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Abstract. A new string-matching algorithm is presented, which can be viewed as an intermediate
between the classical algorithms of Knuth, Morris, and Pratt on the one hand and Boyer and Moore, on
the other hand. The algorithm is linear in time and uses constant space as the algorithm of Galil and
Seiferas. It presents the advantage of being remarkably simple which consequently makes its analysis
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Critical Factorization Theorem, which relates the global period of a word to 1ts local repetitions of
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1. Introduction

The problem of pattern recognition on strings of symbols has received consider-
able attention. In fact, most formal systems handling words can be considered
as defining patterns in strings, as is the case for formal grammars and especially
for regular expressions (see [31]) which provide a technique to specify simple
patterns. Other kinds of patterns on words may also be defined (see for instance
[1], [4], and [26]) but lead to less efficient algorithms.

The first version of this paper was presented at the Conference on Pattern Recognition held in Cefalli in
September 1987 (CROCHEMORE, M., aND PerriN, D. Pattern matching in strings. In DiGesu, ed.,
Proceedings of the 4th Conference on Image Analysis and Processing. Springer-Verlag, New
York. 1988, pp. 67-79).

An improvement on this first version was presented at the Conference on the Foundations of Software
Technology and Theoretical Computer Science held in Poona in December 1988 (CROCHEMORE, M.
Constant-space string-matching. In Nori and Kumar, eds., Foundations of Software Technology and
Theoretical Computer Science. Springer-Verlag, New York, 1988, pp. 80-87, and CROCHEMORE, M.
String-matching with constraints. In Chytil, Juniga, and Koubeck, eds., Mathematical Foundations
of Computer Science 1988. Springer-Verlag, New York, 1988, pp. 44-58).

This work was supported by PRC Math-Info.

Authors’ address: LITP, Institut Blaise Pascal, Université Paris 7, 2 Place Jussieu 75251, Paris cedex
05, France.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
©® 1991 ACM 0004-5411/91/0700-0651 $01.50

Journal of the Assocration for Computing Machimery, Vol. 38, No 3, July 1991, pp. 651675



652 M. CROCHEMORE AND D. PERRIN

The recognition of patterns in strings is related to the corresponding problem
on images. Indeed, some algorithms on words can be generalized to two-
dimensional arrays (see [20], for instance). Also extracting the contour of a
two-dimensional object leads to a one-dimensional object that can again be
considered as a string of symbols. The patterns recognized in this string give
in return valuable information on the two-dimensional object. More gen-
erally string-processing algorithms can be used on curves, that is to say one-
dimensional objects in the plane or in space.

In this paper, we present a new method for string-matching. The general
problem of pattern matching in strings can be handled by standard and
well-known techniques from automata theory. As a particular case of pattern
matching in strings, the problem of string-matching simply consists in locating a
given word, the pattern, within another one, the zexz. It has been extensively
considered and is still an active field of research. This study is both concerned
with optimization for practical purposes and also with theoretical considera-
tions. For practical purposes, it is interesting to develop algorithms that are
fast, require little memory and limited buffering, and operate in real time. This
may be especially meaningful in the case of words coding images or contours
since, in this case, the pattern can be very long. From the theoretical point of
view, it is interesting to know the lower bounds achievable in such a problem.
Those lower bounds correspond to various quantities such as time and space and
it is not always possible to optimize them all at the same time. Another
theoretical incentive comes from the theory of programming. Indeed, string-
matching algorithms have led to computer programs that are now considered as
paradigms in the theory of program development. Finally, extensions of the
string-matching problem have been studied. In particular, several approximate
string-matching algorithms have been proposed [23, 32].

The classical algorithms can be divided into two families. Roughly speaking,
in the first family, the pattern x is considered as fixed and the text ¢ as
variable. The converse point of view is adopted in the second family. The first
family of algorithms contains the well-known algorithms of Knuth, Morris, and
Pratt (KMP) on the one hand and of Boyer and Moore (BM) on the other hand
(see [8] and [21]). These algorithms were studied and improved by several
authors (see [2], [3], [15], [16], [18], [27], [30], and [33]). The second family
is based upon the notion of a suffix tree due to Weiner [34]. An efficient
algorithm to compute suffix trees was devised by McCreight [24]. Later on, this
construction was superseded by the factor transducer construction (see [6] and
[10D).

The new algorithm presented here belongs to the first family. From the
practical viewpoint, its merits consist of requiring only constant additional
memory space. It can therefore be compared with the algorithm of [17], but it
presents the advantage of being faster and simpler. From the theoretical
viewpoint, its main feature is that it makes use of a deep theorem on words
known as the Critical Factorization Theorem due to Cesari, Duval, Vincent,
and Lothaire (see [9], [13], and [22]). Tt is also amusing that the new algorithm,
which operates in a two-way fashion, can be considered as a compromise
between KMP and BM.

The paper is divided into six sections: The first section provides an introduc-
tion. In the second section, we introduce a basic version of our two-way
algorithm. The algorithm is linear in time and uses constant space. It requires a
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precomputation of a critical factorization and of the period of the pattern. In the
third section, we give a new proof of the critical factorization theorem that is
adapted to our purpose. The computation of a critical factorization relies on the
knowledge of the maximal suffix of a word. The computation of such maximal
suffixes is dealt with in the fourth section. In the fifth section, we show how to
modify the two-way algorithm to avoid the use of the exact value of the period.
The result is a new linear algorithm using constant space. The sixth section
contains our conclusions.

2. String-Matching

We shall discuss string-matching algorithms. The strings processed by these
algorithms are called words. These words will be usually denoted as arrays
x = x[1]x[2] -+ - x[n]. The integer n is called the length of the word x and
denoted by | x|. We denote by a mere juxtaposition the concatenation of two
words.

Among all string-matching algorithms developed up to now, two of them are
particularly famous and efficient. They are known as Knuth, Morris, and
Pratt’s algorithm and Boyer and Moore’s algorithm. Let us briefly recall how
they work. Let x be the word that is searched for inside an a priori longer word
t. The word x is called the pattern and ¢t is the text. The output of a
string-matching algorithm is the set of positions of occurrences of x in ¢, say

P(x,t)={keN|0<k=<|t| - |x|and t[k+i] = x[i], 1 =i=|x]|}.

Usual string-matching algorithms initially check whether x appears at the left
end of ¢ and repeat this process at increasing positions. The word x can thus be
visualized as shifted to the right until it reaches the right end of #. Shifts must
be as long as possible in order to save time.

In Knuth, Morris, and Pratt’s algorithm, the letters of x are checked against
the letters of ¢ in a left to right scan of x until its right end is reached, if x
occurs at that position, or until a mismatch is met (see Figure 1). If u is the
longest prefix of x recognized at the current position, then the shift is made
according to both a period of u and the letter of ¢ that causes the mis-
match. Hence, a shift function, whose domain is the sct of prefixes of Xx, is
precomputed.

In Boyer and Moore’s algorithm, the letters of x are scanned from right to
left, and x is shifted according to both the periods of its suffixes and the letter
of ¢ that causes a possible mismatch (see Figure 2). Proceeding in that way
increases the length of shifts in the average. For instance, a letter of ¢ that does
not occur in x leads to a shift | x| positions to the right, the best possible
without missing an occurrence of x.

During the search for x in Boyer and Moore’s algorithm, either the result of
some comparisons is forgotten, at the cost of increasing the time of the
algorithm, or all comparisons are memorized, but this complicates the prepro-
cessing. Tricky versions of this algorithm have good maximal time complexity,
using a number of comparisons bounded by twice the length of ¢ [3, 15]. The
number of possible configurations met during the preprocessing is subject to a
conjecture stated in [21], that is still open.

The number of letter comparisons used in Knuth, Morris, and Pratt’s
algorithm is also bounded by 2 | ¢ | . But the two algorithms greatly differ on the
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Fic. 2. Boyer and Moore approach.
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minimum number of letter comparisons needed to compute P(x, ). It is in fact
| £| for Knuth, Morris, and Pratt’s algorithm but it becomes |¢|/ | x| for
Boyer and Moore’s algorithm. Both algorithms use linear additional memory
space for their shift functions on the word x.

We describe an algorithm that, in some sense, may be considered as
intermediate between Knuth, Morris, and Pratt’s algorithm and Boyer and
Moore’s algorithm. Our algorithm has the following properties:

(i) It is linear in time O(|?¢| + | x|), as KMP and BM, with a maximum
number of letter comparisons bounded by 2|¢| + 5| x| compared to
2(t] +2] x| for KMP and 2| ¢| + f(| x|) for BM, where f depends
on the version of this algorithm.

(ii) The minimal number of letter comparisons used during the search phase
(excluding the preprocessing of the pattern) is 2| 7|/ | x| compared to
|t| for KMP and |¢|/ | x| for BM.

(iii) The memory space used, additionally to the locations of the text and the
pattern, is constant instead of O(| x|) for both KMP and BM.

Another algorithm with similar features has been designed by Galil and
Seiferas (GS) [17]. Ours is conceptually more simple and consequently easier to
analyze. The number of comparisons is also smaller although the precise
analysis of the number of comparisons used by GS is difficult.

The new algorithm uses some notions on the structure of words that we now
introduce. Let x be a word on an alphabet A. A strictly positive integer p is
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called a period of x if
x[i] = x[i + p],

whenever both sides are defined. In other terms, p is a period of x if two
letters of x at distance p always coincide. The smallest period of x is called
the period of x and is denoted by p(x). One has the inequalities

0<p(x)=<|x].

Let x be a word and / be an integer such that 0 </ < | x|. An integer
r = 1is called a local period of x at position / if one has

x[i] = x[i+ r]

for all indices 7 such that / — r + 1 < i </ and such that both sides of the
equality are defined (see Figure 3). The local period of x at position / is the
smallest local period at position /. It is denoted r(x, /). It is an easy conse-
quence of the definitions that

1 =r(x,!)<p(x).

It is convenient to reformulate the definition of a local period as follows: An
integer r is a local period of x at position / if and only if there exists a word w
of length r such that one of the four conditions is satisfied:

(i) x=x"wwx” with |x'w| =1
(i) x = X" wu with | x’w| = [ and u prefix of w,
(ii)) x = vwx” with | v| =7 and v suffix of w,
(iv) x = vu with | v| =/, v suffix of w and u prefix of w.

The case (i) is represented on Figure 3. The other cases correspond to a
position close to the ends of x or equivalently to an overflow of w. The
relation between both definitions is given by

wli] =x[1+i] or  wli] =x[/-r+i]

(for 1 < i < r), according to which expression is defined on the right-hand
side.

Our algorithm relies on the following result due to Cesari, Vincent, and
Duval (see [22] for precise references).

THeOREM (CRiTical. Factorization Tureorem). For each word x, there
exists at least one position | with 0 < | < p(x) such that

r(x,l) = p(x).

A position / such that r(x, /) = p(x) is called a critical position of x. For
instance, the word

x = abaabaa

has period 3. It has three critical positions, namely 2. 4, 5. We shall prove the
Critical Factorization Theorem in Section 3 and give an algorithm allowing to
compute a critical position in Section 4. Before coming to this description, we
present our application of this theorem to string-matching. We begin with an
informal description.
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Fic. 3. A local period r at position /.

Our string-matching algorithm matches the letters of the pattern x and of the
text ¢ in both directions. The starting point of the scan is given by a critical
position / of x that satisfies

1< p(x),

where p(x) is the period of x. We denote by x, the prefix of length / of x and
we define x, as the suffix of x such that x = x,x,.

To discover an occurrence of the pattern x at a given position of the text ¢,
the algorithm conceptually divides the search into two successive phases. The
first phase consists in matching X, only against 7. The letters of x, are scanned
from left to right.

When a mismatch is found during the first phase, there is no second phase
and the pattern is shifted to the right. The shift brings the critical position to the
right of the letter of the text that caused the mismatch.

If no mismatch happened during the first phase, that is, when an occurrence
of x, is found in ¢, the second phase starts. The left part x,; of the pattern is
matched against the text. The word x, is scanned from right to left as in the
Boyer and Moore approach. If a mismatch occurs during the scanning, the
pattern is shifted a number of places equal to the period of x (see Figure 4).
After such a shift, some prefix of the pattern coincides with the text. This prefix
is memorized in order to possibly increase the length of the next shift.

Example. Let x = a"b and let t = aaa --- be an arbitrarily long repeti-
tion of a’s. The algorithm of Knuth, Morris, and Pratt shifts the pattern
according to the Figure 5(a) and so do Boyer and Moore’s and our algorithm.
The number of letter comparisons is 2 |#| — n for the first algorithm and
| £| — n for the two others. Indeed, since the unique critical position of a”b is
n, both algorithms attempt to match the last letter of x against the letters of ¢.
If we replace f = aaa - by t = bbb ---, then the sequence of shifts is
shown on Figure 5(b) for KMPs and on Figure 5(c) for BM algorithms, Our
algorithm gives rise to the same sequence of shifts and letter comparisons as
BMs. This time, each mismatch is detected in the left part of the factorization
(a", b) and the pattern is shifted according to the period of x; that is, n + 1
places to the right. [

We shall now describe more formally our algorithm. We temporarily suppose
that the period p(Xx) of the pattern x and a critical position / < p(x) have been
computed previously. We shall discuss in the next sections how to compute
them both.

The algorithm is presented as a function computing the set P(x, ) of
positions of x in £. It uses four local variables i, j, s, and pos. The variables i
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Fic. 4. String-matching with critical position.

aaaaaaaaa. .. bbbbbbbbb. . . bbbbbbbbb. . .
aab aab aab
aab aab aab
aab aab aab
(a) (b) (©
Fic. 5. Matching x = aab in t = aaa --- or t = bbb --- .(a) KMP & BM. (b) KMP. (c) BM.

and j are used as cursors on the pattern to perform the matching on each side of
the critical position respectively (see Figure 6). The variable s is used to
memorize a prefix of the pattern that matches the text at the current position,
given by the variable pos (see Figure 7). Variable s is updated at every
mismatch. It can be set to a nonzero value only in the case of a mismatch
occurring during the scan of the left part of the pattern.

The scheme of the string-matching algorithm is shown on Figure 8.

Before proving the correctness of the algorithm, we first give a property of a
critical position of a word.

Lemma 2.1, Let [ be a critical position of a nonempty word x. Let r be a
local period at the position [, such that r < max(l, | x| —[). Then r is a
multiple of p(x).

Proor. (See Figure 9). Assume that 7 < | x| — . Let r’ be the remainder
of r divided by p(x). Since /+ r < | x|, the word x[/+ 1]--- x[/ + r]
has period p(x). Then, we have the equality x[/+ 1]--- x[/+ r'] =
x({+r—r+1]--- x[/ + r], which means that if ' >0, it is a local
period at /. But ' < p(x) gives a contradiction with the fact that / is a critical
position. The only possibility is thus r* = 0, which is equivalent to say that r
is a multiple of p(x). The case r < [ is symmetrical. [

Proposition 2.2.  On input words x and t, the function ‘‘POSITIONS’’
computes the set P(x, t) of positions of the pattern x inside the text t.

Proor. The execution of the function stops because of the three following
facts:

— At each step of the ‘*while’” loop (line 1), one of the statements at lines 4 or
8 is executed.
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Fic. 7. The role of variable s.

—The variable pos is strictly incremented at line 4 or 8 because the value of
i — I is strictly positive and p > 0.

—Then the successive values of pos are in strictly increasing order and
bounded by |7].

This proves the termination of the algorithm. We now show its correctness.

Let g,, q,, . . . , gx be the successive values of the variable pos during a run
of the function ‘‘posiTions’” on inputs x and ¢. Let Q be the final value of the
variable P. We prove the conclusion, say P(x, ¢) = Q, by showing that

(i) the algorithm detects any g, that is a position of an occurrence of x in ¢
(i.e., P(x,t) N {q,, q,,...,qx} = Q), and that

(i) any position of an occurrence of x in ¢ is some g, (i.e., P(x,t) <
(a2, ax})-

We first prove that the following property is an invariant of the main
““while’” loop (line 1):

x[s] =t[pos+5s], 1=<s =<s.

This is initially true since s is set to null. For the same reason, this is true when
a step of the main loop ends with the statement *‘s < 0",
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function posrTioNs (X, ¢):
(p is the period of x and ! is a critical position such that / < p)
P =, pos< 0, s 0;

1 while (pos + | x| < {¢])do {
2 i< max(/,s) + 1;
3 while (/ < | x| and x[i] = [ pos + i) do i< i+ 1;
if ({ < | x|) then {
4 pos—pos+max(i — I, s — p+ 1);
s<0;
} else {
5 FASRE
6 while (j > s and x[j] = t[ pos + jdo j«j— I;
7 if (j < 5) then add pos to P;
8 pOs < pos + p;
9 s<|x| -p;
} end if
} end while
return (P);
end function.
Fic. 8. Constant-space string-matching algorithm.
x u u u u u u u
v I-plx) | I+ p(x) :
1 ' H
X w w
i—-r+1 l I+r

F16. 9. A local period r at a critical position /.

Consider a step of the loop that ends with the statement at line 9. Let g, , | be
the value of pos at the end of the step. In this situation, the loop at line 3 must
have stopped with condition “‘i < | x|’ false, which means that

x[7] =tq.+ 7], 1<V =<|x]|.
Since g, ., = g, + p and / < p we get
x[7] =tlg,, +7], 0<i =|x|-p.

The property is then true at the end of the step, because its last statement at line
9 gives the value | x| — p to s.

Proor oF (i). Let g in P(x,?) N {q,, q,, ..., dx}- While pos has value
g, since g€ P(x,t), all letter comparisons at lines 3 and 6 succeed and
condition ‘‘j < s’ is true at line 7. So ¢ is added to P and then q € Q.

Let g in Q. Since q is a value of pos put in P at line 7, during that step all
letter comparisons at lines 3 and 6 have succeeded:

x[i] =t[qg + 7], s<i = |x]|.

By the invariant property of s, this implies g € P(x, t).
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Proor oF (ii). We prove that no g strictly between two consecutive values
of pos can be in P(x,t). Let g be a position such that g, < g and
g € P(x, t). Consider the step of the main ‘‘while’’ loop where the initial value
of pos is q,. Let i’ be the value assigned to the variable i by the statement at
line 3, and let s’ be the value of s at the beginning of the step. We now
consider two cases according to a mismatch occurring in the right part or in the
left part of the pattern. In both cases, we use the following argument: If, after a
mismatch, the shift is too small, then it is a multiple of the period of the pattern,
which implies that the same mismatch recurs.

Case 1 (see Figure 10). If i/ < | x|, a mismatch has occurred at line 3,
and we have:

x[I+1] - x[i'= 1] =t[ge+1+1] - tge+ i - 1],
x[I'] #t[q, +1].
Let w be the word f[q, + [+ 1] --- f{lg + [].
If g < gq, + 1" — [, the above equality implies

x[I+ 1] x[I+qg—-q]=w

Since g e P(x, t), the suffixes of length max(1,/+ 1 — g+ g,) of w and
x[l+1—-gq+ q,]--- x[I] coincide. The quantity g — g, is then a local
period at the critical position / and, by the Lemma 2.1, g — g, is a multiple of
the period of x. So, x[i'] = x[i' — g + g,]. But ge P(x, t) also implies
x[i" —q+q,] =tlg+i — g+ g,], which gives a contradiction with the
mismatch x[i'] # t[q, + i’]. This proves g = q, + I’ — | x,|.

Assume g < g, + s —p(x)+ 1. Let w be x[1]--- x[p(x)]. Since
geP(x,t), w=1t[g+ 1] - t[qg+ p(x)], and then w is a suffix of
tlg, + 11+ tlg, + g — g, + p(x)]. This latter word is a prefix of x
because ¢ — g, + p(x) < s’ + 1 and because of the invariant property satis-
fied by s. Thus, g — g, is a multiple of the period of x and the mismatch
between x[i’] and #[g, + i'] remains between x[i" — g + q,] and {[q, + I'].
This is a contradiction and proves ¢ = g, + s’ — p(x) + 1.

So far, we have proved that, if a mismatch occurs at line 3, g is not smaller
than max(q, + i — [/, g, + 8" — p(x) + 1). This last quantity is g, , (see line
4), and then g = g, ,.

Case 2 (see Figure 11). If no mismatch is met at line 3, the right part of
x occurs at position g, + / of the text ¢. The word w = ¢[q, + [+ 1] ---
t[g + 1] then occurs at the right of position /. Since q € P(x, ?), it also occurs
at the left of position /. Thus, | w| is a local period at the critical position /,
and then |w| = p(x). We get ¢ — g, = p(x). Since the statement at line 8
yields g, ,, = q, + p(x), in this second case, again, the inequality g = g, 4
holds.

This completes the proof of assertion (ii) and ends the proof of the proposi-
tion. [J

The time complexity of the function ‘‘posiTions’” is proportional to the
number of comparisons between the letters x and ¢ (lines 3 and 6). This
number is bounded by 2 | ¢ | as shown by the following proposition:

Prorosirion 2.3, The computation of the set of positions of a word x in

a text t of length m by the function ‘‘rosimions’” uses less than 2m letter
comparisons.
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Fic. 10. A shift after a mismatch occurring in the right part of the pattern.
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Fic. 11. A shift after a mismatch occurring in the left part of the pattern.

Proor. We first prove the following assertion: Each letter comparison done
at line 3 strictly increases the value of pos + i. This is obvious if the letters
x[i] and ¢[ pos + i] coincide and ‘i < | x|’ holds.

If the letters coincide but x[7] is the last letter of x (no mismatch in the right
part of the pattern), the variable i is increased by one unit at line 3. After that,
the variable pos is increased by p at line 8, and the variable i is decreased by
at most p (thanks to variable s), during the next step of the main loop, at line
2. Then, the assertion holds.

If the letters do not coincide (then a mismatch occurs in the right part of the
pattern), let i’ be the value of the variable / when the execution of the statement
at line 3 stops. The variable pos is then increased by at least i’ — /, at line 4,
and the variable i is decreased by at most i" — / + 1, during the next step of the
main loop, at line 2. Thus, the assertion holds again.

Hence, the number of letter comparisons done at line 3 isatmost | 7| — | x,|,
because expression pos + i has initial value | x;| + 1 and terminal value ||
in the worst case.

At line 6, comparisons are done on letters of the left part of the pattern. The
next instruction may be considered as a shift of x, p(x) places to the right.
Since, by assumption, the length of x, is less than p(x), two comparisons
performed at line 6 are done on letters of ¢ occurring at different positions
inside ¢. Then, at most, | ¢ | letter comparisons are globally done at line 6.

This gives the upper bound 2 | 7| to the number of letter comparisons. [J
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CoroLLARY 2.4,  According to the RAM model, the maximum time
complexity of function ‘‘rosrtions’” is O(m) on an input text of length m.
The function requires seven extra integer memory locations in addition to
the arrays x and t.

Proor. The time complexity is proportional to the number of letter compar-
isons. The results are then a consequence of Proposition 2.3.

Three memory locations only are needed for the variables pos, s, i, j.
because i and j can be associated with the same storage location. The quantities
p,1, | x|, |t| need four more memory locations. [J

3. The Critical Factorization Theorem

We now present a proof of the Critical Factorization Theorem. This proof gives
a method both practically and algorithmically simple to compute a critical
position. The method relies on the computation of maximal suffixes, which will
be presented in the next section.

For the convenience of the exposition, we make our notation concerning
words more precise. Let A be a finite alphabet, and let A™ be the set of words
on the alphabet 4. We shall denote by ¢ the empty word. We denote by | w|
the length of a word w. Thus, |¢| = 0. We write w[/] the ith letter of the
word w.

Let x be a word on A. We say that a pair (u#, v) of words on A is a
Sactorization of x if x = wuv. The factorization (u, v) of x then defines a
cutpoint inside the word x. The word u is called a prefix of x and v is called
a suffix. A prefix of v is called a factor of x, occurring in x at position
|u|. A word u that is both a prefix and a suffix of x is called a border of x.
An unbordered word is a nonempty word x that admits no border except itself
and the empty word. One may verify that p(x) is the difference of | x| and
the length of the longest proper border of x.

Given a factorization (u, v) of x, a local period at (u, v) is the same as a
local period at position || in the terminology of Section 2. The minimum
local period at (u, v) is denoted by r(u,v) and the Critical Factorization
Theorem can be restated as follows.

TueoreM (CriticaL FactorizaTion Tureorem). For each word x., there
exists at least one factorization (u, v) of x such that

r(u,v) = p(x).
Moreover u can be chosen with |u| < p(x).

A factorization (u, v) such that r(u, v) = p(x) is called a critical factoriza-
tion of x. For instance, the word

= abaabaa

has period 3. It has three critical factorizations, namely,
(ab, aabaa), (abaa, baa), (abaab, aa).

There exist several available proofs of this result. All of them lead to a more
precise result asserting the existence of a critical factorization with a cutpoint in
each factor of length equal to the period of x.
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A weak version of the theorem occurs if one makes the additional assumption
that the inequality

3p(x) = | x|

holds. Indeed, in this case, one may write x = /wwr, where | w| = p(x) and
w is chosen minimal among its cyclic shifts. This means, by definition, that w
is a Lyndon word (see [22]). One can prove that a Lyndon word is unbordered.
Consequently, the factorization

(Iw, wr)

is critical. This version of the theorem is the argument used in Galil and
Seiferas’s algorithm (see Lemma 3 in [17]) to build a string-matching algorithm
using restricted memory space. This result is used in [17] to prove a decomposi-
tion theorem according to which, any word x has a factorization (u, v) such
that v does not have two prefixes that are fourth powers in a nontrivial way.

In the sequel, we shall be interested in the computation of a critical factoriza-
tion of a given word. Among the existing proofs, one relies on the property that
if x = ayb with a, b being two letters then a critical factorization of x either
comes from a critical factorization of ay or from a critical factorization of yb
[22]. This leads to a quadratic algorithm. Another proof given in [13] relies on
the notion of a Lyndon factorization of a word. It leads, via the use of a linear
string-matching algorithm to a linear algorithm for computing a critical
factorization.

We present here a new proof of the critical factorization theorem. This proof
leads to a relatively simple linear algorithm that in addition, uses only constant
additional memory space.

Each ordering < on the alphabet A extends to an alphabetical ordering on
the set A*. It is defined as usual by x < y if either x is a prefix of y or if

x = lar, y = Ilbs
with [, r, s words of A* and a, b two letters such that a < b.

THeEOREM 3.1. Let < be an alphabetical ordering and let < be the
alphabetical ordering obtained by reversing the order < on A.

Let x be a nonempty word on A. Let v (resp., v') be the alphabetically
maximal suffix of x according to the ordering < (resp., <). Let x = uv
=u'v'.

If |v| = |Vv'|, then (u,v) is a critical factorization of x. Otherwise,
(u’, v') is a critical factorization of x. Moreover, |u| < p(x) and |u' | <
p(Xx).

The proof of Theorem 3.1 relies on the following lemma:

Lemma 3.2. Let v be the alphabetically maximal suffix of x and let
x = uv. Then no nonempty word is both a suffix of u and a prefix of v.

Proor. Let w be a word which is both a suffix of # and a prefix of v. Let
v = wt. By the definition of v, we have wv <v and ¢ < v. The first
inequality can be written ww¢ < wf and this implies w¢ < f. The second
inequality can be written ¢ < wf. We then obtain ¢ = wi, where w = ¢. [
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Proor oF THE THEOREM. First, observe for later use that the intersection of
the orderings =< and < is the prefix ordering. Equivalently, for any words w
and w’,

w=<w and wew

if and only if w is a prefix of w’.

We first dispose of the case where the word x has period 1, that is to say,
when x is a power of a single letter. In this case, any factorization of x is
critical.

We now suppose that |v| < |v'| and prove that (u,v) is a critical
factorization. The other case is symmetrical. Let us prove first that u # e.
Indeed, let x =ay with ¢ in A. If u=¢, then x = v = v and both
inequalities y < x and y € x are satisfied by the definition of v and v’. Thus,
Y is a prefix of x, where p(x) = 1 contrary to the hypothesis.

Let r be the local period at (¢, v). By Lemma 3.2, we cannot simultaneously
have r < |u| and r < | v|. Moreover, since v is alphabetically maximal, it
cannot be a factor of u. Hence, r > | u| since r < | u| would imply r > | v|
and v factor of u. Let z be the shortest word such that v is a prefix of zu or
vice versa zu is a prefix of v. Then, r = | zu|. We now distinguish two cases
according to r > |v| or r < | v].

Case r > | v| (see Figure 12). In this situation, by the definition of r, the
word u cannot be a factor of v. The integer | uz | is a period of uv since uv is
a prefix of uzuz. The period of uv cannot be shorter than |uz | because this
quantity is the local period at (u, v). Hence, p(uv) = |uz| = r. This proves
that the factorization (u, v) is critical.

Caser < | v| (see Figure 13). The word u is a factor of v. Since | zu| is
the local period at (u, v), as in the previous case, we only need to prove that
| zu| is a period of x.

Let u = w'u” and v = zuz’. By the definition of v’ the suffix u”z’ of uv
satisfies

ullzl g v/ — ul/v’

hence, z” < v. By the definition of v, we also have z' < v. By the observation
made at the beginning of the proof, these two inequalities imply that z’ is a
prefix of v = zuz’. Hence, z’ is a prefix of a long enough repetition of zu's.
Since x = wuzuz’, this shows that | uz | is a period of x.

Since, as proved above, |u]| is less than the local period r, we get
| u| < p(x) because the factorization is critical. We also get |u' | < p(x)
when |u’| < |u]|. The same argument holds symmetrically when this latter
expression fails. [

According to Theorem 3.1, the computation of a critical factorization reduces
to that of maximal suffixes. More accurately, it requires the computation of two
maximal suffixes corresponding to reversed orderings of the alphabet.

4. Maximal Suffixes

In this section, we describe an efficient algorithm to compute the alphabetically
maximal suffix of a given word. It is a consequence of several known
algorithms that this computation can be done in linear time. One may use the
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X u 1 |

B ” z . |

Fie. 12. Caser> | v].

u v’

Fig. 13. Case r < | v|.

suffix tree construction [24], the factor automaton construction [6, 10}, or also
the Lyndon factorization [14]. One may also adapt the least circular word
algorithm of [7] and [29]. We describe here an algorithm which is essentially
the same as the one described in [14] but slightly more simple.

We consider a fixed ordering on the alphabet 4. We denote by max(x) the
suffix of x which is maximal for alphabetic ordering. Let u, v be words and
e = | be an integer such that max(x) = uv with |u| = p(max(x)) and
where v is a proper prefix of u (recall from Section 2 that p(y) denotes the
period of the word y). We denote

per(x) =u,  rest(x)=v.

Note that rest(x) is a border of max(x).

We now prove a series of statements that, all together, give a recursive
scheme allowing the computation of the maximal suffix of a given word. We
shall also describe afterwards a nonrecursive version of the algorithm.

First of all, for any word x and any letter a, the maximal suffix of xa is a
suffix of max(x)a since, for any suffix w of x longer than max(x), we have
w < max(x) with w not a prefix of max(x), where wa < max(x)a.

ProrositioN 4.1.  Let x be a word and a be a letter. Let a’ be the letter
such that rest(x)a' is a prefix of x. We have

max(x)a if a<d,
max(xa) = .
max(rest(x)a) if a>d,
max(x)a if a<d,
per(xa) = { per(x) if a=da,
per(rest(x)a) if a>da,
€ if a<dad or(a=aand
rest(x)a = per(x)),
rest(xa) = i
rest(x)a if (a = a andrest(x)a < per(x)),
rest(rest(x)a) if a>d.
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Proor. We first show that for any proper border w of max(x) longer than
rest(x)wa’ is a prefix of max(x). Let u = per(x), v = rest(x) and let e = 1
be such that max(x) = u®v. Let b be the letter such that wb is a prefix of
max(x).

First suppose that w is the longest border of max(x), that is to say
max(x) = uw. We have per(x)=va' v, w=u*"'v and max(x) =
u®"'va’'v'v = wa'v'v. Hence, b = &’ in this case (see Figure 14).

If w is not the longest proper border of max(x), then w is a proper suffix of
u¢ v (see Figure 15). By the above argument, ¢~ 'va’ is a prefix of max(x).
Hence, wa’ is a factor of max(x), where wb = wa’, or equivalently b = &’
We now show that the converse inequality » < &’ also holds. Since v is a suffix
of w and since wb is a prefix of max(x), vb is a factor of max(x). Hence,
va' = vb or equivalently @ = b. The conclusion is @’ = b as promised.

We now come to the proof of the three statements of Proposition 4.1. We
treat three cases separately.

(i) Let us first suppose that @ < ¢’. We show that in this case max(x)a is an
unbordered word. Let w be a border of max(x). If w is shorter than rest( x),
then it is a border of rest(x) (see Figure 16). Let rest(x) = wbw’ with b a
letter. Since wb is a prefix of max(x) and wa’ is a factor of max(x) we have
wb = wa’, where b = @’ and therefore b > a. This proves that wa cannot be a
prefix of max(x).

If w is a border of max(x) longer than rest(x), then, since a # @', wa
cannot be a prefix of max(x), and this concludes the proof that max(x)a is
unbordered.

We are now able to prove that max(x)a is maximal among its suffixes. Let
w be a suffix of max(x). Since, if max(x) > w without w being a prefix of
max(x), we also have max(x)a > wa, where the conclusion follows. This
shows that

max(xa) = max(x)a, per(xa) = max(x)a, rest(xa) = .

(ii) Let us now suppose that ¢ = @’. It is then a direct consequence of the
definitions that

max(xa) = max(x)a: per(xa) = per(x)
and that
if rest(x)a =
rest( xa) = ‘ .( Ja = per(x)
rest(x)a otherwise.

(iii) Let us finally suppose that @ > a’. Let wa = max(xa). Since w is a
suffix of max(x), we have max(x) > w. This forces w to be a prefix of
max(x), and hence a border of max(x), since otherwise, max(x) > w would
imply max(x)a > wa, a contradiction.

The border w cannot be strictly longer than rest(x) since, as shown above,
wa is not a prefix of max(x) when a + a@'.
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Fic. 14. The longest proper border of max(x).
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Fic. 15. A border of max(x) longer than res{(x) but not maximal.
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Fic. 16. A border of max(x) shorter than rest(x).

Therefore, w is a suffix of rest(x) and this proves the formulas:

max(xa) = max(rest(x)a),
per(xa) = per(rest(x)a),
rest(xa) = rest(rest(x)a). O

We now give a nonrecursive algorithm that allows the computation of the
maximal suffix of a word. It is given in Figure 17 as a function ‘‘MAXIMAL-
surrix”’. This function outputs the position of max(x) and its period.

The interpretation of the variables i, j, k occurring in the algorithm of
Figure 17 is indicated on Figure 18.
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function MAXIMAL-SUFFIX ( x[1] - - - x[n]):
<0y bk, pe1:
while (/ + k =< n) do {
a <~ xli+ k) a<x[j+ k]
if(a<a)then{j—j+k; k1. p—j—i}
if (¢ = d’) then
if(k=p)then{j < j+p; k< L;}else k ~ k + 1;
if(a>a)then{i—j, j—i1+ 1L,k 1;pe1:}
} end while
return (7, p):
end function.

Fic. 17. The alphabetically maximal suffix of a word.

JE

Fic. 18. The role of variables i, j, k.

The integer p is the period of max(x), that is the length of per(x). The
integer i is the position of max(x), and j is the position of the last occurrence
of rest(x) in max(Xx).

The correctness of the algorithm is clear by Proposition 4.1. Its time
complexity can be analyzed as follows:

ProrosiTion 4.2.  The computation of the function ‘‘MAXIMAL-SUFFIX'’ by

the algorithm of Figure 17 uses less than 2 n letter comparisons on an input
word of length n.

Proor. We show that after each comparison between letters g and «’, the
expression
i+j+k
is increased at least by one unit. Since i< nand j + &k < »n + 1, we have
2=i+4+j+k=2n+1,

which implies that the number of comparisons performed before the execution
of the algorithm stops is at most 2#. We now look at the three possible cases:

(i) Incase a<a’,i+j+ kisreplacedby i +j + k + 1.
(i) Incase a = a’, i + j + k is also replaced by i + j + k + 1.
(iii) In case @ > a’, i + j + k is replaced by 2/ + 2. But, since we have
always i + k < j, we obtain i + j + k < 2. Hence, i + j + k increases
at least by 2 units in this case. O
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As a consequence of Proposition 4.2, the time complexity of the algorithm of
Figure 17 in the worst case is O(n) in the RAM model. The computation
requires seven extra memory locations.

It is worth observing that the arguments used in the proof of Proposition 4.1
are essentially the same arguments required to prove the following statement:
Let x be a word and let x = u®v with |u| = p(x) and e = 1; then
x = max(x) iff u = max(u) and u is unbordered. This statement is closely
related to properties of Lyndon words proved in [14]. Indeed, it is equivalent to
say that # is a Lyndon word for the reversed alphabetical ordering, and that u
is an unbordered word such that u = max(u).

The algorithm developed in this section can be used for the computation of a
critical factorization (u, v) of a word x such that |u| < p(x), as we have
seen in Section 3. Moreover, the above algorithm computes the period of
max(x) and we shall see in Section 5 how this algorithm can be used to
approximate the period of the word x.

5. Computing Periods

The string-matching algorithm of Section 2 uses the period of the pattern. A
previous computation of this period is possible. This precomputation can be
made easily by using Knuth, Morris, and Pratt’s algorithm on the pattern. This
precomputation, combined with both the computation of a critical factorization
of the pattern and our string-matching algorithm, leads to an algorithm that is
globally linear in time and space. But, since the string-matching algorithm
operates in constant space, it is desirable to improve on the precomputation of
the period of the pattern, with the aim of obtaining a global algorithm that is in
linear time and constant space. There are two ways to achieve that goal. One is
a direct computation of the period by an algorithm operating in linear time and
constant space. Such an algorithm is described in [12]. It can also be obtained
as a consequence of the results in [17]. Our approach here is different. We shall
describe a modification of our string-matching algorithm that avoids the use of
the period of the pattern, giving an algorithm that is linear time and constant
space on the whole. The point is that the exact value of the period of the pattern
is actually needed only when it is less than half the length of the pattern. When
the period of the pattern is larger, an even simpler string-matching algorithm is
provided.

We first show how small periods can be computed in linear time and bounded
space. Then, we give a second version of the ‘‘function posrrion,”” called
“‘posiTioN-B1s,”” intended to deal with patterns having no period less than half
their length. The complete two-way string-matching algorithm, gathering the
functions “‘posITiON,”” ‘‘PosITION-BIS,”” and ‘‘SMALL-PERIOD,”’ is given as a
function called ‘‘maTcH’ in Figure 21.

The algorithm of Figure 19 computes p(x), the period of its input, when it
satisfies p(x) < | x| /2, and otherwise produces a lower bound of p(x) as we
shall see in next proposition. The maximum number of letter comparisons used
by the algorithm on input x is 4.5 | x | decomposed as follows: 2 | x| at line 1,
2| x| at line 2 (see Section 4), and | x| /2 at line 4. The following statement
proves the correctness of the algorithm.

Prorostrion 5.1.  Let x be a nonempty word. Let (u,v) be a critical
Jactorization of x such that |u| < p(x). Let v =y°z with e =1 and
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function SMALL-PERIOD { X):
N < LENGTH( X):
(11, ply < MAXIMAL-SUFFIX( X, <);
(12, p2) < MAXIMAL-SUFFIX( X, S);
3 if (/1 = /2) then {
1< I1; p<pl;
} else {
I <12, p< p2,;
} end if
4 if (/< n/2and x[1] --- x[{]is a suffix of x[/ + 1] -+ x[/ + p]) then {
5 return ( p);
} else {
6 return (max(/, n — /) + 1);
} end if
end function.

PO —

Fi16. 19. Constant-space computation of small periods

|y| =p(v). If |u| <|x|/2 and u is a suffix of y, then p(x) = p(v);
otherwise, p(x) > max(|ul|, |v|).

Proor. If the condition holds true, the word x is a factor of y¢*2. Then,
| | = p(v) is a period of x and, since the period of x cannot be less than the
period of v, we get p(x) = p(v).

If |u| =]|x]|/2, we have obviously max(|u]|, |v|) = |u| and p(x) >
max(| ul, [v]).

Finally consider the case where |u| < | x| /2 and u is not a suffix of y.
We show that there is no nonempty word w such that wu is a prefix of x.
Assume, ab absurdo, that wu is prefix of x. If w is nonempty, its length is a
local period at (#, v), and then | w| = p(x) = p(v). We cannot have | w| =
p(v) because u is not a suffix of y. We cannot either have | w| > p(v)
because this would lead to a local period at (u, v) strictly less than p(v), a
contradiction. This proves the assertion and also shows that the local period at
(u, v) is strictly larger than |v|. Since max(|u|, |v|) = | v|, we get the
conclusion: p(x) > max(|u|, | v|).

Actually, we observe that the condition stated in the proposition holds true
when the period of x is small, that is, when p(x) < | x| /2, implying
p(x) = p(v), as previously mentioned.

We now present in Figure 20 a simple version of our string-matching
algorithm to be used when the period of the pattern is large. This new version
differs in the way a mismatch occurring in the second phase is treated. In this
situation, instead of shifting the pattern p(x) places to the right, it is only
shifted g places to the right with ¢ < p(x). The correctness of this modifica-
tion is obvious and the time complexity is still linear, provided g satisfies some
requirement as explained below.

ProposiTion 5.2.  Let x and t be words and let q be an integer such that
0 < g =p(x). Then, the function rosmions-is’’, which uses both the
integer q and a critical position | such that | < p(x), computes the set
P(x,t) of positions of the pattern x inside the text t.

Furthermore, if q > max(l, | x| — 1) the number of letter comparisons
used by the algorithm is bounded by 2 | t|.
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function rosrTiONs-BIS ( X, £):
(g is an integer such that 0 < ¢ < p(x) and
1 is a critical position such that / < p(x))
P = J; pos < 0

1 while (pos + | x| < | t]|) do {
2 i<l+1:
3 while (i < | x| and x[i] = {pos + i]ydo i — i + 1,
if (i< | x|) then {
4 pos<—pos+i—1I;
} else {
5 J< 1
6 while (j > O and x[j] = t[ pos + j)do j< j— 1.
7 if (j = 0) then add pos to P:
8 poOs < pos + q;
} end if
} end while
return ( P);

end function

Fi. 20. Constant-space algorithm in case of large period.

Proor. One can get the first assertion by reproducing a simplified version
of the proof of Proposition 2.2.

We first prove that the number of comparisons performed at line 3 is bounded
by | ¢|. Consider two consecutive values k and k’ of the sum pos + /. If these
values are obtained during the same execution of the instruction 3 then
k' = k + 1 because i is increased by one unit. Otherwise, pos is increased
either by the execution of instruction 4 or by the execution of instruction 8. In
the first case, K’ = k — I+ / 4+ 1 = k + 1 again. In the second case, kK’ = k
+ g — [, and the assumption g > max(/, | x| — /) implies k" = k + 1. Since
comparisons at line 3 strictly increase the value of pos + i, which has initial
value | x,| + 1 and final value at most |#| + 1, the claim is proved.

We show that the number of comparisons performed at line 6 is also bounded
by |t|. Consider two values k and k' of the sum pos + j, respectively,
obtained during two consecutive executions of the instruction 6. Let p be the
value pos has at the first of these two executions. Then, kK < p + / and
k' = p’ = p + q. The assumption g > max(/, | x| — /) implies k' = k + 1.
Thus, no two letter comparisons at line 6 are done on a same letter of the text ¢,
which proves the claim.

The total number of comparisons is thus bounded by 2 | ¢#|. [l

The complete two-way string-matching algorithm is shown in Figure 21. The
function ‘‘maATCcH’’ is obtained by substituting the bodies of functions *‘posi-
TiIoNs”” and ‘‘posiTions-Bis’” for statements at lines 5 and 6, respectively, inside
the function ‘‘smarL-pEriOD.’” At the beginning of the last ‘‘else’’ part, g is
assigned to max(/, | x| — ). The next proposition sums up the results of the
previous sections.

ProrositioN 5.3.  On input words x and t, the function ‘‘mATCH’’ com-
putes the set P(x,t) of positions of the pattern x inside the text t in time
O(|t| + | x|). More precisely, the computation uses less than 2|1} +
5| x| letter comparisons and 13 extra memory locations.

Proor. The correctness of the algorithm is a straightforward consequence of
Proposition 2.2 and 5.2.
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function MATCH ( X, ):
1 < LENGTH(X);
(/1, pl) < MAXIMAL-SUFFIX( X, <);
(12, p2) < MAXIMAL-SUFFIX( X, €);
if (/1 = [2) then {
[ < 11; p+ pl:
} else {
1< 12, p< p2;
} end if
if (/ <n/2and x[1]--- x[/]1s asuffix of x[/ + 1] --- X[/ + p]) then {
P = ; pos < 0; s 0
while (pos + n < |t])do {
i< max(/,s) + 1;
while (i < nand x[i] = t{pos + i])do i< i+ 1:
if (i < n) then {
pos — pos+ max(1 — I, s — p + 1);
s 0
} else {
j< L
while (j > s and x[j] = t[pos + j])do j <7 — 1,
if (7 < 5) then add pos to P;
DOs < pos + p;
s n-—p;
} end if
} end while
return ( P);
} else {
g =max(,n — )+ 1.
P = (; pos < (;
while (pos + n < | t]) do {
i<l+1;
while (i < nand x[i] = f{pos + i])do i — i+ 1;
if (i < n) then {
pos<—pos+1i—1,
} else {
j< L
while (j > Oand x[/j] = tf pos + jD) do j« j— 1:
if (j = 0) then add pos to P:
pos «— pos + ¢,
} end if
} end while
return (P);
}end if
end function.

Fic. 21. Two-way string-matching algorithm.

As shown at the beginning of this section, the overall precomputations of the
period and of a critical position of x uses less than 5| x| comparisons.
Propositions 2.3 and 5.2 assert that each search phase uses less than 27|
comparisons, which gives the total number of comparisons 2 |¢| + 5| x|.

The function ‘‘MAXIMAL-SUFFIX’’ requires seven memory locations including »
and so do the search phases (see Corollary 2.4). We get 13 locations. No more

locations are needed because /1, /2 can share the same place as / and so can
pl, p2 and g with p. [

We end this section by giving examples of the behavior of the two-way
algorithm of Figure 21. The examples are presented in Figure 22, where the
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bbbbbbbbb... aabaaabaaabaa... aaabaaabaaabaa...
aab aabaa aaabaa
aab aabaa " aaabaa
aab @ aaabaa
aabaa -
aabaa

(a) (b) {c)

Fic. 22. Behavior of function ‘“MATCH’.

letters of the pattern scanned during the search phase of the algorithm are
underlined.

On the pattern x = a"b, the algorithm finds its unique critical factorization
(a@”, b). The search for x inside the text t = b™ uses 2| ¢|/ | x| comparisons
and so does BM. Both algorithms attempt to match the last two letters of x
against the letters of ¢, and shift x(z + 1) places to the right, as shown in
Figure 22(a).

The pattern x = a@"ba" has period n + 1. Its critical factorization computed
by the function ‘‘marcH’’ is (a”, ba"). The function behaves as ‘posiTiONS”’
and uses 2 || — 2e — 2 comparisons to match x in ¢ = (a"ba)’a" " (see
Figure 22(b)). The same number of comparisons is reached when searching for
X = a"ba"""' inside t = (a"b)a""', but in this latter case, the algorithm
behaves as ‘‘posiTions-Bis’’ (see Figure 22(c)).

6. Conclusion

As a conclusion, the two-way algorithm exhibits a time complexity that is
linear, as for KMP and BM, and that is, in some cases, sublinear as BM is. An
average analysis remains to be done.

There is a version of BM that is frequently used [19, 28]. It uses an additional
information to compute the shifts of the pattern, given a function

d(a) = min({| w|; aw is a suffix of x} U {| x|}),

defined on the letter a of A. Such a function can also be incorporated into our
algorithm. According to a critical factorization (u, v) of x such that |u| <
p(x), we define a function o for the last occurrence of a letter inside the left
part u of the critical factorization:

a(a) = min({| w|; aw is a suffix of u} U {|u|}).
The statement at line 4 in the algorithm of Figure 8 is replaced by
pos < pos + max(i — | + ot pos + i]],s —p + 1),
and the line 4 in Figure 20 by
pos < pos +i— 1+ aft] pos + i]].

With similar transformations on the corresponding statements of the function
““marcu’” of Figure 21, the minimal number of comparisons during the search
phase becomes ||/ | x|, the best possible as shown in [25]. An instance of
this best case is given by x = a"b and ¢ = c™. On the pair of words
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x = a"ba" and t = (a"c)®, the number of comparisons becomes less than
|¢|/n compared to |¢| — n for BM.

KMP is one of the simplest examples of an algorithm that is in linear time
without operating in real time. In fact, the time spent by the algorithm on a
single symbol of the text cannot be bounded by a constant. The first string-
matching algorithm operating in real time is due to Galil [16]. Another real time
string-matching algorithm is presented in [11]. It is based on the notion of a
suffix automaton invented by Blumer et al. ([6, 10]). The nature of the BM
algorithm and the two-way algorithm does not allow them to operate in real
time.

As already mentioned, the two-way algorithm uses constant extra memory
space, even including the precomputation of the period of the pattern, as shown
in Section 5. However, the algorithm uses two arrays to store the text and the
pattern. KMP can be implemented without a memorization of the text since it
behaves like a deterministic automaton receiving the text as input, symbol by
symbol, without reading back its input. This can be considered as its main
advantage compared to the naive algorithm. Our algorithm, as well as BM,
does not present this feature and requires the use of two arrays of the same size,
one for the pattern and another one used as a buffer on the text. It does not use,
however, an auxiliary array for the shift function as KMP and BM do. It is
similar in this sense to Galil and Seiferas’ algorithm [17], and allows an
implementation without dynamic allocation of memory.

From the point of view of automata theory, the problem of string-matching is
a particular case of the computation of a rational relation. A rational relation
between words is one that may be computed by a multihead finite-state
automaton (see [5] for definitions and results on rational relations). It holds in
general that one may verify in linear time whether two words are related by a
given rational relation (see [5], Exercise 8.2). The possibility of realizing the
string-matching in linear time and constant space has been interpreted in [17] as
the possibility of implementing it with a multihead deterministic finite-state
automaton. It would be interesting to know to which class of rational relations
this results applies.
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