Understanding the Overheads of Launching CUDA Kernels

Motivation

Nvidia GPUs can run 10,000s of threads on independent SMs
(Streaming Multi-processors)

® Not ideal for device-wide barriers

Method for device-wide barriers in GPUs

® Software barriers (example in [1])

® Implicit barriers: launching separate kernels (impacts performance)
Alternative ways to achieve the same goal

® Grid synchronization or multi-grid synchronization [2]
® Higher performance might come from lower occupancy [3]

>

Implicit barrier (additional kernels) vs. single kernel
Question:

® When not to launch an additional kernel?
® What is the penalty of using different kinds of barriers in CUDA?

Background

Different kinds of kernel launch methods.

® Traditional Launch

® Cooperative Launch (CUDA 9)
Introduced to support grid synchronization

® Cooperative Multi-Device Launch (CUDA 9)
Introduced to support multi-grid synchronization

>

Sleep instruction: wait specific nanosecond in GPU kernel.

Micro-benchmark

Definition

® Kernel Latency: Total latency to run kernels, start from CPU thread launching a
thread, end at CPU thread noticing that the kernel is finished.

® Kernel Overhead: Latency that is not related to kernel execution.

® Additional Latency: Considering that CPU thread have just called a kernel
launch function, additional latency is the additional latency to launch an
additional kernel.

® CPU Launch Overhead: Latency of CPU calling a launch function.

® Small Kernel: Kernel execution time is not the main reason for additional
latency.

® Larger Kernel: Kernel execution time is the main reason for additional latency.

__global__ void null_kernel_DEP()

{ -y T ; T Latency that related to kernel execution
} (asm (*nanos SLOLERR Ll }’ ) ! here is 10 us (wait unit 1000 ns here)

//example of launchfunction: traditional, cooperative, multi device cooperative
(timer):

( G CIHEI SET T ELE L ) IRl  time=5X(CUP Launch Overhead)
0;

Kernel Latency

(timer):

Figure 1: Sample code of micro-benchmark that call launch function 5 times, and
repeats a wait unit (sleep 1000 ns) 10 times.

» Additional wait unit (sleep 1000 ns) do not increase any kernel
overhead (Considering System Error)
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Figure 2: Gradient of latency per wait unit (sleep 1000 ns) in a single kernel

» Test overhead in small kernels
Method: Using null kernel (no code inside) to represent a Small Kernel

» Test overhead in large kernels
Method: Using kernel fusion to unveil the overhead.
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Figure 3: Using kernel fusion to test overhead hidden in kernel execution
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Launch Overhead in Small Kernels
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Figure 4: Comparison of null kernel overhead using three different launch functions
that employ different types of barriers (left) , Cooperative Multi-Device Launch among
different devices (right).

» CPU Launch Overhead is the main overhead in Small Kernel.

Launch Overhead in Large Kernels
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Figure 5: Comparison of Large Kernel Overhead among different launch functions
(left), Cooperative Multi-Device Launch among different devices (right).

» CPU launch overhead is recorded to prove that it is not distinctive
here. (the result is not as precise as the one in "Small Kernel" section)

» GPU execution overhead does exist.
Other Overheads
» Empty kernel lasts about 8 us, still longer than the overheads we
reported.
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Figure 6: Comparison of different overheads in different launch functions
» Other Overhead is distinctive in single kernel. (Larger than the two
kinds of overhead we reported)
Conclusion
» Main overheads:
® Small Kernels: CPU Launch Overhead
® Large Kernels: GPU Execution Overhead
® Single Kernel: Other Overhead
» Overhead of different launch functions
® Cooperative Multi-Device Launch > Cooperative Launch > Traditional Launch
» Launch a new kernel when the performance improvement surpasses

the overhead of a new kernel.
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