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ABSTRACT

Despite their massive size, successful deep artificial neural networks can exhibit a
remarkably small difference between training and test performance. Conventional
wisdom attributes small generalization error either to properties of the model fam-
ily, or to the regularization techniques used during training.

Through extensive systematic experiments, we show how these traditional ap-
proaches fail to explain why large neural networks generalize well in practice.
Specifically, our experiments establish that state-of-the-art convolutional networks
for image classification trained with stochastic gradient methods easily fit a ran-
dom labeling of the training data. This phenomenon is qualitatively unaffected
by explicit regularization, and occurs even if we replace the true images by com-
pletely unstructured random noise. We corroborate these experimental findings
with a theoretical construction showing that simple depth two neural networks al-
ready have perfect finite sample expressivity as soon as the number of parameters
exceeds the number of data points as it usually does in practice.

We interpret our experimental findings by comparison with traditional models.

1 INTRODUCTION

Deep artificial neural networks often have far more trainable model parameters than the number of
samples they are trained on. Nonetheless, some of these models exhibit remarkably small gener-
alization error, i.e., difference between “training error” and “test error”. At the same time, it is
certainly easy to come up with natural model architectures that generalize poorly. What is it then
that distinguishes neural networks that generalize well from those that don’t? A satisfying answer
to this question would not only help to make neural networks more interpretable, but it might also
lead to more principled and reliable model architecture design.

To answer such a question, statistical learning theory has proposed a number of different complexity
measures that are capable of controlling generalization error. These include VC dimension (Vapnik,
1998), Rademacher complexity (Bartlett & Mendelson, 2003), and uniform stability (Mukherjee
et al., 2002; Bousquet & Elisseeff, 2002; Poggio et al., 2004). Moreover, when the number of
parameters is large, theory suggests that some form of regularization is needed to ensure small
generalization error. Regularization may also be implicit as is the case with early stopping.

1.1 OUR CONTRIBUTIONS

In this work, we problematize the traditional view of generalization by showing that it is incapable
of distinguishing between different neural networks that have radically different generalization per-
formance.

*Work performed while interning at Google Brain.
tWork performed at Google Brain.



Randomization tests. At the heart of our methodology is a variant of the well-known randomiza-
tion test from non-parametric statistics (Edgington & Onghena, 2007). In a first set of experiments,
we train several standard architectures on a copy of the data where the true labels were replaced by
random labels. Our central finding can be summarized as:

Deep neural networks easily fit random labels.

More precisely, when trained on a completely random labeling of the true data, neural networks
achieve 0 training error. The test error, of course, is no better than random chance as there is no cor-
relation between the training labels and the test labels. In other words, by randomizing labels alone
we can force the generalization of a model to jump up considerably without changing the model, its
size, hyperparameters, or the optimizer. We establish this fact for several different standard architec-
tures trained on the CIFAR10 and ImageNet classification benchmarks. While simple to state, this
observation has profound implications from a statistical learning perspective:

1. The effective capacity of neural networks is large enough for a brute-force memorization
of the entire data set.

2. Even optimization on random labels remains easy. In fact, training time increases only by
a small constant factor compared with training on the true labels.

3. Randomizing labels is solely a data transformation, leaving all other properties of the learn-
ing problem unchanged.

Extending on this first set of experiments, we also replace the true images by completely random
pixels (e.g., Gaussian noise) and observe that convolutional neural networks continue to fit the data
with zero training error. This shows that despite their structure, convolutional neural nets can fit
random noise. We furthermore vary the amount of randomization, interpolating smoothly between
the case of no noise and complete noise. This leads to a range of intermediate learning problems
where there remains some level of signal in the labels. We observe a steady deterioration of the
generalization error as we increase the noise level. This shows that neural networks are able to
capture the remaining signal in the data, while at the same time fit the noisy part using brute-force.

We discuss in further detail below how these observations rule out all of VC-dimension, Rademacher
complexity, and uniform stability as possible explanations for the generalization performance of
state-of-the-art neural networks.

The role of explicit regularization. If the model architecture itself isn’t a sufficient regularizer, it
remains to see how much explicit regularization helps. We show that explicit forms of regularization,
such as weight decay, dropout, and data augmentation, do not adequately explain the generalization
error of neural networks. Put differently:

Explicit regularization may improve generalization performance, but is neither necessary nor by
itself sufficient for controlling generalization error.

In contrast with classicial convex empirical risk minimization, where explicit regularization is nec-
essary to rule out trivial solutions, we found that regularization plays a rather different role in deep
learning. It appears to be more of a tuning parameter that often helps improve the final test error
of a model, but the absence of all regularization does not necessarily imply poor generalization er-
ror. As reported by Krizhevsky et al. (2012), ¢2-regularization (weight decay) sometimes even helps
optimization, illustrating its poorly understood nature in deep learning.

Finite sample expressivity. We complement our empirical observations with a theoretical con-
struction showing that generically large neural networks can express any labeling of the training
data. More formally, we exhibit a very simple two-layer ReLU network with p = 2n + d parameters
that can express any labeling of any sample of size n in d dimensions. A previous construction due
to Livni et al. (2014) achieved a similar result with far more parameters, namely, O(dn). While our
depth 2 network inevitably has large width, we can also come up with a depth k£ network in which
each layer has only O(n/k) parameters.

While prior expressivity results focused on what functions neural nets can represent over the entire
domain, we focus instead on the expressivity of neural nets with regards to a finite sample. In



contrast to existing depth separations (Delalleau & Bengio, 2011; Eldan & Shamir, 2016; Telgarsky,
2016; Cohen & Shashua, 2016) in function space, our result shows that even depth-2 networks of
linear size can already represent any labeling of the training data.

The role of implicit regularization. While explicit regularizers like dropout and weight-decay
may not be essential for generalization, it is certainly the case that not all models that fit the training
data well generalize well. Indeed, in neural networks, we almost always choose our model as the
output of running stochastic gradient descent. Appealing to linear models, we analyze how SGD
acts as an implicit regularizer. For linear models, SGD always converges to a solution with small
norm. Hence, the algorithm itself is implicitly regularizing the solution. Indeed, we show on small
data sets that even Gaussian kernel methods can generalize well with no regularization. Though this
doesn’t explain why certain architectures generalize better than other architectures, it does suggest
that more investigation is needed to understand exactly what the properties are inherited by models
that were trained using SGD.

1.2 RELATED WORK

Hardt et al. (2016) give an upper bound on the generalization error of a model trained with stochastic
gradient descent in terms of the number of steps gradient descent took. Their analysis goes through
the notion of uniform stability (Mukherjee et al., 2002; Bousquet & Elisseeff, 2002; Poggio et al.,
2004). As we point out in this work, uniform stability of a learning algorithm is independent of
the labeling of the training data. Hence, the concept is not strong enough to distinguish between
the models trained on the true labels (small generalization error) and models trained on random
labels (high generalization error). This also highlights why the analysis of Hardt et al. (2016) for
non-convex optimization was rather pessimistic, allowing only a very few passes over the data. Our
results show that even empirically training neural networks is not uniformly stable for many passes
over the data. Consequently, a weaker stability notion is necessary to make further progress along
this direction.

There has been much work on the representational power of neural networks, starting from universal
approximation theorems for multi-layer perceptrons (Cybenko, 1989; Mhaskar, 1993; Delalleau &
Bengio, 2011; Mhaskar & Poggio, 2016; Eldan & Shamir, 2016; Telgarsky, 2016; Cohen & Shashua,
2016). All of these results are at the population level characterizing which mathematical functions
certain families of neural networks can express over the entire domain. We instead study the repre-
sentational power of neural networks for a finite sample of size n. This leads to a very simple proof
that even O(n)-sized two-layer perceptrons have universal finite-sample expressivity.

2 EFFECTIVE CAPACITY OF NEURAL NETWORKS

Our goal is to understand the effective model capacity of feed-forward neural networks. Toward this
goal, we choose a methodology inspired by non-parametric randomization tests. Specifically, we
take a candidate architecture and train it both on the true data and on a copy of the data in which the
true labels were replaced by random labels. In the second case, there is no longer any relationship
between the instances and the class labels. As a result, learning is impossible. Intuition suggests that
this impossibility should manifest itself clearly during training, e.g., by training not converging or
slowing down substantially. To our surprise, the training process for several standard achitectures is
largely unaffected by this transformation of the labels. This poses a conceptual challenge. Whatever
justification we had for expecting a small generalization error to begin with must no longer apply to
the case of random labels.

To gain further insight into this phenomenon, we experiment with different levels of randomization
exploring the continuum between no label noise and completely corrupted labels. We also try out
different randomizations of the inputs (rather than labels), arriving at the same general conclusion.

The experiments are run on two image classification datasets, the CIFAR10 dataset (Krizhevsky
& Hinton, 2009) and the ImageNet (Russakovsky et al., 2015) ILSVRC 2012 dataset. We test the
Inception V3 (Szegedy et al., 2015) architecture on ImageNet and a smaller version of Inception,
Alexnet (Krizhevsky et al., 2012), and MLPs on CIFAR10. Please see Section A in the appendix for
details of the experimental setup.
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Figure 1: Fitting random labels and random pixels on CIFAR10. (a) shows the training loss of
various experiment settings decaying with the training steps. (b) shows the relative convergence
time with different label corruption ratio. (c) shows the test error (also the generalization error since
training error is 0) under different label corruptions.

2.1 FITTING RANDOM LABELS AND PIXELS
We run our experiments with the following modifications of the labels and input images:

o True labels: the original dataset without modification.

e Partially corrupted labels: independently with probability p, the label of each image is
corrupted as a uniform random class.

e Random labels: all the labels are replaced with random ones.

o Shuffled pixels: a random permutation of the pixels is chosen and then the same permuta-
tion is applied to all the images in both training and test set.

e Random pixels: a different random permutation is applied to each image independently.

e Gaussian: A Gaussian distribution (with matching mean and variance) is used to generate
random pixels for each image.

Surprisingly, stochastic gradient descent with unchanged hyperparameter settings can optimize the
weights to fit to random labels perfectly, even though the random labels completely destroy the
relationship between images and labels. We further break the structure of the images by shuffling
the image pixels, and even completely re-sampling random pixels from a Gaussian distribution. But
the networks we tested are still able to fit.

Figure la shows the learning curves of the Inception model on the CIFAR10 dataset under vari-
ous settings. We expect the objective function to take longer to start decreasing on random labels
because initially the label assignments for every training sample is uncorrelated. Therefore, large
predictions errors are back-propagated to make large gradients for parameter updates. However,
since the random labels are fixed and consistent across epochs, the network starts fitting after going
through the training set multiple times. We find the following observations for fitting random labels
very interesting: a) we do not need to change the learning rate schedule; b) once the fitting starts,
it converges quickly; c) it converges to (over)fit the training set perfectly. Also note that “random
pixels” and “Gaussian” start converging faster than “random labels”. This might be because with
random pixels, the inputs are more separated from each other than natural images that originally
belong to the same category, therefore, easier to build a network for arbitrary label assignments.

On the CIFAR10 dataset, Alexnet and MLPs all converge to zero loss on the training set. The shaded
rows in Table 1 show the exact numbers and experimental setup. We also tested random labels on
the ImageNet dataset. As shown in the last three rows of Table 2 in the appendix, although it does
not reach the perfect 100% top-1 accuracy, 95.20% accuracy is still very surprising for a million
random labels from 1000 categories. Note that we did not do any parameter tuning when switching
from the true labels to random labels. It is likely that with some modification of the parameters,
perfect accuracy could be achieved on random labels. The network also manages to reach ~90%
top-1 accuracy even with explicit regularizers turned on.



Partially corrupted labels We further inspect the behavior of neural network training with a vary-
ing level of label corruptions from 0 (no corruption) to 1 (complete random labels) on the CIFAR10
dataset. The networks fit the corrupted training set perfectly for all the cases. Figure 1b shows the
slowdown of the convergence time with increasing level of label noises. Figure 1c depicts the test
errors after convergence. Since the training errors are always zero, the test errors are the same as
generalization errors. As the noise level approaches 1, the generalization errors converge to 90% —
the performance of random guessing on CIFAR10.

2.2 IMPLICATIONS

In light of our randomization experiments, we discuss how our findings rule out several traditional
approaches to generalization.

Rademacher complexity and VC-dimension. Rademacher complexity is commonly used and
flexible complexity measure of a hypothesis class. The empirical Rademacher complexity of a

hypothesis class H on a dataset {z1, ..., x,} is defined as
B () = By | sup - Y ah(a) m
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where 01,...,0, € {£1} are i.i.d. uniform random variables. This closely resemble our random-

ization test. Specifically, R,, () measures on average H’s capability of fitting all possible +1 binary
label assignments. Generalization guarantees based on Rademacher complexity directly character-

ize the convergence rate by O(i)A%n("H)) However, since the randomization tests suggests the neural

networks fit the training set with random labels perfectly, we get Ef%n('H) = 1, which is trivial for
an upper bound of 0-1 loss in binary classification. Therefore, uniform convergence bounds based
on Rademacher complexity are not strong enough to characterize the success of deep learning in
realistic settings. A similar reasoning rules out VC-dimension. Deep neural networks with more
than n parameters have VC-dimension greater than n, which leads to trivial uniform convergence
bounds. For neural networks, there is also no direct analog of generalization through margin theory
as has been successful for large kernel machines.

Uniform stability. Stepping away from complexity measures of the hypothesis class, we can in-
stead consider properties of the algorithm used for training. This is commonly done with some
notion of stability, such as uniform stability (Mukherjee et al., 2002; Bousquet & Elisseeff, 2002;
Poggio et al., 2004). Uniform stability of an algorithm A measures how sensitive the algorithm is to
the replacement of a single example. However, it is solely a property of the algorithm, which does
not take into account specifics of the data or the distribution of the labels. It is possible to define
weaker notions of stability (Shalev-Shwartz et al., 2010). The weakest such stability measure is
directly equivalent to bounding generalization error and does take the data into account. However,
it has been difficult to utilize this weaker stability notion effectively.

3 THE ROLE OF REGULARIZATION

Most of our randomization tests are performed with explicit regularization turned off. Regularizers
are the standard tool in theory and practice to mitigate overfitting in the regime when there are more
parameters than data points (Vapnik, 1998). The basic idea is that although the original hypothesis
is too large to generalize well, regularizers help confine learning to a subset of the hypothesis space
with manageable complexity. By adding an explicit regularizer, say by penalizing the norm of
the optimal solution, the effective Rademacher complexity of the possible solutions is dramatically
reduced.

As we will see, in deep learning, explicit regularization seems to play a rather different role. As the
bottom rows of Table 2 in the appendix show, even with dropout and weight decay, InceptionV3 is
still able to fit the random training set extremely well if not perfectly. Although not shown explicitly,
on CIFARI10, both Inception and MLPs still fit perfectly the random training set with weight decay
turned on. However, AlexNet with weight decay turned on fails to converge on random labels. To



Table 1: The training and test accuracy (in percentage) of various models on the CIFAR10 dataset.
Performance with and without data augmentation and weight decay are compared. The results of
fitting random labels are also included.

model # params random crop weight decay train accuracy test accuracy
yes yes 100.0 89.05
. yes no 100.0 89.31
Inception 1,649,402 o yes 100.0 86.03
no no 100.0 85.75
(fitting random labels) no no 100.0 9.78
Inception w/o no yes 100.0 83.00
BatchNorm 1,649,402 no no 100.0 82.00
(fitting random labels) no no 100.0 10.12
yes yes 99.90 81.22
yes no 99.82 79.66
Alexnet 1,387,786 no yes 100.0 7736
no no 100.0 76.07
(fitting random labels) no no 99.82 9.86
no yes 100.0 53.35
MLP 3x512 1,735,178 o o 100.0 5239
(fitting random labels) no no 100.0 10.48
no yes 99.80 50.39
MLP 1x512 1,209,866 o o 100.0 5051
(fitting random labels) no no 99.34 10.61

investigate the role of regularization in deep learning, we explicitly compare behavior of deep nets
learning with and without regularizers.

Instead of doing a full survey of all kinds of regularization techniques introduced for deep learning,
we simply take several commonly used network architectures, and compare the behavior when the
turning off the equipped regularizers. The following regularizers are covered:

e Data augmentation: augment the training set via domain-specific transformations. For
image data, commonly used transformations include random cropping, random perturba-
tion of brightness, saturation, hue and contrast.

e Weight decay: equivalent to a {5 regularizer on the weights; also equivalent to a hard
constrain of the weights to an Euclidean ball, with the radius decided by the amount of
weight decay.

e Dropout (Srivastava et al., 2014): mask out each element of a layer output randomly with
a given dropout probability. Only the Inception V3 for ImageNet uses dropout in our
experiments.

Table 1 shows the results of Inception, Alexnet and MLPs on CIFARI10, toggling the use of data
augmentation and weight decay. Both regularization techniques help to improve the generalization
performance, but even with all of the regularizers turned off, all of the models still generalize very
well.

Table 2 in the appendix shows a similar experiment on the ImageNet dataset. A 18% top-1 accuracy
drop is observed when we turn off all the regularizers. Specifically, the top-1 accuracy without
regularization is 59.80%, while random guessing only achieves 0.1% top-1 accuracy on ImageNet.
More strikingly, with data-augmentation on but explicit regularizers off, Inception is able to achieve
a top-1 accuracy of 72.95%. Indeed, it seems like the ability to augment the data using known
symmetries is significantly more powerful than just tuning weight decay or preventing low training
error.
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Figure 2: Effects of implicit regularizers on generalization performance. aug is data augmenta-
tion, wd is weight decay, BN is batch normalization. The shaded areas are the cumulative best test
accuracy, as an indicator of potential performance gain of early stopping. (a) early stopping could
potentially improve generalization when other regularizers are absent. (b) early stopping is not nec-
essarily helpful on CIFAR10, but batch normalization stablize the training process and improves
generalization.

Inception achieves 80.38% top-5 accuracy without regularization, while the reported number of
the winner of ILSVRC 2012 (Krizhevsky et al., 2012) achieved 83.6%. So while regularization is
important, bigger gains can be achieved by simply changing the model architecture. It is difficult
to say that the regularizers count as a fundamental phase change in the generalization capability of
deep nets.

3.1 IMPLICIT REGULARIZATIONS

Early stopping was shown to implicitly regularize on some convex learning problems (Yao et al.,
2007; Lin et al., 2016). In Table 2 in the appendix, we show in parentheses the best test accuracy
along the training process. It confirms that early stopping could potentially' improve the general-
ization performance. Figure 2a shows the training and testing accuracy on ImageNet. The shaded
area indicate the accumulative best test accuracy, as a reference of potential performance gain for
early stopping. However, on the CIFAR10 dataset, we do not observe any potential benefit of early

stopping.

Batch normalization (Ioffe & Szegedy, 2015) is an operator that normalizes the layer responses
within each mini-batch. It has been widely adopted in many modern neural network architectures
such as Inception (Szegedy et al., 2015) and Residual Networks (He et al., 2016). Although not
explicitly designed for regularization, batch normalization is usually found to improve the general-
ization performance. The Inception architecture uses a lot of batch normalization layers. To test the
impact of batch normalization, we create a “Inception w/o BatchNorm™ architecture that is exactly
the same as Inception in Figure 3, except with all the batch normalization layers removed. Figure 2b
compares the learning curves of the two variants of Inception on CIFAR10, with all the explicit reg-
ularizers turned off. The normalization operator helps stablize the learning dynamics, but the impact
on the generalization performance is only 3~4%. The exact accuracy is also listed in the section
“Inception w/o BatchNorm” of Table 1.

In summary, our observations on both explicit and implicit regularizers are consistently suggesting
that regularizers, when properly tuned, could help to improve the generalization performance. How-
ever, it is unlikely that the regularizers are the fundamental reason for generalization, as the networks
continue to perform well after all the regularizers removed.

"'We say “potentially” because to make this statement rigorous, we need to have another isolated test set and
test the performance there when we choose early stopping point on the first test set (acting like a validation set).



4  FINITE-SAMPLE EXPRESSIVITY

Much effort has gone into characterizing the expressivity of neural networks, e.g, Cybenko (1989);
Mhaskar (1993); Delalleau & Bengio (2011); Mhaskar & Poggio (2016); Eldan & Shamir (2016);
Telgarsky (2016); Cohen & Shashua (2016). Almost all of these results are at the “population level”
showing what functions of the entire domain can and cannot be represented by certain classes of
neural networks with the same number of parameters. For example, it is known that at the population
level depth k is generically more powerful than depth k£ — 1.

We argue that what is more relevant in practice is the expressive power of neural networks on a
finite sample of size n. It is possible to transfer population level results to finite sample results
using uniform convergence theorems. However, such uniform convergence bounds would require
the sample size to be polynomially large in the dimension of the input and exponential in the depth
of the network, posing a clearly unrealistic requirement in practice.

We instead directly analyze the finite-sample expressivity of neural networks, noting that this dra-
matically simplifies the picture. Specifically, as soon as the number of parameters p of a networks is
greater than n, even simple two-layer neural networks can represent any function of the input sam-
ple. We say that a neural network C' can represent any function of a sample of size n in d dimensions
if for every sample S C R? with |S| = n and every function f: S — R, there exists a setting of the
weights of C' such that C'(z) = f(x) forevery z € S.

Theorem 1. There exists a two-layer neural network with ReLU activations and 2n+ d weights that
can represent any function on a sample of size n in d dimensions.

The proof is given in Section C in the appendix, where we also discuss how to achieve width O(n/k)
with depth k. We remark that it’s a simple exercise to give bounds on the weights of the coefficient
vectors in our construction. Lemma 1 gives a bound on the smallest eigenvalue of the matrix A.
This can be used to give reasonable bounds on the weight of the solution w.

5 IMPLICIT REGULARIZATION: AN APPEAL TO LINEAR MODELS

Although deep neural nets remain mysterious for many reasons, we note in this section that it is not
necessarily easy to understand the source of generalization for linear models either. Indeed, it is
useful to appeal to the simple case of linear models to see if there are parallel insights that can help
us better understand neural networks.

Suppose we collect n distinct data points {(z;,y;)} where z; are d-dimensional feature vectors and
y; are labels. Letting loss denote a nonnegative loss function with loss(y,y) = 0, consider the
empirical risk minimization (ERM) problem

minyega 3oy loss(w’ @i, i) @)
If d > n, then we can fit any labeling. But is it then possible to generalize with such a rich model
class and no explicit regularization?

Let X denote the n x d data matrix whose i-th row is #7. If X has rank n, then the system of
equations Xw = y has an infinite number of solutions regardless of the right hand side. We can find
a global minimum in the ERM problem (2) by simply solving this linear system.

But do all global minima generalize equally well? Is there a way to determine when one global
minimum will generalize whereas another will not? One popular way to understand quality of
minima is the curvature of the loss function at the solution. But in the linear case, the curvature of
all optimal solutions is the same (Choromanska et al., 2015). To see this, note that in the case when

vy; is a scalar,
, Vi
2=Yi

A similar formula can be found when y is vector valued. In particular, the Hessian is not a function
of the choice of w. Moreover, the Hessian is degenerate at all global optimal solutions.

V2L loss(w i, ;) = L X7 diag(8)X, (ﬁi = Ploslzan)

If curvature doesn’t distinguish global minima, what does? A promising direction is to consider the
workhorse algorithm, stochastic gradient descent (SGD), and inspect which solution SGD converges



to. Since the SGD update takes the form w1 = wy — Neesx;, Where 7, is the step size and e is
the prediction error loss. If wy = 0, we must have that the solution has the form w = " | oz,
for some coefficients . Hence, if we run SGD we have that w = X 7T« lies in the span of the
data points. If we also perfectly interpolate the labels we have Xw = y. Enforcing both of these
identities, this reduces to the single equation

XXTa=y 3)

which has a unique solution. Note that this equation only depends on the dot-products between
the data points x;. We have thus derived the “kernel trick” (Scholkopf et al., 2001)—albeit in a
roundabout fashion.

We can therefore perfectly fit any set of labels by forming the Gram matrix (aka the kernel matrix)
on the data K = X X7 and solving the linear system K o = y for a.. This is an n x n linear system
that can be solved on standard workstations whenever n is less than a hundred thousand, as is the
case for small benchmarks like CIFAR10 and MNIST.

Quite surprisingly, fitting the training labels exactly yields excellent performance for convex models.
On MNIST with no preprocessing, we are able to achieve a test error of 1.2% by simply solving (3).
Note that this is not exactly simple as the kernel matrix requires 30GB to store in memory. Nonethe-
less, this system can be solved in under 3 minutes in on a commodity workstation with 24 cores and
256 GB of RAM with a conventional LAPACK call. By first applying a Gabor wavelet transform to
the data and then solving (3), the error on MNIST drops to 0.6%. Surprisingly, adding regularization
does not improve either model’s performance!

Similar results follow for CIFAR10. Simply applying a Gaussian kernel on pixels and using no
regularization achieves 46% test error. By preprocessing with a random convolutional neural net
with 32,000 random filters, this test error drops to 17% error>. Adding /o regularization further
reduces this number to 15% error. Note that this is without any data augmentation.

Note that this kernel solution has an appealing interpretation in terms of implicit regularization.
Simple algebra reveals that it is equivalent to the minimum f5-norm solution of Xw = y. That is,
out of all models that exactly fit the data, SGD will often converge to the solution with minimum
norm. It is very easy to construct solutions of Xw = y that don’t generalize: for example, one could
fit a Gaussian kernel to data and place the centers at random points. Another simple example would
be to force the data to fit random labels on the test data. In both cases, the norm of the solution is
significantly larger than the minimum norm solution.

Unfortunately, this notion of minimum norm is not predictive of generalization performance. For
example, returning to the MNIST example, the ¢>-norm of the minimum norm solution with no
preprocessing is approximately 220. With wavelet preprocessing, the norm jumps to 390. Yet the
test error drops by a factor of 2. So while this minimum-norm intuition may provide some guidance
to new algorithm design, it is only a very small piece of the generalization story.

6 CONCLUSION

The classical view of machine learning rests on the idea of parsimony. In almost any formulation,
learning boils down to extracting low-complexity patterns from data. Brute-force memorization is
typically not thought of as an effective form of learning. At the same time, it’s possible that sheer
memorization can in part be an effective problem-solving strategy for natural tasks.

Our results challenge the classical view of learning by showing that many successful neural networks
easily have the effective capacity for sheer memorization. This leads us to believe that these models
may very well make use of massive memorization when tackling the problems they are trained
to solve. It is likely that learning in the traditional sense still occurs in part, but it appears to be
deeply intertwined with massive memorization. Classical approaches are therefore poorly suited for
reasoning about why these models generalize well.

We believe that understanding neural networks requires rethinking generalization. We hope that
our paper provides a first stepping stone by problematizing the classical view and pointing towards
unresolved conundrums.

This conv-net is the Coates & Ng (2012) net, but with the filters selected at random instead of with k-means.
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Figure 3: The small Inception model adapted for the CIFAR10 dataset. On the left we show the
Conv module, the Incept ion module and the Downsamp1e module, which are used to construct
the Inception architecture on the right.

A EXPERIMENTAL SETUP

We focus on two image classification datasets, the CIFAR10 dataset (Krizhevsky & Hinton, 2009)
and the ImageNet (Russakovsky et al., 2015) ILSVRC 2012 dataset.

The CIFAR10 dataset contains 50,000 training and 10,000 validation images, split into 10 classes.
Each image is of size 32x32, with 3 color channels. We divide the pixel values by 255 to scale
them into [0, 1], crop from the center to get 28x28 inputs, and then normalize them by subtract-
ing the mean and dividing the adjusted standard deviation independently for each image with the
per_image_whitening function in TENSORFLOW (Abadi et al., 2015).

For the experiment on CIFAR10, we test a simplified Inception (Szegedy et al., 2015) and Alexnet
(Krizhevsky et al., 2012) by adapting the architectures to smaller input image sizes. We also test
standard multi-layer perceptrons (MLPs) with various number of hidden layers.

The small Inception model uses a combination of 1x1 and 3x3 convolution pathways. The detailed
architecture is illustrated in Figure 3. The small Alexnet is constructed by two (convolution 5x5
— max-pool 3x3 — local-response-normalization) modules followed by two fully connected layers
with 384 and 192 hidden units, respectively. Finally a 10-way linear layer is used for prediction.
The MLPs use fully connected layers. MLP 1x512 means one hidden layer with 512 hidden units.
All of the architectures use standard rectified linear activation functions (ReLU).

For all experiments on CIFAR10, we train with SGD with a momentum parameter of 0.9. An initial
learning rate of 0.1 (for small Inception) or 0.01 (for small Alexnet and MLPs) are used, with a decay
factor of 0.95 per training epoch. Unless otherwise specified, for the experiments with randomized
labels or pixels, we train the networks without weight decay, dropout, or other forms of explicit
regularization. Section 3 discusses the effects of various regularizers on fitting the networks and
generalization.



The ImageNet dataset contains 1,281,167 training and 50,000 validation images, split into 1000
classes. Each image is resized to 299x299 with 3 color channels. In the experiment on ImageNet,
we use the Inception V3 (Szegedy et al., 2015) architecture and reuse the data preprocessing and
experimental setup from the TENSORFLOW package. The data pipeline is extended to allow dis-
abling of data augmentation and feeding random labels that are consistent across epochs. We run
the ImageNet experiment in a distributed asynchronized SGD system with 50 workers.

B DETAILED RESULTS ON IMAGENET

Table 2: The top-1 and top-5 accuracy (in percentage) of the Inception v3 model on the ImageNet
dataset. We compare the training and test accuracy with various regularization turned on and off,
for both true labels and random labels. The original reported top-5 accuracy of the Alexnet on
ILSVRC 2012 is also listed for reference. The numbers in parentheses are the best test accuracy
during training, as a reference for potential performance gain of early stopping.

ii? dropout VQZIC%I}; top-1 train  top-5 train top-1 test top-5 test
ImageNet 1000 classes with the original labels

yes yes yes 92.18 99.21 77.84 93.92
yes no no 92.33 99.17 72.95 90.43

no no yes 90.60 100.0 67.18 (72.57) 86.44 (91.31)
no no no 99.53 100.0 59.80 (63.16)  80.38 (84.49)
Alexnet (Krizhevsky et al., 2012) - - - 83.6
ImageNet 1000 classes with random labels

no yes yes 91.18 97.95 0.09 0.49

no no yes 87.81 96.15 0.12 0.50

no no no 95.20 99.14 0.11 0.56

Table 2 shows the performance on Imagenet with true labels and random labels, respectively.

C PROOF OF THEOREM 1

Lemma 1. For any two interleaving sequences of n real numbers by < x1 < by < xg--- < b, <
Ty, the n x n matrix A = [max{z; — b;,0}|;; has full rank. Its smallest eigenvalue is min; x; — b;.

Proof. By its definition, the matrix A is lower triangular, that is, all entries with ¢ < j vanish. A
basic linear algebra fact states that a lower-triangular matrix has full rank if and only if all of the
entries on the diagional are nonzero. Since, x; > b;, we have that max{x; — b;,0} > 0. Hence, A
is invertible. The second claim follows directly from the fact that a lower-triangular matrix has all
its eigenvalues on the main diagonal. This in turn follows from the first fact, since A — AI can have
lower rank only if A equals one of the diagonal values. O

Proof of Theorem 1. For weight vectors w, b € R™ and a € R?, consider the function ¢: R® — R,
c(x) = ij max{(a,z) — b;,0}
j=1

It is easy to see that c can be expressed by a depth 2 network with ReLLU activations.

Now, fix a sample S = {z1, ..., 2z, } of size n and a target vector y € R™. To prove the theorem, we
need to find weights a, b, w so that y; = ¢(z;) foralli € {1,...,n}

First, choose a and b such that with 2; = (a, z;) we have the interleaving property b; < z1 < by <
-+ < by, < ®,. This is possible since all z;’s are distinct. Next, consider the set of n equations in
the n unknowns w,

yi =c(z), 1€{l,...,n}.



We have c(z;) = Aw, where A = [max{z; — b;,0}];; is the matrix we encountered in Lemma 1.
We chose a and b so that the lemma applies and hence A has full rank. We can now solve the linear
system y = Aw to find suitable weights w. O

While the construction in the previous proof has inevitably high width given that the depth is 2, it is
possible to trade width for depth. The construction is as follows. With the notation from the proof
and assuming w.l.o.g. that 21, ..., 2z, € [0, 1], partition the interval [0, 1] into b disjoint intervals
Ih,..., I} so that each interval I, contains n/b points. At layer j, apply the construction from the
proof to all points in I;. This requires O(n/b) nodes at level j. This construction results in a circuit
of width O(n/b) and depth b + 1 which so far has b outputs (one from each layer). It remains to
implement a multiplexer which selects one of the b outputs based on which interval a given input
x falls into. This boils down to implementing one (approximate) indicator function f; for each
interval I; and outputting 2321 fj(z)o;, where o; is the output of layer j. This results in a single
output circuit. Implementing a single indicator function requires constant size and depth with ReLU
activiations. Hence, the final size of the construction is O(n) and the depth is b+ ¢ for some constant
c. Setting k = b — c gives the next corollary.

Corollary 1. For every k > 2, there exists neural network with ReLU activations of depth k,
width O(n/k) and O(n + d) weights that can represent any function on a sample of size n in d
dimensions.

D RESULTS OF IMPLICIT REGULARIZATION FOR LINEAR MODELS

Table 3: Generalizing with kernels. The test error associated with solving the kernel equation (3) on
small benchmarks. Note that changing the preprocessing can significantly change the resulting test
error.

data set pre-processing  test error

MNIST none 1.2%

MNIST gabor filters 0.6%
CIFAR10 none 46%

CIFAR10 random conv-net 17%

Table 3 list the experiment results of linear models described in Section 5.



