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ABSTRACT
PageRank is defined as the stationary state of a Markov chain de-
pending on a damping factor α that spreads uniformly part of the
rank. The choice of α is eminently empirical, and in most cases
the original suggestion α = 0.85 by Brin and Page is still used. It
is common belief that values of α closer to 1 give a “truer to the
web” PageRank, but a small α accelerates convergence. Recently,
however, it has been shown that when α = 1 all pages in the core
component are very likely to have rank 0 [1]. This behaviour makes
it difficult to understand PageRank when α ≈ 1, as it converges to a
meaningless value for most pages. We propose a simple and natural
modification to the standard preprocessing performed on the adja-
cency matrix of the graph, resulting in a ranking scheme we call
TruRank. TruRank ranks the web with principles almost identical
to PageRank, but it gives meaningful values also when α ≈ 1.

Categories and Subject Descriptors: G.2 [Discrete Mathemat-
ics]: Graph Theory G.3 [Probability and Statistics]: Markov pro-
cesses

General Terms: Algorithms, Experimentation, Measurement.

Keywords: Web graph, PageRank.

1. INTRODUCTION
PageRank [2] is probably the most famous static ranking algo-

rithm for web pages. It is the stationary state of a certain Markov
chain obtained by scaling a patched version of the adjacency matrix
of a web graph. The patch consists mainly in adding new outlinks
towards all nodes to nodes without outlinks. Finally, the matrix is
row-normalised. At this point, a damping factor is introduced: the
matrix is scaled by α, and the final chain is obtained by summing
a matrix filled with 1 − α. PageRank is the stationary state of this
final matrix.

The damping factor α is essential in the practical computation
of PageRank, as it greatly increases the speed of power methods:
however, it is also common belief that when α goes to 1 we get a
PageRank that is “truer to the web”.

This common belief, however, is false, as shown in [1]: even
if all nodes without outlinks are connected to all other nodes, in
real-world graphs most of the nodes will get a PageRank going to
0 as α → 1 (in particular, this will happen to all nodes in the main
component). The problem lies in the very definition of PageRank:
the patch applied to the adjacency matrix does not create a single
component, but, rather, leaves the component tree unchanged.
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2. TRURANK
We still believe that understanding PageRank when α ≈ 1 can be

fruitful, but there is no easy way out using the standard PageRank
definition. In this poster we make a theoretical proposal to solve
this dilemma. Our proposal is presently of difficult, if not impossi-
ble, implementation because of lack of sufficient computing power,
but we believe it is a step in the right direction.

To describe clearly PageRank’s problem, let us set up some def-
initions from [1]. A node is terminal if it does not have outlinks,
except possibly for loops. If we want to be specific about the pres-
ence of a loop, we shall use the terms looped and loopless. For
instance, the patch to the adjacency matrix tries to fix loopless (and
possibly looped) terminal nodes.

However, if we consider the graph of strong components, all
nodes belonging to a terminal component will absorb ranking, with-
out giving it back. We call such nodes rank sinks.

The problem with PageRank in its current form is that it provides
patches for loopless terminal nodes, which are just a kind of rank
sink, but not for all rank sinks. Unfortunately, for all aspects related
to convergence they are equivalent, as they both represent terminal
nodes in the component graph (the only difference being that termi-
nal nodes belong to non-looped terminal components). The effect
is not very visible because the values of α currently in use make
PageRank dependent on a rather limited in-neighbourood (in the
random surfer interpretation, the “average surf” is 1/(1 − α) links
long).

Thus, to make the study of α more meaningful in the region close
to 1, we propose a slightly amended ranking algorithm named Tru-
Rank. The idea of TruRank is that it should work on the same
principles of PageRank, but it should give meaningful values when
α→ 1, resulting in a “true to the web” ranking.

The modification we propose is that the transition matrix P is
built from G in the following way (d is the outdegree of a node):

1. arcs going out from nodes that are not rank sinks are weighted
1/d (note that in that case necessarily d > 0);

2. arcs going out from rank sinks are weighted 1/(d + 1);

3. finally, for every rank sink x of outdegree d ≥ 0 and every
node y that is not a successor of x , we add a new arc from x
to y weighted 1/[(d + 1)(N − d)].

Thus, P’s rows for nodes that are not rank sinks go unchanged.
The only difference is that rank sinks must “donate to the world”
1/(d + 1) of their rank. Note that we get back exactly PageRank’s
patch for terminal nodes, as their rows are filled with 1/(0+1)(N−
0) = 1/N as usual. In this sense, TruRank is a true generalisation
of PageRank.
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Figure 1: A sample graph, and the relative behaviour of PageRank and TruRank when α changes.
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Figure 2: PageRank and TruRank iteration matrices for the graph of Figure 1.

Now P can be easily seen to be irreducible, and thus TruRank
has a unique stationary distribution, even for α = 1 (we assume
aperiodicity). Experimentally, TruRank and PageRank largely co-
incide for α ¿ 1 (Kendall’s τ is larger than .95), but as α ap-
proaches 1 we believe that TruRank gives a meaningful “true to the
web” distribution.

Intuitively, in TruRank rank sinks are punished by forcing them
to release part of their rank. The smaller the number of outlink of
a page, the stronger the punishment: in particular, as it was hap-
pening in PageRank, a page with no outlinks must donate all of its
rank.

3. AN EXAMPLE
In Figure 1 we show a sample graph. The only rank sinks are

node 4 and 5, and the reader can easily see the difference with the
corresponding rows. The behaviour of the two ranking algorithms
when the damping factor α goes from 0 to 1 is also shown in Fig-
ure 1: we can clearly see that the few nodes in the only looped
terminal component (4 and 5) absorbe all available PageRank. On
the contrary, we can see that TruRank makes the ranking of the
various nodes converge consistently.

Indeed, node 0 (clearly the most referenced node in the graph)
preserve its TruRank when α → 1, absorbing about one third of
the ranking of the whole graph.

4. COMPUTING TRURANK
TruRank can be computed using a trivial modification of the

standard power method. The only additional information required
is one bit for each node, specifying whether it is a rank sink: it can
be easily computed using a slightly modified version of Tarjan’s
algorithm for strongly connected components.

However, the main, and currently unsolved, problem with Tru-
Rank is that albeit Perron–Frobenius theory guarantees the con-
verges of the Markov chain even for α = 1, it gives us no guarantee
on the precision that is necessary to perform the computation, and
on the required number of steps. Thus, computing TruRank on a
realistic data set (e.g., one billion pages) when α ≈ 1 is currently
beyond our computational capabilities. More research is necessary
to speed up the power method to match the requirements of Tru-
Rank.
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