

Tries and String Matching

Where We've Been

● Fundamental Data Structures
● Red/black trees, B-trees, RMQ, etc.

● Isometries
● Red/black trees ≡ 2-3-4 trees, binomial

heaps ≡ binary numbers, etc.

● Amortized Analysis
● Aggregate, banker's, and potential methods.

Where We're Going

● String Data Structures
● Data structures for storing and manipulating

text.

● Randomized Data Structures
● Using randomness as a building block.

● Integer Data Structures
● Breaking the Ω(n log n) sorting barrier.

● Dynamic Connectivity
● Maintaining connectivity in an changing world.

String Data Structures

Text Processing

● String processing shows up everywhere:
● Computational biology: Manipulating DNA

sequences.
● NLP: Storing and organizing huge text databases.
● Computer security: Building antivirus databases.

● Many problems have polynomial-time solutions.
● Goal: Design theoretically and practically

efficient algorithms that outperform brute-force
approaches.

Outline for Today

● Tries
● A fundamental building block in string

processing algorithms.

● Aho-Corasick String Matching
● A fast and elegant algorithm for searching

large texts for known substrings.

Tries

Ordered Dictionaries

● Suppose we want to store a set of elements
supporting the following operations:
● Insertion of new elements.
● Deletion of old elements.
● Membership queries.
● Successor queries.
● Predecessor queries.
● Min/max queries.

● Can use a standard red/black tree or splay
tree to get (worst-case or expected) O(log n)
implementations of each.

A Catch

● Suppose we want to store a set of strings.
● Comparing two strings of lengths r and s

takes time O(min{r, s}).
● Operations on a balanced BST or splay tree

now take time O(M log n), where M is the
length of the longest string in the tree.

● Can we do better?

B D

O

U

T

G

E

A

 I

O

A E

R

D N

D T

 A

A I

D

I

K T

A

 T

N T

E

K

B C
A D

Tries

● The data structure we have just seen is
called a trie.

● Comes from the word retrieval.
● Pronounced “try,” not “tree.”

● Because... that's totally how “retrieval” is
pronounced... I guess?

Tries, Formally

● Let Σ be some fixed alphabet.
● A trie is a tree where each node stores

● A bit indicating whether the string spelled
out to this point is in the set, and

● An array of |Σ| pointers, one for each
character.

● Each node x corresponds to some string
given by the path traced from the root to
that node.

Trie Efficiency

● What is the cost of looking up a string w in a
trie?

● Follow at most |w| pointers to get to the node
for w, if it exists.

● Each pointer can be looked up in time O(1).
● Total time: O(|w|).
● Lookup time is independent of the number

of strings in the trie!

B D

O

U

T

G

E

A

 I

O

A E

R

D N

D T

 A

A I

D

I

K T

A

 T

N T

E

K

B C
A D

Inserting into a Trie

● Proceed before as if doing an normal
lookup, adding in new nodes as needed.

● Set the “is word” bit in the final node
visited this way.

Removing from a Trie

● Mark the node as no longer containing a
word.

● If the node has no children:
● Remove that node.
● Repeat this process at the node one level

higher up in the tree.

Space Concerns

● Although time-efficient, tries can be
extremely space-inefficient.

● A trie with N nodes will need space
Θ(N · |Σ|) due to the pointers in each node.

● There are many ways of addressing this:
● Change the data structure for holding the

pointers (as you'll see in the problem set).
● Eliminate unnecessary trie nodes (we'll see this

next time).

String Matching

String Matching

● The string matching problem is the following:

Given a text string T and a nonempty string P,
find all occurrences of P in T.

● (Why must P be nonempty?)
● T is typically called the text and P is the

pattern.
● We're looking for an exact match; P doesn't

contain any wildcards, for example.
● How efficiently can we solve this problem?

The Naïve Solution

● Consider the following naïve solution: for
every possible starting position for P in T,
check whether the |P| characters starting
at that point exactly match P.

● Work per check: O(|P|)
● Number of starting locations: O(|T|)
● Total runtime: O(|P| · |T|).
● Is this a tight bound?

Other Solutions

● Rabin-Karp: Using hash functions, reduces
runtime to expected O(|P| + |T|), with
worst-case O(|P| · |T|) and space O(1).

● Knuth-Morris-Pratt: Using some clever
preprocessing, reduces runtime to worst-case
O(|P| + |T|) and space O(|P|).

● Check out CLRS, Chapter 32 for details.

● … or don't, because KMP is a special case of
the algorithm we're going to see later today.

Multi-String Searching

● Now, consider the following problem:

Given a string T and a set of k nonempty strings
P₁, …, Pₖ, find all occurrences of P₁, …, Pₖ in T.

● Many applications:
● Constructing indices: Find all occurrences of

specified terms in a document.
● Antivirus databases: Find all occurrences of specific

virus fingerprints in a program.
● Web retrieval: Find all occurrences of a set of

keywords on a page.

Some Terminology

● Let m = |T|, the length of the string to be
searched.

● Let n = |P₁| + |P₂| + … + |Pₖ| be the total
length of all the strings to be searched.

● Assume that strings are drawn from an
alphabet Σ, where |Σ| = O(1).

Multi-String Searching

● Idea: Use one of the fast string
searching algorithms to search T for
each of the patterns.

● Runtime for doing a single string search:
O(m + |Pᵢ|)

● Runtime for doing k searches:
O(km + |P₁| + … + |Pₖ|) = O(km + n).

● For large k, this can be very slow.

Why the Slowdown?

● Why is using an efficient string search
algorithm for each pattern string slow?

● Answer: Each scan over the text string
only searches for a single string at once.

● Better idea: Search for all of the strings
together in parallel.

P₁ = ABCABCD P₂ = BCE P₃ = CEB P₄ = CECEB P₅ = ABC

A

C

B C E

E

B

C E B

B C A B C D

The Algorithm

● Construct a trie containing all the patterns to
search for.
● Time: O(n).

● For each character in T, search the trie starting
with that character. Every time a word is
found, output that word.

● Time: O(|Pmax|), where Pmax is the longest pattern
string.

● Time complexity: O(m|Pmax| + n), which is
O(mn) in the worst-case.

Why So Slow?

● This algorithm is slow because we
repeatedly descend into the trie starting
at the root.

● This means that each character of T is
processed multiple times.

● Question: Can we avoid restarting our
search at the tree root, which will avoid
revisiting characters in T?

P₁ = ABCABCD P₂ = BCE P₃ = CEB P₄ = CECEB P₅ = ABC

A

C

B C E

E

B

C E B

B C A B C D

A B C E B

At this point, we've
seen A B C.

Where would we end up
if we started searching

for B C?

At this point, we've
seen A B C.

Where would we end up
if we started searching

for B C?

P₁ = ABCABCD P₂ = BCE P₃ = CEB P₄ = CECEB P₅ = ABC

A

C

B C E

E

B

C E B

B C A B C D

A B C E B

Let's restart our search
from this point.

Let's restart our search
from this point.

P₁ = ABCABCD P₂ = BCE P₃ = CEB P₄ = CECEB P₅ = ABC

A

C

B C E

E

B

C E B

B C A B C D

A B C E B

Now, we've seen B C E.

Where would we end up
if we searched for C E?

Now, we've seen B C E.

Where would we end up
if we searched for C E?

P₁ = ABCABCD P₂ = BCE P₃ = CEB P₄ = CECEB P₅ = ABC

A

C

B C E

E

B

C E B

B C A B C D

C E B C

Where would we end
up if we searched for

E B?

That didn't work. How
about B?

Where would we end
up if we searched for

E B?

That didn't work. How
about B?

P₁ = ABCABCD P₂ = BCE P₃ = CEB P₄ = CECEB P₅ = ABC

A

C

B C E

E

B

C E B

B C A B C D

A B C A B C A

Where would we go if
we read B C A B C?

Or C A B C?

Or A B C?

Where would we go if
we read B C A B C?

Or C A B C?

Or A B C?

The Idea

● Suppose we have descended into the trie
via string w.

● When we cannot proceed, we want to
jump to the node corresponding to the
longest proper suffix of w.

● Claim: The nodes to jump to can be
precomputed efficiently.

Suffix Links

● A suffix link in a trie is a pointer from a
node for string w to the node
corresponding to the longest proper
suffix of w.

● All nodes other than the root node will
have a suffix link.

P₁ = ABCABCD P₂ = BCE P₃ = CEB P₄ = CECEB P₅ = ABC

A

C

B C E

E

B

C E B

B C A B C D

Key

Trie Edge:
Suffix Link:

Key

Trie Edge:
Suffix Link:

The (Basic) Algorithm

● Let state be the start state.
● For i = 0 to m – 1

● While state is not start and there is no trie
edge labeled T[i]:
– Follow the suffix link.

● If there is a trie edge labeled T[i], follow that
edge.

This algorithm won't actually
mark all of the strings that

appear in the text. We'll
handle that later.

This algorithm won't actually
mark all of the strings that

appear in the text. We'll
handle that later.

Runtime Analysis

● Claim: Once the trie is constructed and
suffix links added, the runtime of
searching through string P is O(m).

● Proof: Total number of steps forward is
O(m), and we cannot follow suffix links
backwards more times than we go
forwards. Therefore, time complexity is
O(m).

Will our heroes ever build
suffix links efficiently?

And will they be able to match
pattern strings quickly?

Stay tuned!

Problem Set 5

● Problem Set 5 goes out right now. It's
due next Wednesday at the start of class.

● Play around with splay trees, static
optimality, and tries!

Final Project

● We're still hammering out the details on the final project,
but the basic outline is the following:
● Work in groups of 2 – 3. If you want to work individually, you

need to get permission from us first.
● Choose a data structure we haven't discussed and read up on it

(read the original paper, other lecture notes, articles, etc.)
● Do something “interesting” with that data structure:

– Implement it and add optimizations.
– Explore the key idea behind the structure and show how it generalizes.
– Set the data structure in context and survey the state of the art.

● Write a brief (7pg – 9pg) paper and give a short (15 – 20 minute)
presentation during Week 10.

● We recommend starting to look for groups. We'll release
more details and a list of interesting data structures to
explore sometime next week.

Your Questions

“Can you give any insight into quantum
computers?”

Nope!

(Sorry, I don't know much
about quantum computing.)

Nope!

(Sorry, I don't know much
about quantum computing.)

“Why are all the data structures we've
made focused on getting the minimum?

Why are we so obsessed with the
minimum?”

A few reasons:

1. Useful as building blocks in greedy algorithms.

2. Extremal objects often have nice properties.

3. For what we've seen so far, can swap min and max.

A few reasons:

1. Useful as building blocks in greedy algorithms.

2. Extremal objects often have nice properties.

3. For what we've seen so far, can swap min and max.

“Often when describing or analyzing a data
structure, you abstract away some detail

for later or assume that you'll be able to do
something later on. It makes sense

pedagogically, but how do we get that
intuition when creating our own data

structures?”

This is something you
build up an intuition for
over time. Often, these
details actually make or
break a data structure!

This is something you
build up an intuition for
over time. Often, these
details actually make or
break a data structure!

Back to CS166!

The Story So Far

● Start with a trie.
● Add suffix links to allow for failure

recovery and fast searching.
● Unresolved questions:

● How do you build suffix links efficiently?
● How do you do searches efficiently?

Constructing Suffix Links

● Key insight: Suppose we know the suffix link
for a node labeled w. After following a trie edge
labeled a, there are two possibilities.

● Case 1: xa exists.

w wa

x xaa

a

w a

x a

Constructing Suffix Links

● Key insight: Suppose we know the suffix link
for a node labeled w. After following a trie edge
labeled a, there are two possibilities.

● Case 2: xa does not exist.

w wa

x

a

w a

x

y a

Constructing Suffix Links

● To construct the suffix link for a node wa:
● Follow w's suffix link to node x.
● If node xa exists, wa has a suffix link to xa.
● Otherwise, follow x's suffix link and repeat.
● If you need to follow backwards from the

root, then wa's suffix link points to the root.

● Idea: Construct suffix links for trie nodes
ascending order of length using BFS.

Analyzing the Runtime

Claim: This algorithm constructs suffix links in the
trie in time O(n).

Proof: There are at most O(n) nodes in the trie, so the
breadth-first search will take time at most O(n).
Therefore, we have to bound the work done
stepping backwards.

Focus on any individual word Pᵢ. When processing
nodes that make up the letters of Pᵢ, the number of
backward steps taken cannot exceed the number of
forward steps taken, which is O(|Pᵢ|).

Summing across all words, the total number of
backward steps is therefore O(n). ■

The Story So Far

● We can construct our trie, augmented
with suffix links, in time O(n).

● Once we have the trie, we can scan over
a string in time O(m).

● Catch from before: We still don't have a
way to identify all the substrings we find.

● Let's go fix that!

The Problem

● Some pattern strings might be substrings
of other pattern strings.

● Without taking this into account, our trie
traversal will not find all matching
substrings.

● Can we fix this?

A Useful Observation

● Fact: If x is a substring of w, then x is a
suffix of a prefix of w.

● Proof: Let w = αxω. Then x is a suffix of
the prefix αx.

● Each node in the trie corresponds to a
prefix of some pattern string.

● Suffix links give us information about the
suffixes of those strings.

Another Useful Observation

● Fact: Suppose that Pₛ and Pₜ are where
|Pₛ| > |Pₜ| and Pₜ is a suffix of Pₛ. Then
any time Pₛ occurs, Pₜ occurs as well.

● This motivates the following idea:
● Each node w in the trie may store an output

link pointing to the longest pattern string
that is a proper suffix of w.

● Whenever we visit a node, we traverse
backwards through the output links to find
all matches.

P₁ = ABCABCD P₂ = BCE P₃ = CEB P₄ = CECEB P₅ = ABC P₆ = A

A

C

B C E

E

B

C E B

B C A B C D

Key

Trie Edge:
Suffix Link:
Output Link:

Key

Trie Edge:
Suffix Link:
Output Link:

The Algorithm

● Let state be the start state.
● For i = 0 to m – 1

● While state is not start and there is no trie
edge labeled T[i]:
– Follow the suffix link.

● If there is a trie edge labeled T[i], follow that
edge.

● If state is a word, output that word.
● If state has an output link, repeatedly follow

that link and output the words discovered.

The Runtime

● Fact: If n = O(m), the number of occurrences of
the substrings can be Θ(m2).

● Consider patterns a1, a2, …, a√m and search inside
the string am.

● Total length of pattern strings: O(m)

● Total number of matches:

= m + (m – 1) + (m – 2) + … + (m - √m)

= m + (m – 1) + … + 1 – (1 + 2 + 3 + … + √m)

= Θ(m2) – Θ(m)

= Θ(m2)

The Runtime

● The quadratic worst-case is not due to any
inefficiencies; it's a fundamental limitation due
to the number of matches that have to be
generated.

● Let z be the total number of matches reported.

● Runtime of a search operation Θ(m + z).

● This is an output-sensitive algorithm; the
runtime depends on how much data is
generated.

Constructing Output Links

● Focus on a node w.
● Claim: Any pattern Pᵢ that is a proper

suffix of w is also a suffix of the string
represented by w's suffix link.

● Rationale: w's suffix link points to the
longest proper suffix of w in the trie.

● That suffix must be at least as long as Pᵢ.

Constructing Output Links

● Initialize the root node's output link to be
null.

● Run a breadth-first search over the trie.
● For each node w encountered, follow its

suffix link to get to node x.
● If x is a pattern, set w's output link to be x.
● If x is not a pattern, set w's output link to be

x's output link.
● Time required: O(n).

The Complete Construction

● The algorithm we've explored is called the Aho-Corasick
string matching algorithm.

● Given the patterns P₁, …, Pₖ, do the following:
● Construct a trie holding the patterns in time O(n).
● Add suffix links to the trie in time O(n).
● Add output links to the trie in time O(n).
● Total time required: O(n).

● To search a text T, run the previous algorithm to find all
matches in time Θ(m + z).

● Total time required: O(m + n + z).

A Data-Structural View

● We've presented Aho-Corasick string
matching as an algorithm, but you can really
think of it as a data structure.

● Given a set of patterns, you only need to do
the O(n) preprocessing once.

● From there, you can match in time O(m + z)
on any input string you'd like.

● In fact, this is frequently done in practice!

Summary

● Tries are a simple and flexible data structure
for storing strings.

● Suffix links point from trie nodes to the nodes
corresponding to their longest proper suffixes.
(suffices?) They can be filled in in time linear
in the length of the strings.

● A string x is a substring of a string w precisely
when x is a suffix of a prefix of w.

● Aho-Corasick string matching requires O(n)
preprocessing and can do matching in time
O(m + z).

Next Time

● Suffix Trees
● A powerful, flexible data structure for

solving just about every string problem ever.

● Suffix Arrays
● A simpler and more compact representation

of suffix trees.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

