Understanding the Overheads of Launching CUDA Kernels

Motivation

Nvidia GPUs can run 10,000s of threads on independent SMs
(Streaming Multi-processors)

® Not ideal for device-wide barriers

Method for device-wide barriers in GPUs

® Software barriers (example in [1])

® Implicit barriers: launching separate kernels (impacts performance)
Alternative ways to achieve the same goal

® Grid synchronization or multi-grid synchronization [2]
® Higher performance might come from lower occupancy [3]

>

Implicit barrier (additional kernels) vs. single kernel
Question:

® When not to launch an additional kernel?
® What is the penalty of using different kinds of barriers in CUDA?

Background

Different kinds of kernel launch methods.

® Traditional Launch

® Cooperative Launch (CUDA 9)
Introduced to support grid synchronization

® Cooperative Multi-Device Launch (CUDA 9)
Introduced to support multi-grid synchronization

>

Sleep instruction: wait specific nanosecond in GPU kernel.

Micro-benchmark

Definition

® Kernel Latency: Total latency to run kernels, start from CPU thread launching a
thread, end at CPU thread noticing that the kernel is finished.

® Kernel Overhead: Latency that is not related to kernel execution.

® Additional Latency: Considering that CPU thread have just called a kernel
launch function, additional latency is the additional latency to launch an
additional kernel.

® CPU Launch Overhead: Latency of CPU calling a launch function.

® Small Kernel: Kernel execution time is not the main reason for additional
latency.

® Larger Kernel: Kernel execution time is the main reason for additional latency.

__global__ void null_kernel_DEP()

{ -y T ; T Latency that related to kernel execution
} (asm (*nanos SLOLERR Ll }’) ! here is 10 us (wait unit 1000 ns here)

//example of launchfunction: traditional, cooperative, multi device cooperative
(timer):

(G CIHEI SET T ELE L) IRl time=5X(CUP Launch Overhead)
0;

Kernel Latency

(timer):

Figure 1: Sample code of micro-benchmark that call launch function 5 times, and
repeats a wait unit (sleep 1000 ns) 10 times.

» Additional wait unit (sleep 1000 ns) do not increase any kernel
overhead (Considering System Error)

/\’><:'}-*-—_ — 5 o——g—

100

1300
1100
900
700
500
300
100

Latency(ns)

1000 10000

wait unit (sleep 1000 ns)

—&®— Traditional Launch —@—Cooperative Launch Cooperative Multi-Device Launch

Figure 2: Gradient of latency per wait unit (sleep 1000 ns) in a single kernel

» Test overhead in small kernels
Method: Using null kernel (no code inside) to represent a Small Kernel

» Test overhead in large kernels
Method: Using kernel fusion to unveil the overhead.

g g g

3| Wait Unit | 3| Wait Unit | 8 | Wait Unit
2 2 2

0] (0] 0]

| Wait Unit Wait Unit = Wait Unit

]

o

o -

2 X GPU Overhead

Figure 3: Using kernel fusion to test overhead hidden in kernel execution

Lingqi Zhang',Mohamed Wahib*, Satoshi Matsuoka' "

zhang.l.ai@m.titech.ac.jp,mohamed.attia@aist.go.jp,matsu@is.titech.ac. jp

Launch Overhead in Small Kernels

4000
3500

— 3000 2545 2541

£ 2500

g 2000

2 1500
48]

- 1000

500

0

Traditional Launch

3388 3326 3455 338 200000

Cooperative Launch

150000

100000

latency (ns)

50000

Cooperative Multi-Device

Launch 0 2 < 6 8 10

GPU
Average CPU Launch Kernel Overhead(128 times)
— Additional Latency (128 times to 64 times)

Average CPU Launch Kernel Overhead(128 times)

m Additional Latency (128 times to 64 times)

Figure 4: Comparison of null kernel overhead using three different launch functions
that employ different types of barriers (left) , Cooperative Multi-Device Launch among
different devices (right).

» CPU Launch Overhead is the main overhead in Small Kernel.

Launch Overhead in Large Kernels

300000
8000

2000 250000
6000

200000
E‘ 5000

(

2 4000 150000

Latency(ns)

3000

5000 100000

1000
50000

0

CPU Launch Kernel
Overhead 0

Addtional Latency Wait Unit Execution Overhead

-

0 1 2 3 4 5 6 7 8 9

H Traditional Launch ® Cooperative Launch Cooperative Multi-Device Launch

CPU Launch Kernel Overhead —@— GPU Execution Overhead

Figure 5: Comparison of Large Kernel Overhead among different launch functions
(left), Cooperative Multi-Device Launch among different devices (right).

» CPU launch overhead is recorded to prove that it is not distinctive
here. (the result is not as precise as the one in "Small Kernel" section)

» GPU execution overhead does exist.
Other Overheads
» Empty kernel lasts about 8 us, still longer than the overheads we
reported.
12000
10000
E.. 8000 5648
= 4830
S 6000 4735
3
5 4000
0
Traditional Launch Cooperative Launch Cooperative Multi-Device
Launch
m CPU Launch Kernel Overhead m GPU Execution Overhead Other Overhead
Figure 6: Comparison of different overheads in different launch functions
» Other Overhead is distinctive in single kernel. (Larger than the two
kinds of overhead we reported)
Conclusion
» Main overheads:
® Small Kernels: CPU Launch Overhead
® Large Kernels: GPU Execution Overhead
® Single Kernel: Other Overhead
» Overhead of different launch functions
® Cooperative Multi-Device Launch > Cooperative Launch > Traditional Launch
» Launch a new kernel when the performance improvement surpasses

the overhead of a new kernel.

References

s Shucai Xiao and Wu-chun Feng.
Inter-block gpu communication via fast barrier synchronization.
In 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS), pages 1-12. IEEE,
2010.

s Cuda c programming guide, May 2019.
s Vasily Volkov.

Better performance at lower occupancy.
In Proceedings of the GPU technology conference, GTC, volume 10, page 16. San Jose, CA, 2010.

'Tokyo Institute of Technology, Dept. of Mathematical and Computing Science, Tokyo, Japan
“AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory

RIKEN Center for Computational Science,Hyogo,Japan

