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Abstract

We discuss a number of issues in the definition, computation and comparison of PageRank
values that have been addressed sparsely in the literature, often with contradictory approaches. We
study the difference between weakly and strongly preferential PageRank, which patch the dangling
nodes with different distributions, extending analytical formulae known for the strongly preferen-
tial case, and corroborating our results with experiments on a snapshot of 100 millions of pages of
the .uk domain. The experiments show that the two PageRank versions are poorly correlated, and
results about each one cannot be blindly applied to the other; moreover, our computations highlight
some new concerns about the usage of exchange-based correlation indices (such as Kendall’s τ )
on approximated rankings.

1 Introduction

This paper started with an attempt to reproduce the correlation data published by Haveliwala [1]
about rankings biased towards different topics (where the correlation was computed using a measure
similar to Kendall’s τ ); such seminal work has been receiving some attention lately, as in [2, 3]. The
bias was introduced using a preference vector, that is, by assuming that upon teleportation (see below
for definitions) one does not land in a node chosen uniformly at random, but rather according to a
given distribution.
During our attempts, we met significant difficulties due to the number of different ways in which
PageRank can be defined and computed, and to the lack of public data over which to replicate the
experiments. Following the incongruences in the literature, we were led to study in great detail the
way in which PageRank depends on the preference vector and on the way dangling nodes are patched
to obtain the final Markov chain. Also the way in which correlation indices are computed, and their
depencence on the precision of the computation, turned out to be decisive.
We report the results obtained along our way. All our experiments use publicly available data gathered
by UbiCrawler [4] on the .uk domain in the context of the EU project DELIS [5]. The topic-bias
data we use are derived from the ODP [6] hierarchy. We believe such a public, well-defined data set
is essential to continue research on personalised (and, in particular, topic-based) ranking.
First of all, we provide analytical formulae for weakly preferential and strongly preferential PageRank—
two variants frequently found in the literature in which different distributions are used to patch dan-
gling nodes. Using the Sherman–Morrison formula we are able to extend the results of Del Corso,
Gullì and Romani [7] for strongly preferential PageRank. In doing so, we introduce the notion of
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pseudorank, a vector obtained using a PageRank-like matrix (which is not necessarily stochastic).
Pseudoranks simplify greatly the following discussion, and present some interesting phenomena.
Then, we report experiments showing that weakly and strongly preferential PageRank can be very
poorly correlated, and that results in the literature obtained using the two approaches are hardly
comparable. In doing so, we use a low-level truncation technique that avoids the usual (and usually
neglected in the literature) noise associated with the result of an interrupted iterative process, and we
conclude by showing experimentally that such a noise may have a great impact on the computation
of rank-based correlation indices.

2 PageRank

Albeit definitions of PageRank can be easily found in the literature, our purpose is precisely that
of clarifying some relevant differences, so we start from scratch. Given a (web) graph G, the row-
normalised matrix of G is the matrix P such that pi j is one over the outdegree of i if there is an arc
from i to j in G, zero otherwise. Note that in general P will not be stochastic, as it can have rows
entirely made of zeroes.
Let us define d as the characteristic vector1 of the dangling nodes (i.e., the vector with 1 in positions
corresponding to nodes without outgoing arcs and 0 elsewhere). Let v and u be distributions2, which
we will call the preference and the dangling-node distribution.
PageRank r is defined (up to a scalar) by the eigenvector equation

rT (α(P + duT ) + (1 − α)1vT )
= rT ,

that is, as the stationary state of the Markov chain α(P + duT ) + (1 − α)1vT . More precisely,
we have a Markov chain with restart [8] in which P + duT is the Markov chain (that follows the
natural random walk on non-dangling nodes, and moves to a node at random with distribution u when
starting from a dangling node) and v is the restart vector. The damping factor α ∈ [0 . . 1) decides
how often the Markov chain follows the graph, and how often it moves at a random node following
the preference vector v. The latter behaviour is commonly called teleportation, referring to a well-
known random-walk metaphore in which a random surfer with probability α moves along an outlink
chosen uniformly at random (or, in case of a dangling node, chosen among all nodes according to
distribution u), and teleports to a random node chosen with distribution v with probability 1 − α. In
the random-surfer metaphore, PageRank is the average fraction of time the surfer spends at a given
node.

3 Strongly vs. Weakly Preferential

A significant amount of recent research is devoted to studying the dependence of PageRank on the
preference vector. The preference vector biases the rank towards nodes that are closer to nodes with a
larger value in the preference vector. The preference vector, for instance, might depend on the user’s
preferences, in which case one speaks of personalised PageRank [2].
Clearly, the preference vector v significantly conditions PageRank. Some care must be exercised,
however: real-world snapshots comprise a significant percentage of dangling nodes (nodes without
outlinks), in particular if the graph contains the whole frontier of the crawl [9], rather than just the
visited nodes. Hence, the way in which the surfer chooses the next node when she is at a dangling

1All vectors in this work are column vectors.
2By distribution we mean a vector with non-negative entries and `1-norm equal to 1.
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node (i.e., the choice of u) is also very relevant, and it is an issue resolved in different ways by
different authors.
We distinguish clearly between strongly preferential PageRank, in which the preference and dangling-
node distributions are identical (i.e., u = v), and correspond to a topic or personalisation bias, and
weakly preferential PageRank, in which the preference and the dangling-node distributions are not
identical, and, in principle, uncorrelated (most commonly, u = 1/n). As we shall see, the distinction
is not irrelevant, as the correlation between weakly and strongly preferential PageRank can be quite
low.
As a first analytical step to understand fully the relationship between preference and dangling-node
distributions we extend the closed formula given by Del Corso, Gullì and Romani [7] for strongly
preferential PageRank to a general formula that applies also to weakly preferential PageRank. Us-
ing this formula, any biased, weakly preferential PageRank vector whose distributions are a linear
combination of a set of base vectors [2] can be computed using the pseudorank vectors associated
to the base vectors. The computation of a pseudorank vector requires the same amount of computa-
tional effort as for computing PageRank, but once pseudoranks have been computed it is immediate
to compute and compare several different biased ranks.3

PageRank r is defined (up to a scalar) by the eigenvector equation

rT (α(P + duT ) + (1 − α)1vT )
= rT .

After a transposition, imposing rT 1 = 1 and solving for r , we obtain the standard closed form

r = (1 − α)
(
I − αPT

− αudT )−1
v.

The interesting point of this form is that it exhibits PageRank as a linear operator on the preference
vector v.

Definition 1 Let P be a row-normalised web-graph matrix. The pseudorank of P with preference
vector v and damping factor α ∈ [0 . . 1] is defined as

ṽ(α) = (1 − α)
(
I − αPT )−1

v.

We note by passing that if d = 0 (equivalently, if P is stochastic) then ṽ(α) is actually the PageRank.4

The above definition can be extended by continuity to α = 1, albeit the fact is not trivial. The
resolvent of a matrix M is the linear operator R(µ, M) = (µI − M)−1, defined for every µ which
is not an eigenvalue of M ; it can be expanded into a Laurent series around every eigenvalue of
M [10, 11]. In particular, the expansion around 1 is

R(µ, M) =
M∗

µ − 1
+

∞∑
k=0

(µ − 1)k Qk+1

for a suitable matrix Q, where M∗ is the Cesáro limit

M∗
= lim

n→∞

1
n

n−1∑
k=0

Mk,

3Actually, some papers, such as [3], use tacitly pseudoranks as the definition of PageRank.
4The condition number in the computation of pseudoranks is the same as or better than that for PageRank, and there is no

increase of computation time.
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which is always defined and is equal to limk→∞ Mk whenever the latter is defined [12]. This implies
that

lim
µ→1+

(1 − µ)R(µ, M) = M∗,

so the pseudorank for α → 1 is simply (P∗)T v.

Theorem 1 Let P the row-normalised matrix of a web graph, v the preference vector, u the dangling
distribution and α the damping factor. Then, the PageRank vector r satisfies

r = ṽ(α) − ũ(α)
dT ṽ(α)

1 −
1
α

+ dT ũ(α)
.

Proof. Let ũ(α) and ṽ(α) be the pseudoranks of u and v, and define R = I −αPT . By the Sherman–
Morrison formula [7], we have

r = (1 − α)(R − αudT )−1v = (1 − α)R−1v + (1 − α)
R−1udT R−1

1
α

− dT R−1u
v =

= ṽ(α) +
ũ(α)dT ṽ(α)

1
α

− 1 − dT ũ(α)
.

Note that the scalar values dT ṽ(α) and dT ũ(α) have two very simple interpretation—they are the
pseudorank accumulated by dangling nodes w.r.t. v and u, respectively.
By properly ordering multiplications, no matrix computation is necessary to compute the formula
above. When u = v, the formula reduces to the one provided in [7]:5

r = ṽ(α)

(
1 −

dT ṽ(α)

1 −
1
α

+ dT ṽ(α)

)
(1)

and the (rather surprising) consequence is that pseudoranks are just multiples of strongly preferential
ranks. In other words, PageRank might as well be computed without taking care of dangling nodes
by using the standard expansion

ṽ(α) = (1 − α)
(
I − αPT )−1

v = (1 − α)

∞∑
n=0

αn(PT )nv.

Indeed, by truncating the infinite sum we obtain an approximation of the pseudorank:∥∥∥∥ṽ(α) − (1 − α)

k∑
n=0

αn(PT )nv

∥∥∥∥ =

∥∥∥∥(1 − α)

∞∑
n=k+1

αn(PT )nv

∥∥∥∥ ≤ αk+1.

The fact that the above formula approximates well PageRank up to a constant factor shows that
actually PageRank is related more to a diffusion than to a mixing phenomenon. In other words, even
if the PageRank definition is in term of Markov chains, its value can be computed also by a cumulative
process in which the preference vector is broadcast to the neighbours using a decay factor α.
Pseudoranks are computed from their preference vector using a linear operator: as a consequence,
both weakly and strongly preferential PageRank are quickly computable if, for instance, ẽi (α) is
known for some base ei of the vector space. This property is noted in [2] for strongly preferential
PageRank, but Theorem 1 shows that the statement is true also in the weakly preferential case, albeit
the dependence on u is not linear, so weakly preferential PageRank vectors do not obey the simple
linear laws for what matters the dangling node distribution.

5The reader should note that our formula has some difference in signs w.r.t. the original paper, where it was calculated
incorrectly.
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Figure 1: The contour plot of r1 −r2 for the strongly preferential (left) and weakly preferential (right)
case for the worked example.

3.1 A worked example, and some observations

Let us consider the simple example of a graph with two nodes, and a single arc going from the first
to the second node. With an arbitrary norm-one vector x = (x, 1 − x)T we have

x̃(α) = (1 − α)(I − αPT )−1x =

(
(α − 1)x

(1 − α)(1 + (α − 1)x)

)
,

and dT x̃(α) = (α − 1)x . Note that, for every preference vector v, limα→1− dT ṽ(α) = 0, and this
is not by chance: dT ṽ(α) has a limit as α → 1 because it is a rational function of α, and looking
at (1) it is clear that dT ṽ(α) cannot converge to any limit different from 0, or otherwise the strongly
preferential PageRank would itself converge to the zero vector.
To complete the example, for two arbitrary norm-one vectors v = (v, 1 − v)T and u = (u, 1 − u)T

we have that the denominator in Theorem 1 evaluates to (α − 1)(1/α + u), giving

r =
1

αu + 1

(
v + α(u − v)

(α − 1)v + 1

)
.

The limit when α approaches 1 is

lim
α→1−

r =
1

1 + u

(
1
u

)
.

A precise estimate of the difference between strongly and weakly preferential PageRank can be ob-
tained by considering the difference r1 − r2 between the rank values of the two nodes:

r1 − r2 =
2(1 − α)v + αu − 1

αu + 1
;

a contour plot of this difference for the strongly preferential and weakly preferential cases (as a
function of α and v) is given in Figure 1: note that the behaviours in the two cases are significantly
different, in particular when α > 0.5 (an area that is quite important, since α = .85 is the value that
is customarily adopted for PageRank computation).

4 Experiments

Is the difference between strongly and weakly preferential significant also when only ranks are con-
sidered instead of rank values? To answer this question, we ran a number of experiments on a crawl

5



0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

K
en

da
ll’

s 
τ 

be
tw

ee
n 

st
ro

ng
ly

 p
re

fe
re

nt
ia

l
Pa

ge
R

an
k 

an
d 

w
ea

kl
y 

pr
ef

er
en

tia
l o

ne

Damping factor α

business topic-based preference vector, UK-2005
business topic-based preference vector, UK-2006
dotukdirectory.co.uk preference vector, UK-2005
dotukdirectory.co.uk preference vector, UK-2006

Figure 2: Kendall’s τ between weakly and strongly preferential PageRank computed on the
UK-2005 and UK-2006 graphs using the ODP “business” topic-based preference vector and the
http://dotuk.directory.co.uk/ page-based preference vector.

of about 100 million pages of the .uk domain gathered for the DELIS project [5]. For comparisons
we used Kendall’s τ , a classical nonparametric correlation index that has recently received much at-
tention within the web community for its possible applications to rank aggregation [13, 14, 15, 16]
and for determining the convergence speed in the computation of PageRank [17]. Here we follow
exactly the definition given in [16].
In Figure 2 we show the values of Kendall’s τ (in dependence of α) for weakly and strongly pref-
erential PageRank where the preference distribution is in one case concentrated on a single node,
and in the other case it is uniformly distributed among the nodes in the Open Directory Project [6]
“Business” category. In both cases, u was set to the uniform distribution. The correlation between
the two values is always very low (except, of course, when α ≈ 0).
The interesting phenomenon is that correlation increases as α increases, whereas intuition would
suggest the opposite behaviour: as α increases, the graph becomes more relevant, so the structural
differences between using v or the uniform distribution to patch dangling nodes should be more
visible.
To understand whether the low correlation is due to topic concentration or to the number of nonzero
entries, in Figure 3 we show the comparison of the same kind of values calculated on UK-2006 graph
using an additional vector obtained by randomly shuffling the topic-based vector. Our experiments
show that the latter exhibits the same behaviour, but with much higher correlation. In other words,
topics matter.

5 More Precision Might End in Less Precision

Weak and strong preference is not the only issue met along our way. Correlation measures such as
Kendall’s τ are based on the number of discordancies among ranks, but the point that appears to have
been completely missed in the literature (including that previously contributed by the authors [16]) is
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Figure 3: Kendall’s τ between weakly and strongly preferential PageRanks calculated on UK-2006
using three different preference vectors.

that the computation of ranks is almost always the result of interrupting an iterative process (e.g., the
power method). The interruption is usually based on a threshold satisfied by the `1 or `2 measure.
As a result, a number of correct digits appearing in the rank values is hard to predict, as it just depends
on the computational process. The abovementioned norms guarantee on average a certain number of
significant digits, but unless the much more demanding `∞ measure is used, almost no guarantee can
be provided for the rank value of a single node.
In the case several very close values appear in the PageRank vector, the effect of such an unpredictable
precision turns out to be catastrophic, in particular with certain computational methods (such as
Gauss-Seidel). Namely, the value of Kendall’s τ is strongly influenced by the number of significant
digits considered in its computation.
To prove the impact of this observation experimentally, we present data obtained by working out the
strongly preferential PageRank computation in a standard fashion, using the Gauss-Seidel method,
for a certain preference vector. We stopped the computation at different stages, having every time a
known (lower bound on the) number of correct digits in the computed ranks, that we denote by p,
and then we computed Kendall’s τ using only a limited number of digits in the ranks. To limit the
number of significant digits we used, we turned each floating point-number into its bitwise IEEE 754
representation, and manipulated it directly so to delete all digits beyond a certain threshold. This
procedure, applied with threshold θ , has the effect of batching all values in the interval [ j2−θ . . ( j +

1)2−θ ), into the value j2−θ . The net effect is that several rank values that appeared to be discordant
because of unpredictable noise in the last digits are now considered as concordant. (We remark that
due to the size of the data we use, these computations require thousands of hours of CPU time.)
The resulting graphs (an example is presented in Figure 4) are quite surprising: even the τ of a certain
PageRank computed against the same vector, but with a different precision can go down as low as
0.2. Of course, as far as the computation of τ uses no more digits than those that are guaranteed to be
correct, the correlation is 1, but it rapidly drops as soon as more digits are considered; in particular,
computing τ blindly (i.e., without any form of batching) can bring essentially to random results. In
a slogan: more precision might end in less precision. One must be always careful about the actual
number of significant digits of each rank—using an `∞-measure guaranteeing the number of digits
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Figure 4: Values of Kendall’s τ : when rank values are batched using more bits than the number of
significant bits guaranteed by the PageRank computation, the value of τ drops significantly. These
data are determineted from the .uk web graph, using the ODP “adult” topic-based preference vector,
α = .85 and the Gauss-Seidel method. p is the number of correct binary digits, θ is the number of
digits used to determine τ .

used in the computation of correlation indices is a safe choice.
More evidence is needed to corroborate the data we present. But already our preliminary results show
that order-based correlation indices must be managed with great care, and have probably given rise
to biased results in the past.
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