for
L->X above).

Original Statement Transformed Statement
P = null ⇒ P ′ = 0
P1 = P2 ⇒ P ′

1
= P ′

2

cc = P1

?
= P2 ⇒ cc = P ′

1

?
= P ′

2

P1 = P2->field ⇒ char *Ptr = PD->PoolBase
if (PD->isComp) {

Ptr += P ′

2
*newsizeof(pooltype)

Ptr += newoffsetof(field)
P ′

1
= *(int32 t*)Ptr

} else {
Ptr += P ′

2
*oldsizeof(pooltype)

Ptr += oldoffsetof(field)
P ′

1
= *(int64 t*)Ptr

}
τV = P ->field ⇒ char *Ptr = PD->PoolBase

if (PD->isComp) {
Ptr += P ′*newsizeof(pooltype)
Ptr += newoffsetof(field)

} else {
Ptr += P ′*oldsizeof(pooltype)
Ptr += oldoffsetof(field)

}
V = *(τ*)Ptr

P = poolalloc(PD, N) ⇒ Tmp = N/OldSize
P ′ = poolalloc pc(PD, Tmp)

poolfree(PD, P ) ⇒ poolfree pc(PD, P ′)
poolinit(PD, Size) ⇒ poolinit pc(PD, &TypeDesc,

PD1, PD2, ..., NULL)
pooldestroy(PD) ⇒ pooldestroy pc(PD)

Figure 11: Dynamic pointer compression rules

4.2 Dynamic Compression Runtime Library
The dynamic pointer compression runtime library is sig-

nificantly different from the library for the static case. When
a pool P grows beyond the 2k limit, the run-time must be
able to find and expand (0-extend) all indices in all source
pools pointing to this pool. This requires knowing which
source pools point to pool P , and where the pointers lie
within objects in these source pools.

To support these operations, the poolinit function takes
static information about the program type for each pool
(this type is unique since we only operate on TH pools),
and is enhanced to build a run time pool points-from graph

for the program. The type information for a pool consists of
the type size and the offset of each pointer field in the type.

The run time pool points-from graph has a node for each
pool and an edge P2 → P1, if there is an edge N1 → N2

in the compiler’s points-to graph, where P1 and P2 are
the pools for nodes N1 and N2. An example points-to
graph and the run-time points-from graph are shown in
Figure 12(b). When poolinit pc is called to initialize a
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Figure 12: Dynamic expansion example

pool descriptor (PD), it is passed additional pool descrip-
tor arguments (PD1 . . . PDn) for all the pools to which it
points. It adds PD to the “points-from” list of each de-
scriptor PD1 . . . PDn. For the example, when the list2

pool descriptor is initialized, it is passed pointers to the
int pool descriptor and itself (since the list2 node has a
self-loop), so it adds itself to the points-from lists in both
pools. pooldestroy pc(PD) removes the PD entry from
PD1 . . . PDn. The run-time points-from lists are created
and emptied in this manner because, if N1 → N2 in the
compiler’s points-to graph, then the lifetime of P1 (for N1)
is properly nested within the lifetime of P2 (for N2).

At run time, if the 2kth node is allocated from a pool, P ,
the “points-from” list in P is traversed, decompressing all
the pointers in each pool in the list. For example, in Fig-
ure 12, when the 2kth node is allocated from the “list2”
pool, both the list2 pool and the list1 pools need to be
decompressed so that all pointers into the list2 pool are n-
bit values. The normal metadata for a pool identifies which
objects in the pool are live. All pointers in each live object
are decompressed (because of our third restriction above).
Decompressing each pointer simply means zero-extending it
from k to n bytes. Decompression will grow the pool, which
may require additional pages to be allocated and the pool
base may change. As objects are copied to their new loca-
tions, their relative position in the pool is preserved so that
all indices into the pool remain valid. This ensures that no
data in any other pool or in globals, stack locations or regis-
ters must be modified when a pool is decompressed. (Note,
however, that in a multithreaded program, decompressing a
pool must be performed atomically relative to any accesses
to the pool.)

4.3 Interprocedural Dynamic Compression
As noted with static pointer compression, the primary

challenge in the interprocedural case is that the same points-
to graph node may represent pools containing compressed
indices or non-compressed indices. This led to the possibil-
ity that functions must be cloned in the static case. Because
dynamic pointer compression already uses conditional code
to distinguish compressed indices from expanded indices, the
need for cloning does not arise. (This solution using condi-
tional code can also be used for the static case if cloning is
undesirable or is expensive for a particular function.)

For interprocedural dynamic compression to compress in-
dices in a pool, it must check if the pool meets the first
criterion (TH pool, no field address taken) for all calling
contexts. Our pointer analysis algorithm computes two DS
graphs for each function - a bottom-up (BU) graph repre-

senting a function and its callees (but not any callers), and a
final, top-down (TD) graph representing the effects of both
callees and callers. Therefore, we can check the criterion for
all contexts trivially simply by checking it in the TD graph.

Original Statement Transformed Statement
poolinit(PD, Size) ⇒ poolinit pc(PD, NULL)
pooldestroy(PD) ⇒ pooldestroy pc(PD)

Figure 13: Rewrite rules for non-compressed pools

Interprocedural dynamic pointer compression is very straight-
forward: a single linear pass over the program is used to
rewrite all of the instructions in the whole program, accord-
ing to the rewrite rules in Figure 11 and Figure 13. The
only difference between compressed and non-compressed
pools (i.e., those that pass or fail the above criterion) is
that the poolinit pc call for the latter pool passes a null
type descriptor (and an empty points-to list). In this
case, poolinit pc initializes the pool descriptor such that
PoolBase is null and isComp is false, and the run-time en-
sures that the poolalloc pc/free pc calls behave the same
as poolalloc/poolfree.

This approach takes advantage of the fact (noted in Sec-
tion 3.2) that pointers into pools created by the pool alloca-
tor do not escape from the program. Because isComp is false,
non-compressed pools will always use the “expanded” code
paths, which use the uncompressed sizes and field offsets for
memory accesses.

5. OPTIMIZING PTR COMPRESSED CODE
The straight-forward pointer compression implementa-

tions described in Sections 3 and 4 generates functional,
but slow, code. We describe several straightforward im-
provements below that can significantly reduce redundant
or inefficent operations in the generated code. The first two
apply to both static and dynamic compression, while the
third applies whenever conditional branches on isComp are
used.

5.1 Address Space Reservation
One of the biggest potential overheads of pointer com-

pression is the need to keep the memory pools contiguous
for indexed pools. In particular, any pool must be able to
grow in size as memory is allocated from it. (Note that this
is unrelated to decompression, and applies to all versions
– basic pool allocation, static compression as well dynamic
compression.) If the pool allocator is built on top of a gen-
eral memory allocator like malloc, keeping a pool contiguous
when growing it may require copying all its data to a new
location with enough memory. Although indices into the
pool do not have to be rewritten because byte offsets do not
change, the data copy can be quite expensive.

Given that this work targets 64-bit address space ma-
chines, however, a reasonable implementation approach is
to choose a large static limit for individual data struc-
tures in the program that is unlikely to be exceeded (e.g.,
240B), and reserve that much address space for each pool
when it is created by the program (using facilities like
mmap(MAP NORESERVE)). This allows the program to grow a
data structure up to that (large) size without ever needing
to copy the pool or move live objects within the pool. The
operating system kernel allocates memory pages to the data
structure on demand, as they are referenced.



This strategy also ensures that the PoolBase never changes,
which can make the next optimization more effective.

5.2 Reducing Redundant PoolBase Loads
Pointer compression requires loading the PoolBase and

isComp fields from the pool descriptor for each load and
store from a pool. Although these loads are likely to hit in
the L1 cache, this overhead can dramatically impact tight
pointer-chasing loops. Fortunately, almost all of these loads
are redundant and can be removed with Partial Redundancy
Elimination (or a combination of LICM and GCSE). The
only operation that invalidates these fields is an allocation,
either from the pool (moving the pool base) or, in the dy-
namic case, from one of the pools it points to (decompressing
pointers in the pool). The DS graphs directly identify which
function calls may cause such operations.

Note that if Address Space Reservation is used, the
PoolBase is never invalidated, making it reasonable to load
it once into a register when the pool is initialized or in the
prologue of a function if the pool descriptor is passed in as
an argument. Figure 14 shows MakeList pc32 after simple
optimizations on a 64-bit machine (assuming address space
reservation is used).

static int MakeList_pc32(Pool *PD, int N) {
char *PoolBase = PD->poolbase;
int Result = 0;
for (int i = 0; i != N; ++i) {

int Node = poolalloc_pc(PD, sizeof(list_pc32));
char *NodePtr = Poolbase+Node;
*(int*)(NodePtr+4) = Result;
*(int*)NodePtr = i+’A’;
Result = Node; }

return Result; }

Figure 14: MakeList pc32 after optimization

5.3 Reducing DynamicisComp Comparisons
The generated code for dynamic pointer compression

makes heavy use of conditional branches to test whether or
not the pool is compressed. To get reasonable performance
from the code, several standard techniques can be used. The
most important of these is to use loop unswitching on small
pointer chasing loops. This, combined with jump threading
(merging of identical consecutive conditions) for straight-
line code, can eliminate much of the gross inefficiency of the
code, at a cost of increased code size. Other reasonable op-
tions are to move the “expanded” code to a cold section vs
hot section, or use predication (e.g., on IA64).

6. EXPERIMENTAL RESULTS
We implemented the static approach to pointer compres-

sion in the LLVM Compiler Infrastructure [9], building on
our previous implementation of Data Structure Analysis [7]
and Automatic Pool Allocation [10]. We reserve 256MB of
memory for each indexed pool using mmap to avoid reallocat-
ing pools and to make redundancy elimination of PoolBase
pointers easier (as described in Section 5). To evaluate the
performance effect of Pointer Compression, we first look at
how it affects a set of pointer-intensive benchmarks, then
investigate how the effect of the pointer compression trans-
formation varies across four different 64-bit architectures.

6.1 Performance Results
Figure 15 shows the results of using pointer compression

on a collection of benchmarks drawn from the Olden [14] and
Ptrdist [3] benchmark suites, plus the LLUbench [20] mi-
crobenchmark. These results were obtained on an UltraSPARC-
IIIi processor with a 64 kB L1 data cache and a 1 MB unified
I+D L2 cache.

To evaluate the performance impact of pointer compres-
sion, we compiled each program with the LLVM compiler
(including the pool allocation or pointer compression), emit-
ted C code, and compiled it with the system GCC com-
piler. The PA and PC columns show the execution time
for each benchmark with Pool Allocation or Pointer Com-
pression turned on, and the PC/PA column is their runtime
ratio. The ’NoPA’ column shows the runtime for the pro-
gram compiled with LLVM and using exactly the same se-
quence of passes as PA, but omitting pool allocation itself.
This is included to show that the pool allocated execution
time for the program is a very aggressive baseline to com-
pare against. (We also show the PC/NoPA column because
we view pointer compression as a “macroscopic” optimiza-
tion enabled by pool allocation, and this column shows the
aggregate benefit of the approach.) Each number is the min-
imum of three runs of the program, reported in seconds. To
measure the effect on memory consumption, we measured
the peak size of the heap for both the pool allocated and
pointer compressed forms and the ratio of the two, shown
in the last three columns of the table.

Considering llubench first, the table shows that pointer
compression speeds up this microbenchmark by over 2x com-
pared with pool allocation (and about 3x compared with the
original code). This improvement is achieved by dramati-
cally reducing the memory footprint of the program (and
the cache footprint, as will be seen in the next section).
Memory consumption is reduced almost exactly by a factor
of 2, which is the best possible for pointer compression when
compressing from 64 to 32-bits. We use llubench to analyze
the behavior of pointer compression in more detail across
several architectures in the next section.

Four of the other benchmarks (perimeter, treeadd, tsp,
and ft) speed up by 6-32% over pool allocation.5 All four
of these programs show substantial reductions in memory
footprint, ranging from 1.33x for tsp to 2x for treeadd.

Of the remaining programs, three (bh, bisort, and power)
see no benefit from pointer compression, while two others
(em3d and ks) exhibit slowdowns. For all of these except
bisort, we see that there is little or no reduction in memory
consumption. BH, for example, is not type-homogenous,
so pointer compression does not compress anything. Power
sees a small reduction but has such a small footprint that its
main traversals are able to live in the cache, even with 64-bit
pointers. In ks, pointer compression shrunk a pointer but
the space saved is replaced by structure padding. Bisort
shows a 2x reduction in memory footprint, but does not
experience any performance benefit.

5
Comparing these numbers for the ft benchmark with our previous

experiments on an AMD Athlon system [10] shows some surprising
differences. We have verified that these differences are valid. In par-
ticular, ft compiled with GCC (or with LLVM) on x86 is far slower
than on Sparc, e.g., 64s. vs. 9.8s. for GCC. Pool allocation speeds
up ft by a factor of more than 11x on x86 (compared with GCC or
LLVM), indicating that the original code for ft has extremely poor
cache behavior on x86. This poor behavior is not observed on the
Sparc.



Program NoPA (s) PA (s) PC (s) PC/PA PC/NoPA PeakPA PeakPC PeakPC/PeakPA
bh 15.32 16.19 16.17 .999 1.05 8MB 8MB 1.0
bisort 27.33 24.31 24.29 .999 .889 64MB 32MB 0.5
em3d 27.19 27.16 30.25 1.11 1.11 47.1MB 47MB 1.0
perimeter 10.13 6.63 5.38 .811 .531 299MB 171MB 0.57
power 6.53 6.52 6.51 .998 .997 882KB 816KB 0.92
treeadd 72.83 52.78 35.76 .678 .491 128MB 64MB 0.5
tsp 18.33 16.28 15.28 .939 .834 128MB 96MB 0.75
ft 14.59 11.60 10.04 .866 .688 8.75MB 4.44MB 0.51
ks 8.01 7.93 8.27 1.04 1.03 47.1KB 47.1KB 1.0
llubench 37.42 27.89 11.87 .426 .317 4.49MB 2.24MB 0.5

Figure 15: Pointer Compression Benchmark Results (all times in seconds)

An interesting problem exhibited initially by ks was that
using a pre-reserved pool address space of 4MB or any larger
size slowed down the PC version by over 60% relative to
PA, but smaller pool sizes did not. 4MB is the largest page
size on Sparc, and we speculated that this is because of
cache conflicts between distinct pools, when two pools of
the larger size both start at 4MB boundaries. We improved
the runtime library to stagger the start locations of distinct
pools differently (relative to a 4MB page boundary). This
eliminated the problem in ks, producing the results in the
table, i.e., only a 4% slowdown. It had a negligible affect
on the other programs in the table. For now, we simply
start the ith pool at an offset equal to i×sizeof(τ) bytes,
although a better solution long-term may to stagger the start
location of pools in a more random manner.

6.2 Architecture Specific Impact of Pointer
Compression

In order to evaluate the effect of pointer compression on
different architectures, we chose to use a single benchmark,
LLUbench, and a range of input sizes. We chose LLUbench,
a linked-list microbenchmark, because its input size can be
scaled over a wide range and it is small enough to get work-
ing on several platforms without having to port our entire
compiler to each system.

Figure 6.1 shows the scaling behavior of llubench on four
different systems, compiled in several configurations. For
each configuration, we compiled and optimized the program
using LLVM, emitted C code, then compiled the resultant
code with a standard C compiler (IBM XLC for the SP, GCC
for all others). We used 6 configurations for each platform:
the original code (Normal), pool allocation only (PoolAlloc),
and pointer compression (PtrComp), each compiled in 32-bit
mode and in 64-bit mode (except the Linux Itanium system,
which lacks 32-bit support).

The heap size used by llubench is a linear function of the
number of iterations, but the execution time of the bench-
mark grows quadratically. To compare performance of dif-
ferent configurations and systems as a function of the heap
size, therefore, we show the ratio of total running time to
number of list nodes on the Y axis. Ideally this number
should stay constant but in practice, it increases with heap
size because the processor spends more time stalled for cache
misses6.

Overall, 64-bit pointers have a major performance over-
head compared to 32-bit pointers for all systems, when using
either the native (Normal) or pool allocator. With a partic-
ular pointer size, the Automatic Pool Allocation transforma-

6
Note that the IBM SP system does not support MAP NORESERVE, which

significantly increases the time to create a pool (thus impacting runs
with a small number of iterations).

tion consistently increases locality over using the standard
system allocator, and the effect is particularly pronounced
with the default Solaris malloc implementation. (Automatic
Pool Allocation improves locality because it reduces working
set sizes by packing individual data structures more closely
in memory, and because it improves spatial locality for some
data structure traversal patterns [10].)

To evaluate the overhead of pointer compression, the “Ptr-
Comp 32” values show the effect of transforming 32-bit
pointers into 32-bit indexes (i.e. there is no compression,
just overhead added). On SPARC, the added ALU overhead
of pointer compression is negligible, but on AMD-64 there
is a fair amount of overhead because of the extra register
pressure (IA-32 has a very small integer register file). On
the IBM-SP, pointer compression adds a substantial over-
head to the program: the native 64-bit program is faster
than the pointer compressed code until about 700 iterations
in the program. On this (old) system, the memory hierarchy
is fast enough, and the ALUs are slow enough that pointer
compression may not make sense.

On the SPARC system, pointer compression provides a
substantial speedup over PoolAlloc, and PtrComp-64 is able
to match the performance of the 32-bit native version. On
the Itanium PtrComp makes the code substantially faster
across the range of iterations (but we cannot compare to
a 32-bit baseline). In the case of the Opteron, PtrComp-
64 is actually the fastest configuration (even faster than
poolalloc-32): in 64-bit mode the Opteron can use twice as
many integer registers as in its 32-bit mode, so it does not
need to spill as often. On the IBM SP, performance is sub-
stantially improved with pointer compression, but can not
match the 32-bit version with pool allocation because of the
slow ALU. On all systems though, pointer compression im-
proves the performance of 64-bit applications dramatically
as the problem size increases. The figures also show that
on all the architectures, the problem size at which perfor-
mance begins to degrade rapidly is much larger for PtrComp
than for PoolAlloc, showing that pointer compression signif-
icantly reduces the effective working set size of the bench-
mark on each of the architectures.

7. RELATED WORK
If an architecture supports both 64-bit and 32-bit point-

ers, and if the application does not require the use of a 64-
bit address space, the simplest solution is simply to compile
the program in 32-bit mode, which can provide a substantial
performance increase [12]. Unfortunately, this approach will
not work for many applications that require 64-bit address
spaces, e.g., due to genuine use of more than 4GB of mem-
ory, due to special requirements for more address space than
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Figure 16: llubenchmark: time to process one node vs problem sizes

physical memory (e.g., [15, 18, 6]), or because the system
does not provide 32-bit runtime libraries (e.g. Linux IA-64).
Our approach allows an aggregate 64-bit address space and
selective compression of individual data structures, where
each data structure is limited to 4GB of memory in the
static case. In the dynamic case, there is no such inherent
limit per data structure.

Most recently, Adl-Tabatabai et. al. describe a trivial
form of pointer compression to compile 64-bit pointers in
Java programs to a 32-bit pointer model [1]. Their approach
is very simple (requiring no program analysis at all), unilat-
erally compressing pointers to be offsets from the base of
the Java memory image located in a 64-bit address space.
To decompress these pointers, they add the base of the Java
memory image to compressed value, allowing a Java heap
size of 232 bytes. This approach provides substantial perfor-
mance improvements, but provides little benefit over having
the JVM produce 32-bit code directly.

Ananian and Rinard [2] describe a collection of data
size reduction techniques for Java programs, including tech-
niques for arithmetic fields with a limited value range (iden-
tified via a bitwidth analysis), unused and constant fields,
fields modified only once during initialization, fields that are
almost always a single default value, class pointer size reduc-
tion, and byte packing for object fields. None of these tech-
niques addresses the size of heap pointers (except the special
case of class pointers), and all the techniques are orthogonal
to, and could be combined with, our pointer compression

approach.
Zhang and Gupta compress pairs consisting of a 32-bit

integer and 32-bit pointer into two 15-bit values which are
packed into a single 32-bit field [19]. They compress a
pointer by replacing it with a value relative to its own ad-
dress, which is effective for recursive data structures packed
closely in memory. If the offset exceeds 15-bits, the pair
is replaced with a pointer to an uncompressed pair on the
side. They show a substantial reduction in memory con-
sumption, cache misses, and (with custom hardware sup-
port) a reasonable performance increase on a subset of the
Olden benchmarks. Unlike our work, their transformation
is completely manual and only operates on pairs of values
(but it can compress integers as well as pointers, and can
selectively compress some fields and not others). Also, it
requires specialized hardware to improve performance.

Takagi and Hiraki describe a combined hardware/software
technique they dub “Field Array Compression Technique”
(FACT) [16]. FACT uses manual “Instance Interleav-
ing” [17] to split each structure definition, packing the com-
pressed fields of multiple instances of a structure together in
memory. To handle data that cannot be compressed, they
always allocate enough space for both the compressed and
uncompressed data. This usually improves locality though
it does not reduce memory consumption. Compared with
our work, FACT has higher memory consumption, requires
manual transformation of the program, and requires exotic
single-purpose hardware support.



An additional advantage of the macroscopic approach to
pointer compression is that it allows standard compiler op-
timizations (e.g. loop unswitching) to statically optimize
the compressed code for specific static pools. In the case of
both the Zhang/Gupta and Takagi/Hiraki approaches, the
compiler cannot use coarse grain optimizations because in-
dividual fields in the heap are compressed or uncompressed
unrelated to each other. Using our approach, a compiler can
trivially unswitch a dynamic pointer compressed loop that
traverses a pool if the loop does not allocate from the pool.

Finally, in an earlier paper [8], we briefly described the
idea of using automatic pool allocation for pointer compres-
sion, but did not include a specific algorithm nor any imple-
mentation or evaluation.

8. CONCLUSION
This paper described a sophisticated technique for im-

proving memory consumption and potentially memory sys-
tem performance on 64-bit targets by shrinking 64-bit point-
ers to 32-bit values. The transformation builds directly on
Automatic Pool Allocation by replacing pointers with pool-
relative indices, and then compressing those indices when
they are contained within objects used in a type-safe man-
ner (as inferred by an underlying pointer analysis).

Automatic Pool Allocation provides three key benefits for
pointer compression. First, it provides a known compile-
time mapping between pointers and pools, so that a pool-
relative index is sufficient to compute the pointer value. Sec-
ond, by segregating data structures into distinct pools, it al-
lows 232 bytes of address space to be used for each individual
data structure. Third, it provides type-homogeneous pools
which, in the dynamic case, allows objects to be rewritten
safely when a pointer must be expanded in size. Together,
these capabilities allow a fairly simple but powerful approach
to automatic pointer compression.

The dynamic version of pointer compression is interesting
because it could allow indices to start out even smaller than
32 bits (e.g., 16 bits) and grow as needed. We believe that
the key challenge in dynamic pointer compression is mak-
ing accesses to pool objects efficient (and not the dynamic
index expansion itself). In fact, the index expansion and
data copying are quite simple compared with widely used
algorithms for garbage collection today (no pointer traver-
sals are needed, only source pools pointing directly to the
indexed pool need to be rewritten, and simple metadata is
sufficient to know what fields to expand in each source pool).
The key challenge will be making address computations ef-
ficient and avoiding conditional code for loading and storing
compressible index values.
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