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Unary Coding for Neural Network Learning 

Subhash Kak 

 

Abstract 
This paper presents some properties of unary coding of significance for biological learning 
and instantaneously trained neural networks.  
 
Introduction 
Unary code of n is generally represented by a string of n 1 bits followed by a terminating 0 
bit (or equivalently as n 0 bits followed by a terminating 1 bit). Alternative representations 
for n have n-1 1 bits followed by a 0 bit or, if the terminating bit is inessential, by n 1 bits. 
Unary coding has found applications in data compression. 
 
In models of learning inspired by neuroscience, features are often coded spatially so that 
location denotes number. This is shown in the diagram below. 
 
 
 
 
To denote a specific value, one only needs to mark the slot that corresponds to it.  This may 
be done either by marking the specific slot and leaving the others either blank or marked 
with a different symbol. For example, four different angles are represented in a perceptron 
learning system by the encodings [1] 
 
 1: 1000 
 2: 0100 
 3: 0010 
 4: 0001 
 
that are termed unary by the authors. This nomenclature is right since the coded information 
resides in the location of the separation between the 1s and 0s, which in this coding is 
represented by a single 1.  
 
If this coding is further modified by the rule that all places to the left of 1 should be replaced 
by 1, we get the familiar: 
 

1: 1000 
 2: 1100 
 3: 1110 
 4: 1111 
 

  1               2              3              4
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Unary representation of small numbers as vertical strokes is attested in the earliest 
archaeological records in different cultures around the world [2],[3]. The Inca system of 
counting by knots, called quipu, is also essentially a unary system in which the strokes are 
replaced by the number of knots. Quipus were based on a decimal position system. This 
unary system, and others elsewhere in the world, evolved with the use of special symbols to 
represent 5 and 10 and other large numbers. 
 
If unary code words are separately transmitted, then the length of the codeword itself 
communicates its corresponding n, and the distribution of the 0s and 1s in the group is 
unimportant. In such a case, one can replace the bits by a random distribution of 0s and 1s.  
 
Unary codes are universal codes for symbols whose distribution is monotonic [4]. They have 
applications in data compression.  
 
In this note we review why unary coding is effective in neural network learning. 
 
The simplest distance measure for binary vectors is the Hamming distance. For such vectors, 
we would use unary coding if a uniform Hamming distance is required amongst the code 
words.  
 
In representing points on the plane, binary coding is not uniform in the sense that points far 
apart can have small Hamming distance and points that are close can have large Hamming 
distance. Gray coding ensures Hamming distance of one for adjacent elements but the 
distance is not well defined when we consider elements that are not adjacent. 
 

         Number:          1,      2,       3,       4,       5,       6,       7,  
Binary coding:   0001, 0010, 0011, 0100, 0101, 0110, 0111 … 
   Gray coding:   0001, 0011, 0010, 0110, 0111, 0101, 0100 …  

 
For binary coding, the distance between 3 and 4 is 3 bits whereas the distance between 1 and 
5 is only 1 bit. Conversely in Gray coding, the distance between 3 and 4 is 1 bit and the 
distance between 1 and 6 is also 1 bit. Both these mappings are thus unsatisfactory from a 
distance defining perspective. 
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Table 1. 
Number Basic 

unary  
Binary Gray 

1 

2 

3 

4 

5 

6 

7 

1 
 
11 
 
111 
 
1111 
 
11111 
 
111111 
 
1111111

1 
 
10 
 
11 
 
100 
 
101 
 
110 
 
111 

1 
 
11 
 
10 
 
110 
 
111 
 
101 
 
100 

 
 
Although unary coding provides uniform distances, this implicitly assumes that each unary 
code has been appended with a suitable number of 0s so as to provide the same length for 
each code word. 
 
Weight of Unary Codes 
 
The general unary coding problem is to find a code so that if for numerals x and y the 
distance between them is given by d(x-y), then  
 
  d(x-y1) > d (x-y2) if |x-y1| > |x-y2| 
 
If the measure used is the Hamming distance, then we have the following corollary 
regarding weights (w) of the unary code: 
 
  w (y2) > w(y1)  if  |y2| > |y1| 
 
Application in Neural Networks 
 
Fixed length unary coding was used in instantaneously trained neural networks to ensure 
that learning a specific point makes it possible to learn all adjacent (in the Hamming 
distance sense) points [5]-[9].  It was the uniform property of distance that made 
instantaneous learning possible since representing the learnt point was straightforward. Once 
a data point has been recognized, one can achieve generalization by wrapping a region of 
Hamming radius r units around it. 
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  Figure 1. Instantaneously trained neural network 

The corner classification (CC) network, which is capable of instantaneous learning, was 
proposed in various variations [10],[11]. These and its more advanced variants have been 
implemented in hardware also [12],[13]. There are four versions of the CC technique, 
represented by CC1 through CC4. The concept of radius of generalization was introduced in 
CC3 which allowed this neural network to overcome the generalization problem that 
plagued the earlier CC2 network. Each node in the network acted as a a hyperplane to 
separate the corner of the n-dimensional cube represented by the training vector (hence the 
name corner-classification, CC, technique).  

The CC4 uses a feedforward network architecture consisting of three layers of neurons 
as shown in Figure 1. The number of input neurons is equal to the length of input patterns or 
vectors plus one, the additional neuron being the bias neuron, which has a constant input of 
1. The number of hidden neurons is equal to the number of training samples, and each 
hidden neuron corresponds to one training example. The last node of the input layer is set to 
one to act as a bias to the hidden layer. The binary step function is used as the activation 
function for both the hidden and output neurons. The output of the activation function is 1 if 
summation is positive and zero otherwise.  

Input and output weights are determined as follows. For each training vector presented 
to the network, if an input neuron receives a 1, its weight to the hidden neuron 
corresponding to this training vector is set to 1; otherwise, it is set to -1. The bias neuron is 
treated differently. If s is the number of l's in the training vector, excluding the bias input, 
and the desired radius of generalization is r, then the weight between the bias neuron and the 
hidden neuron corresponding to this training vector is r - s + 1. Thus, for any training vector 
xi of length n including the bias, the input layer weights are assigned according to the  
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following equation: 

 
The weights in the output layer are equal to 1 if the output value is 1 and –1 if the output 
value is 0. This amounts to learning both the input class and its complement. The radius of 
generalization, r, can be seen by considering the all-zero input vectors for which wn+1 = r + 
1. The choice of r will depend on the nature of generalization sought. Since the weights are 
1, -1, or 0, it is clear that actual computations are minimal. In the general case, the only 
weight that can be greater in magnitude than 1 is the one associated with the bias neuron. 

Several scholars [15],[16],[17] have argued that unary coding is at the basis of fast birdsong 
learning. This means that there is a neurophysiological justification for the unary mapping of 
instantaneously trained neural networks.  
 
For the uniform Hamming distance requirement, unary coding may be performed as below: 
 
   Table 2. 

n Unary code Fixed length unary code  
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 
 
10 
 
110 
 
1110 
 
11110 
 
111110 
 
1111110 
 
11111110 
 
111111110 
 
1111111110 
 
11111111110

0000000000 
 
0000000001 
 
0000000011 

0000000111 

0000001111 

0000011111 

0000111111 

0001111111 

0011111111 

0111111111 

1111111111 
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The fixed length unary code suffers from a disadvantage when it is used in communications 
problems because it does not have any error correction capability in it. In order to endow the 
codes with the ability to combat errors, it is essential to increase the minimum Hamming 
distance between code words beyond the 1 that we have in the mapping of Table 2. 
 
A straightforward way of increasing Hamming distance between code words is to code n by 
a string of kn 1 bits followed by a terminating 0 bit (or equivalently as n 0 bits followed by a 
terminating 1 bit). This will ensure that the minimum Hamming distance between code 
words is k-1. This is not particularly efficient. This, or some other generalized unary coding 
scheme, may actually be in use in biological systems so as to incorporate error-correction. 
 
Conclusions 
Generalizations of unary coding may be obtained by considering the minimum code word 
length to besome integer, and by considering code words that have been made roughly equal 
in the number of 0s and 1s.  
 
If unary code words are separately transmitted, then the length of the codeword itself 
communicates its corresponding n, and the distribution of the 0s and 1s in the group is 
unimportant. In such a case, one can replace the bits by a random distribution  of 0s and 1s 
and choose from a variety of such sequences [18],[19],[20]. 
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