
Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Understanding the
Python GIL

1

David Beazley
http://www.dabeaz.com

Presented at PyCon 2010
Atlanta, Georgia

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Introduction
• As a few of you might know, C Python has a

Global Interpreter Lock (GIL)

2

>>> import that
The Unwritten Rules of Python

1. You do not talk about the GIL.
2. You do NOT talk about the GIL.
3. Don't even mention the GIL. No seriously.
...

• It limits thread performance

• Thus, a source of occasional "contention"

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

An Experiment
• Consider this trivial CPU-bound function

def countdown(n):
 while n > 0:
 n -= 1

3

• Run it once with a lot of work
COUNT = 100000000 # 100 million
countdown(COUNT)

• Now, subdivide the work across two threads
t1 = Thread(target=countdown,args=(COUNT//2,))
t2 = Thread(target=countdown,args=(COUNT//2,))
t1.start(); t2.start()
t1.join(); t2.join()

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

A Mystery
• Performance on a quad-core MacPro

4

Sequential
Threaded (2 threads)

• Performance if work divided across 4 threads

• Performance if all but one CPU is disabled

: 7.8s
: 15.4s (2X slower!)

Threaded (4 threads) : 15.7s (about the same)

Threaded (2 threads)
Threaded (4 threads)

: 11.3s (~35% faster than running
: 11.6s with all 4 cores)

• Think about it...

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

This Talk

• An in-depth look at threads and the GIL that
will explain that mystery and much more

• Some cool pictures

• A look at the new GIL in Python 3.2

5

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Disclaimers

• I gave an earlier talk on this topic at the
Chicago Python Users Group (chipy)

6

http://www.dabeaz.com/python/GIL.pdf

• That is a different, but related talk

• I'm going to go pretty fast... please hang on

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Part I

7

Threads and the GIL

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Python Threads

• Python threads are real system threads

• POSIX threads (pthreads)

• Windows threads

• Fully managed by the host operating system

• Represent threaded execution of the Python
interpreter process (written in C)

8

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Alas, the GIL

• Parallel execution is forbidden

• There is a "global interpreter lock"

• The GIL ensures that only one thread runs in
the interpreter at once

• Simplifies many low-level details (memory
management, callouts to C extensions, etc.)

9

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Thread Execution Model
• With the GIL, you get cooperative multitasking

10

Thread 1

Thread 2

Thread 3

I/O I/O I/O I/O I/O

• When a thread is running, it holds the GIL

• GIL released on I/O (read,write,send,recv,etc.)

run

run
run

run

run

release
 GIL

acquire
 GIL

release
 GIL

acquire
 GIL

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

CPU Bound Tasks
• CPU-bound threads that never perform I/O

are handled as a special case

• A "check" occurs every 100 "ticks"

11

CPU Bound
Thread Run 100

ticks
Run 100

ticks
Run 100

ticks

ch
ec

k
ch

ec
k

ch
ec

k

• Change it using sys.setcheckinterval()

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

What is a "Tick?"
• Ticks loosely map to interpreter instructions

12

def countdown(n):
 while n > 0:
 print n
 n -= 1

>>> import dis
>>> dis.dis(countdown)
0 SETUP_LOOP 33 (to 36)
3 LOAD_FAST 0 (n)
6 LOAD_CONST 1 (0)
9 COMPARE_OP 4 (>)
12 JUMP_IF_FALSE 19 (to 34)
15 POP_TOP
16 LOAD_FAST 0 (n)
19 PRINT_ITEM
20 PRINT_NEWLINE
21 LOAD_FAST 0 (n)
24 LOAD_CONST 2 (1)
27 INPLACE_SUBTRACT
28 STORE_FAST 0 (n)
31 JUMP_ABSOLUTE 3
...

Tick 1

Tick 2

Tick 3

Tick 4

• Instructions in
the Python VM

• Not related to
timing (ticks
might be long)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

The Periodic "Check"

• The periodic check is really simple

• The currently running thread...

• Resets the tick counter

• Runs signal handlers if the main thread

• Releases the GIL

• Reacquires the GIL

• That's it

13

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Implementation (C)

14

/* Python/ceval.c */
...
if (--_Py_Ticker < 0) {
 ...
 _Py_Ticker = _Py_CheckInterval;
 ...
 if (things_to_do) {
 if (Py_MakePendingCalls() < 0) {
 ...
 }
 }
 if (interpreter_lock) {
 /* Give another thread a chance */
 PyThread_release_lock(interpreter_lock);

 /* Other threads may run now */

 PyThread_acquire_lock(interpreter_lock, 1);
 }
...

Run
signal

handlers

Release and
reacquire
the GIL

Decrement
ticks

Reset ticks

Note: Each thread is
running this same code

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Big Question

• What is the source of that large CPU-bound
thread performance penalty?

• There's just not much code to look at

• Is GIL acquire/release solely responsible?

• How would you find out?

15

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Part 2

16

The GIL and Thread Switching Deconstructed

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Python Locks

• The Python interpreter only provides a single
lock type (in C) that is used to build all other
thread synchronization primitives

• It's not a simple mutex lock

• It's a binary semaphore constructed from a
pthreads mutex and a condition variable

• The GIL is an instance of this lock

17

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Locks Deconstructed
• Locks consist of three parts

locked = 0 # Lock status
mutex = pthreads_mutex() # Lock for the status
cond = pthreads_cond() # Used for waiting/wakeup

18

• Here's how acquire() and release() work

pseudocode

acquire() {
 mutex.acquire()
 while (locked) {
 cond.wait(mutex)
 }
 locked = 1
 mutex.release()
}

release() {
 mutex.acquire()
 locked = 0
 mutex.release()
 cond.signal()
}

A critical aspect
concerns this signaling

between threads

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Thread Switching
• Suppose you have two threads

19

• Thread 1 : Running

• Thread 2 : Ready (Waiting for GIL)

Thread 1
Running

Thread 2 READY

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Thread Switching
• Easy case : Thread 1 performs I/O (read/write)

20

• Thread 1 might block so it releases the GIL

Thread 1
Running

Thread 2 READY

I/O

release
GIL

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Thread Switching
• Easy case : Thread 1 performs I/O (read/write)

21

• Release of GIL results in a signaling operation

• Handled by thread library and operating system

Thread 1
Running

Thread 2 READY

I/O

signal

pthreads/OS

context
switch

Running

acquire GIL

release
GIL

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Thread Switching
• Tricky case : Thread 1 runs until the check

22

• Either thread is able to run

• So, which is it?

Thread 1
100 ticks

Thread 2 READY

ch
ec

k

signal

pthreads/OS

release
GIL

Which thread
runs now?

???

???

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

pthreads Undercover
• Condition variables have an internal wait queue

23

thread
queue of
threads

waiting on cv
(often FIFO)

cv.wait()
enqueues

cv.signal()

Condition Variable
waiters

thread

thread

thread

dequeues

• Signaling pops a thread off of the queue

• However, what happens after that?

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

OS Scheduling

• The operating system has a priority queue of
threads/processes ready to run

• Signaled threads simply enter that queue

• The operating system then runs the process
or thread with the highest priority

• It may or may not be the signaled thread

24

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Thread Switching
• Thread 1 might keep going

25

• Thread 2 moves to the OS "ready" queue and
executes at some later time

Thread 1
100 ticks

Thread 2 READY

ch
ec

k

acquire
GIL

pthreads/OS

release
GIL

Running

(high priority)

(low priority)

schedule
Runs later

...

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Thread Switching
• Thread 2 might immediately take over

26

• Again, highest priority wins

Thread 1
100 ticks

Thread 2 READY

ch
ec

k

signal

pthreads/OS

release
GIL

Running

(low priority)

(high priority)

context
switch

acquire
GIL

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Part 3

27

What Can Go Wrong?

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

GIL Instrumentation

• To study thread scheduling in more detail, I
instrumented Python with some logging

• Recorded a large trace of all GIL acquisitions,
releases, conflicts, retries, etc.

• Goal was to get a better idea of how threads
were scheduled, interactions between threads,
internal GIL behavior, etc.

28

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

GIL Logging

• Locks modified to log GIL events (pseudocode)

29

acquire() {
 mutex.acquire()
 if locked and gil:
 log("BUSY")
 while locked:
 cv.wait(mutex)
 if locked and gil:
 log("RETRY")
 locked = 1
 if gil: log("ACQUIRE")
 mutex.release()
}

release() {
 mutex.acquire()
 locked = 0
 if gil: log("RELEASE")
 mutex.release()
 cv.signal()
}

• An extra tick counter was added to record
number of cycles of the check interval

Note: Actual code in C, event
logs are stored entirely in
memory until exit (no I/O)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

A Sample Trace

30

t2 100 5351 ACQUIRE
t2 100 5352 RELEASE
t2 100 5352 ACQUIRE
t2 100 5353 RELEASE
t1 100 5353 ACQUIRE
t2 38 5353 BUSY
t1 100 5354 RELEASE
t1 100 5354 ACQUIRE
t2 79 5354 RETRY
t1 100 5355 RELEASE
t1 100 5355 ACQUIRE
t2 73 5355 RETRY
t1 100 5356 RELEASE
t2 100 5356 ACQUIRE
t1 24 5356 BUSY
t2 100 5357 RELEASE

thread id ACQUIRE : GIL acquired
RELEASE : GIL released

BUSY : Attempted to acquire
GIL, but it was already in use

RETRY : Repeated attempt to
acquire the GIL, but it was
still in use

tick
countdown

total
number of
"checks"
executed

• Trace files were large (>20MB for 1s of running)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Logging Results

• The logs were quite revealing

• Interesting behavior on one CPU

• Diabolical behavior on multiple CPUs

• Will briefly summarize findings followed by
an interactive visualization that shows details

31

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Single CPU Threading
• Threads alternate execution, but switch far

less frequently than you might imagine

32

Thread 1
100 ticks

ch
ec

k
ch

ec
k

ch
ec

k

100 ticks

Thread 2

...

signal

schedule

READY

Thread
Context
Switch

• Hundreds to thousands of checks might occur
before a thread context switch (this is good)

READY

signal

run

pthreads/OS

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Multicore GIL War
• With multiple cores, runnable threads get

scheduled simultaneously (on different cores)
and battle over the GIL

33

Thread 1 (CPU 1) Thread 2 (CPU 2)

Release GIL signal
Acquire GIL Wake

Acquire GIL (fails)
Release GIL
Acquire GIL

signal
Wake
Acquire GIL (fails)

run

run

run

• Thread 2 is repeatedly signaled, but when it
wakes up, the GIL is already gone (reacquired)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Multicore Event Handling
• CPU-bound threads make GIL acquisition

difficult for threads that want to handle events

34

Thread 1 (CPU 1) Thread 2 (CPU 2)

Event
Acquire GIL (fails)run

Acquire GIL (fails)

Acquire GIL (fails)

Acquire GIL (success)

signal

signal

signal

signal

run

sleep

Might repeat
100s-1000s of times

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Behavior of I/O Handling
• I/O ops often do not block

35

Thread 1
run

rea
d

writ
e

writ
e

signal burst

• Due to buffering, the OS is able to fulfill I/O
requests immediately and keep a thread running

• However, the GIL is always released

• Results in GIL thrashing under heavy load

writ
e
writ

e

run

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

GIL Visualization (Demo)
• Let's look at all of these effects

36

http://www.dabeaz.com/GIL

• Some facts about the plots:

• Generated from ~2GB of log data

• Rendered into ~2 million PNG image tiles

• Created using custom scripts/tools

• I used the multiprocessing module

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Part 4

37

A Better GIL?

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

The New GIL

• Python 3.2 has a new GIL implementation
(only available by svn checkout)

• The work of Antoine Pitrou (applause)

• It aims to solve all that GIL thrashing

• It is the first major change to the GIL since
the inception of Python threads in 1992

• Let's go take a look

38

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

New Thread Switching
• Instead of ticks, there is now a global variable

39

/* Python/ceval.c */
...

static volatile int gil_drop_request = 0;

• A thread runs until the value gets set to 1

• At which point, the thread must drop the GIL

• Big question: How does that happen?

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

New GIL Illustrated

40

Thread 1
running

• Suppose that there is just one thread

• It just runs and runs and runs ...

• Never releases the GIL

• Never sends any signals

• Life is great!

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

New GIL Illustrated

41

Thread 1

Thread 2 SUSPENDED

running

• Suppose, a second thread appears

• It is suspended because it doesn't have the GIL

• Somehow, it has to get it from Thread 1

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

New GIL Illustrated

42

Thread 1

Thread 2 SUSPENDED

running

• Waiting thread does a timed cv_wait on GIL

• The idea : Thread 2 waits to see if the GIL gets
released voluntarily by Thread 1 (e.g., if there is
I/O or it goes to sleep for some reason)

cv_wait(gil, TIMEOUT)

By default TIMEOUT
is 5 milliseconds, but it

can be changed

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

New GIL Illustrated

43

Thread 1

Thread 2 SUSPENDED

running

• Voluntary GIL release

• This is the easy case. Second thread is signaled
and it grabs the GIL.

cv_wait(gil, TIMEOUT)

I/O

signal

running

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

New GIL Illustrated

44

Thread 1

Thread 2 SUSPENDED

running

• If timeout, set gil_drop_request

• Thread 2 then repeats its wait on the GIL

cv_wait(gil, TIMEOUT)

TIMEOUT

gil_drop_request = 1

cv_wait(gil, TIMEOUT)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

New GIL Illustrated

45

Thread 1

Thread 2 SUSPENDED

running

• Thread 1 suspends after current instruction

• Signal is sent to indicate release of GIL

cv_wait(gil, TIMEOUT)

TIMEOUT

cv_wait(gil, TIMEOUT)

gil_drop_request = 1 signal

running

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

New GIL Illustrated

46

Thread 1

Thread 2 SUSPENDED

running

• On a forced release, a thread waits for an ack

• Ack ensures that the other thread successfully
got the GIL and is now running

• This eliminates the "GIL Battle"

cv_wait(gil, TIMEOUT)

TIMEOUT

cv_wait(gil, TIMEOUT)

gil_drop_request = 1 signal

running

WAIT

cv_wait(gotgil)

signal (ack)

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

New GIL Illustrated

47

Thread 1

Thread 2 SUSPENDED

running

• The process now repeats itself for Thread 1

• So, the timeout sequence happens over and
over again as CPU-bound threads execute

cv_wait(gil, TIMEOUT)

TIMEOUT

cv_wait(gil, TIMEOUT)

gil_drop_request = 1 signal

running

WAIT

cv_wait(gotgil)

SUSPENDED

cv_wait(gil, TIMEOUT)

gil_drop_request =0

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Does it Work?

• Yes, apparently (4-core MacPro, OS-X 10.6.2)

48

Sequential : 11.53s
Threaded (2 threads) : 11.93s
Threaded (4 threads) : 12.32s

• Keep in mind, Python is still limited by the GIL
in all of the usual ways (threads still provide no
performance boost)

• But, otherwise, it looks promising!

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Part 5

49

Die GIL Die!!!

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Alas, It Doesn't Work
• The New GIL impacts I/O performance

• Here is a fragment of network code

50

def spin():
 while True:
 # some work
 pass

def echo_server(s):
 while True:
 data = s.recv(8192)
 if not data:
 break
 s.sendall(data)

Thread 1 Thread 2

• One thread is working (CPU-bound)

• One thread receives and echos data on a socket

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Response Time
• New GIL increases response time

51

Thread 1

Thread 2 READY

running

cv_wait(gil, TIMEOUT)

signal

running

data
arrives

cv_wait(gil, TIMEOUT)

TIMEOUT

gil_drop_request = 1

• To handle I/O, a thread must go through the
entire timeout sequence to get control

• Ignores the high priority of I/O or events

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Unfair Wakeup/Starvation
• Most deserving thread may not get the GIL

52

Thread 1

Thread 2 READY

running

cv_wait(gil, TIMEOUT)

signal

running

data
arrives

cv_wait(gil, TIMEOUT)

TIMEOUT

gil_drop_request = 1

Thread 3 READY

wakeup

READY

• Caused by internal condition variable queuing

• Further increases the response time

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Convoy Effect

53

• I/O operations that don't block cause stalls

Thread 1

Thread 2 READY

running

data
arrives

• Since I/O operations always release the GIL,
CPU-bound threads will always try to restart

• On I/O completion (almost immediately), the
GIL is gone so the timeout has to repeat

send
(executes

 immediately)

READY

send
(executes

 immediately)

READY

timeout timeout timeoutsig sig

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

An Experiment
• Send 10MB of data to an echo server thread

that's competing with a CPU-bound thread

54

Python 2.6.4 (2 CPU) : 0.57s (10 sample average)
Python 3.2 (2 CPU) : 12.4s (20x slower)

• What if echo competes with 2 CPU threads?

Python 2.6.4 (2 CPU) : 0.25s (Better performance?)
Python 3.2 (2 CPU) : 46.9s (4x slower than before)
Python 3.2 (1 CPU) : 0.14s (330x faster than 2 cores?)

• Arg! Enough already!

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Part 6

55

Score : Multicore 2, GIL 0

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Fixing the GIL

• Can the GIL's erratic behavior be fixed?

• My opinion : Yes, maybe.

• The new GIL is already 90% there

• It just needs a few extra bits

56

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

The Missing Bits

• Priorities: There must be some way to separate
CPU-bound (low priority) and I/O bound (high
priority) threads

• Preemption: High priority threads must be able
to immediately preempt low-priority threads

57

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

A Possible Solution
• Operating systems use timeouts to automatically

adjust task priorities (multilevel feedback queuing)

• If a thread is preempted by a timeout, it is
penalized with lowered priority (bad thread)

• If a thread suspends early, it is rewarded with
raised priority (good thread)

• High priority threads always preempt low
priority threads

• Maybe it could be applied to the new GIL?

58

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Remove the GIL?

• This entire talk has been about the problem of
implementing one tiny little itty bitty lock

• Fixing Python to remove the GIL entirely is an
exponentially more difficult project

• If there is one thing to take away, there are
practical reasons why the GIL remains

59

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Final Thoughts

• Don't use this talk to justify not using threads

• Threads are a very useful programming tool
for many kinds of concurrency problems

• Threads can also offer excellent performance
even with the GIL (you need to study it)

• However, you should know about the tricky
corner cases

60

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Final Thoughts

• Improving the GIL is something that all
Python programmers should care about

• Multicore is not going away

• You might not use threads yourself, but they
are used for a variety of low-level purposes in
frameworks and libraries you might be using

• More predictable thread behavior is good

61

Copyright (C) 2010, David Beazley, http://www.dabeaz.com

Thread Terminated

• That's it!

• Thanks for listening!

• Questions

62

