
M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Unified Memory
Notes on GPU Data Transfers

Andreas Herten, Forschungszentrum Jülich, 24 April 2017 Handout Version

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Overview, Outline

Overview
Unified Memory enables easy access to GPU development
But some tuning might be needed for best performance

Contents
Background on Unified
Memory

History of GPUMemory
Unified Memory on Pascal
Unified Memory on Kepler

Practical Differences
Revisiting
scale_vector_um Example
Hints for Performance
Task

Andreas Herten | Unified Memory | 24 April 2017 # 2 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Background on Unified Memory
History of GPUMemory

Andreas Herten | Unified Memory | 24 April 2017 # 3 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CPU and GPUMemory
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

At the Beginning CPU and GPU memory very
distinct, own addresses

CUDA 4.0 Unified Virtual Addressing: pointer
from same address pool, but data copy
manual

CUDA 6.0 Unified Memory*: Data copy by driver,
but whole data at once

CUDA 8.0 Unified Memory (truly): Data copy by
driver, page faults on-demand initiate
data migrations (Pascal)

Andreas Herten | Unified Memory | 24 April 2017 # 4 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

CPU and GPUMemory
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

Unified
Memory

At the Beginning CPU and GPU memory very
distinct, own addresses

CUDA 4.0 Unified Virtual Addressing: pointer
from same address pool, but data copy
manual

CUDA 6.0 Unified Memory*: Data copy by driver,
but whole data at once

CUDA 8.0 Unified Memory (truly): Data copy by
driver, page faults on-demand initiate
data migrations (Pascal)

Andreas Herten | Unified Memory | 24 April 2017 # 4 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Unified Memory in Code
Vojgjfe Nfnpsz

void sortfile(FILE *fp, int N) {
char *data;
char *data_d;

data = (char *)malloc(N);
cudaMalloc(&data_d, N);

fread(data, 1, N, fp);

cudaMemcpy(data_d, data, N,
cudaMemcpyHostToDevice);↪→

kernel<<<...>>>(data, N);

cudaMemcpy(data, data_d, N,
cudaMemcpyDeviceToHost);↪→

host_func(data);
cudaFree(data_d); free(data); }

void sortfile(FILE *fp, int N) {
char *data;

cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data); }

Andreas Herten | Unified Memory | 24 April 2017 # 5 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Implementation Details (on Pascal)
Under the hood

cudaMallocManaged(&ptr, ...);

*ptr = 1;

kernel<<<...>>>(ptr);

Empty! No pages anywhere yet
(like malloc())

CPU page fault: data allocates
on CPU

GPU page fault: data migrates
to GPU

Pages populate on first touch
Pages migrate on-demand
GPUmemory over-subscription possible
Concurrent access from CPU and GPU to memory (page-level)

Andreas Herten | Unified Memory | 24 April 2017 # 6 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

On-Demand Migration Flow at Pascal

GPUMemory
≈0.7 TB/s

SystemMemory
≈0.1 TB/s

Interconnect

cu
da

Ma
ll

oc
Ma

na
ge

d

Andreas Herten | Unified Memory | 24 April 2017 # 7 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

On-Demand Migration Flow at Pascal

GPUMemory
≈0.7 TB/s

SystemMemory
≈0.1 TB/s

Interconnect

cu
da

Ma
ll

oc
Ma

na
ge

d Page
fault

Andreas Herten | Unified Memory | 24 April 2017 # 7 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

On-Demand Migration Flow at Pascal

GPUMemory
≈0.7 TB/s

SystemMemory
≈0.1 TB/s

Interconnect

cu
da

Ma
ll

oc
Ma

na
ge

d Page
fault

Andreas Herten | Unified Memory | 24 April 2017 # 7 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

On-Demand Migration Flow at Pascal

GPUMemory
≈0.7 TB/s

SystemMemory
≈0.1 TB/s

Interconnect

cu
da

Ma
ll

oc
Ma

na
ge

d

Page
fault

Andreas Herten | Unified Memory | 24 April 2017 # 7 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

On-Demand Migration Flow at Pascal

GPUMemory
≈0.7 TB/s

SystemMemory
≈0.1 TB/s

Interconnect

cu
da

Ma
ll

oc
Ma

na
ge

d

Page
fault

Andreas Herten | Unified Memory | 24 April 2017 # 7 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

On-Demand Migration Flow at Pascal

GPUMemory
≈0.7 TB/s

SystemMemory
≈0.1 TB/s

Interconnect

cu
da

Ma
ll

oc
Ma

na
ge

d

Andreas Herten | Unified Memory | 24 April 2017 # 7 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

On-Demand Migration Flow at Pascal

GPUMemory
≈0.7 TB/s

SystemMemory
≈0.1 TB/s

Interconnect

cu
da

Ma
ll

oc
Ma

na
ge

d

Andreas Herten | Unified Memory | 24 April 2017 # 7 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

On-Demand Migration Flow at Pascal

GPUMemory
≈0.7 TB/s

SystemMemory
≈0.1 TB/s

Interconnect

cu
da

Ma
ll

oc
Ma

na
ge

d

Page
fault

Andreas Herten | Unified Memory | 24 April 2017 # 7 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

On-Demand Migration Flow at Pascal

GPUMemory
≈0.7 TB/s

SystemMemory
≈0.1 TB/s

Interconnect

cu
da

Ma
ll

oc
Ma

na
ge

d

Page
fault

Andreas Herten | Unified Memory | 24 April 2017 # 7 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

On-Demand Migration Flow at Pascal

GPUMemory
≈0.7 TB/s

SystemMemory
≈0.1 TB/s

Interconnect

cu
da

Ma
ll

oc
Ma

na
ge

d

Andreas Herten | Unified Memory | 24 April 2017 # 7 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

On-Demand Migration Flow at Pascal

GPUMemory
≈0.7 TB/s

SystemMemory
≈0.1 TB/s

Interconnect

cu
da

Ma
ll

oc
Ma

na
ge

d

Andreas Herten | Unified Memory | 24 April 2017 # 7 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

On-Demand Migration Flow at Pascal

GPUMemory
≈0.7 TB/s

SystemMemory
≈0.1 TB/s

Interconnect

cu
da

Ma
ll

oc
Ma

na
ge

d

Page
fault

Andreas Herten | Unified Memory | 24 April 2017 # 7 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

On-Demand Migration Flow at Pascal

GPUMemory
≈0.7 TB/s

SystemMemory
≈0.1 TB/s

Interconnect

cu
da

Ma
ll

oc
Ma

na
ge

d

Page
fault

Andreas Herten | Unified Memory | 24 April 2017 # 7 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

On-Demand Migration Flow at Pascal

GPUMemory
≈0.7 TB/s

SystemMemory
≈0.1 TB/s

Interconnect

cu
da

Ma
ll

oc
Ma

na
ge

d

Andreas Herten | Unified Memory | 24 April 2017 # 7 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

On-Demand Migration Flow at Pascal

GPUMemory
≈0.7 TB/s

SystemMemory
≈0.1 TB/s

Interconnect

cu
da

Ma
ll

oc
Ma

na
ge

d

Page
fault

Andreas Herten | Unified Memory | 24 April 2017 # 7 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

On-Demand Migration Flow at Pascal

GPUMemory
≈0.7 TB/s

SystemMemory
≈0.1 TB/s

Interconnect

cu
da

Ma
ll

oc
Ma

na
ge

d

Page
fault

Andreas Herten | Unified Memory | 24 April 2017 # 7 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

On-Demand Migration Flow at Pascal

GPUMemory
≈0.7 TB/s

SystemMemory
≈0.1 TB/s

Interconnect

cu
da

Ma
ll

oc
Ma

na
ge

d

Andreas Herten | Unified Memory | 24 April 2017 # 7 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

On-Demand Migration Flow at Pascal

GPUMemory
≈0.7 TB/s

SystemMemory
≈0.1 TB/s

Interconnect

cu
da

Ma
ll

oc
Ma

na
ge

d

Page
fault

Andreas Herten | Unified Memory | 24 April 2017 # 7 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

On-Demand Migration Flow at Pascal

GPUMemory
≈0.7 TB/s

SystemMemory
≈0.1 TB/s

Interconnect

cu
da

Ma
ll

oc
Ma

na
ge

d

Mapmemory to
systemmemory

Andreas Herten | Unified Memory | 24 April 2017 # 7 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

On-Demand Migration Flow at Pascal

GPUMemory
≈0.7 TB/s

SystemMemory
≈0.1 TB/s

Interconnect

cu
da

Ma
ll

oc
Ma

na
ge

d

Mapmemory to
systemmemory

Only needed page is copied (≥4 kB)!

Andreas Herten | Unified Memory | 24 April 2017 # 7 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Migration on Kepler

GPUMemory
≈0.3 TB/s

SystemMemory
≈0.1 TB/s

PCI-Express

Andreas Herten | Unified Memory | 24 April 2017 # 8 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Migration on Kepler

GPUMemory
≈0.3 TB/s

SystemMemory
≈0.1 TB/s

PCI-Express

cu
da

Ma
ll

oc
Ma

na
ge

d

Andreas Herten | Unified Memory | 24 April 2017 # 8 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Migration on Kepler

GPUMemory
≈0.3 TB/s

SystemMemory
≈0.1 TB/s

PCI-Express

cu
da

Ma
ll

oc
Ma

na
ge

d

Andreas Herten | Unified Memory | 24 April 2017 # 8 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Migration on Kepler

GPUMemory
≈0.3 TB/s

SystemMemory
≈0.1 TB/s

PCI-Express

cu
da

Ma
ll

oc
Ma

na
ge

d Page
fault

Andreas Herten | Unified Memory | 24 April 2017 # 8 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Migration on Kepler

GPUMemory
≈0.3 TB/s

SystemMemory
≈0.1 TB/s

PCI-Express

cu
da

Ma
ll

oc
Ma

na
ge

d

Andreas Herten | Unified Memory | 24 April 2017 # 8 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Migration on Kepler

GPUMemory
≈0.3 TB/s

SystemMemory
≈0.1 TB/s

PCI-Express

cu
da

Ma
ll

oc
Ma

na
ge

d

Andreas Herten | Unified Memory | 24 April 2017 # 8 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Migration on Kepler

GPUMemory
≈0.3 TB/s

SystemMemory
≈0.1 TB/s

PCI-Express

cu
da

Ma
ll

oc
Ma

na
ge

d

Page
fault

Andreas Herten | Unified Memory | 24 April 2017 # 8 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Migration on Kepler

GPUMemory
≈0.3 TB/s

SystemMemory
≈0.1 TB/s

PCI-Express

cu
da

Ma
ll

oc
Ma

na
ge

d

Andreas Herten | Unified Memory | 24 April 2017 # 8 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Migration on Kepler

GPUMemory
≈0.3 TB/s

SystemMemory
≈0.1 TB/s

PCI-Express

cu
da

Ma
ll

oc
Ma

na
ge

d

Andreas Herten | Unified Memory | 24 April 2017 # 8 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Migration on Kepler

GPUMemory
≈0.3 TB/s

SystemMemory
≈0.1 TB/s

PCI-Express

cu
da

Ma
ll

oc
Ma

na
ge

d

Andreas Herten | Unified Memory | 24 April 2017 # 8 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Migration on Kepler

GPUMemory
≈0.3 TB/s

SystemMemory
≈0.1 TB/s

PCI-Express

cu
da

Ma
ll

oc
Ma

na
ge

d

Kernel
launch
Page fault

not supported

Andreas Herten | Unified Memory | 24 April 2017 # 8 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Migration on Kepler

GPUMemory
≈0.3 TB/s

SystemMemory
≈0.1 TB/s

PCI-Express

cu
da

Ma
ll

oc
Ma

na
ge

d

Andreas Herten | Unified Memory | 24 April 2017 # 8 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Migration on Kepler

GPUMemory
≈0.3 TB/s

SystemMemory
≈0.1 TB/s

PCI-Express

cu
da

Ma
ll

oc
Ma

na
ge

d

Andreas Herten | Unified Memory | 24 April 2017 # 8 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Implementation before Pascal
Kepler (JURECA), Maxwell, …

Pages populate on GPUwith cudaMallocManaged()
→ Might migrate to CPU if touched there first

Pages migrate in bulk to GPU on kernel launch
No over-subscription possible

Andreas Herten | Unified Memory | 24 April 2017 # 9 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Practical Differences
Revisiting scale_vector_um Example

Andreas Herten | Unified Memory | 24 April 2017 # 10 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Comparing UM on Pascal & Kepler
Different scales

Who profiled scale_vector_um on JURON, who on JURECA?
→What are run times for kernel?

==109924== Profiling result:
Time(%) Time Calls Avg Min Max Name
100.00% 519.36us 1 519.36us 519.36us 519.36us scale(float, float*, float*, int)

==12922== Profiling result:
Time(%) Time Calls Avg Min Max Name
100.00% 13.216us 1 13.216us 13.216us 13.216us scale(float, float*, float*, int)

JU
RO

N
JU

RE
CA

Why?!
Shouldn’t P100 be about 3× faster than K80?

Andreas Herten | Unified Memory | 24 April 2017 # 11 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Comparing UM on Pascal & Kepler
Different scales

Who profiled scale_vector_um on JURON, who on JURECA?
→What are run times for kernel?

==109924== Profiling result:
Time(%) Time Calls Avg Min Max Name
100.00% 519.36us 1 519.36us 519.36us 519.36us scale(float, float*, float*, int)

==12922== Profiling result:
Time(%) Time Calls Avg Min Max Name
100.00% 13.216us 1 13.216us 13.216us 13.216us scale(float, float*, float*, int)

JU
RO

N
JU

RE
CA

Andreas Herten | Unified Memory | 24 April 2017 # 11 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Comparing UM on Pascal & Kepler
What happens?

JURON Kernel is launched, data is needed by kernel, data migrates
host→device
⇒ Run time of kernel incorporates time for data transfers

JURECA Data will be needed by kernel – so data migrates
host→device before kernel launch
⇒ Run time of kernelwithout any transfers

Implementation on Pascal is the more convenient one
Total run time of whole program does not principally change
Except it gets shorter because of faster architecture
But data transfers sometimes sorted to kernel launch

⇒ What can we do about this?

Andreas Herten | Unified Memory | 24 April 2017 # 12 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Performance Hints for UM
General hints

Keep data local
Prevent migrations at all if data is processed by close processor
Minimize thrashing
Constant migrations hurt performance
Minimize page fault overhead
Fault handling costsO (10µs), stalls execution

Andreas Herten | Unified Memory | 24 April 2017 # 13 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Performance Hints for UM
New API routines

New API calls to augment data location knowledge of runtime
cudaMemPrefetchAsync(data, length, device, stream)
Prefetches data to device (on stream) asynchronously
cudaMemAdvise(data, length, advice, device)
Advise about usage of given data, advice:
— cudaMemAdviseSetReadMostly: Data is mostly read and

occasionally written to
— cudaMemAdviseSetPreferredLocation: Set preferred location to

avoid migrations; first access will establish mapping
— cudaMemAdviseSetAccessedBy: Data is accessed by this device; will

pre-map data to avoid page fault

Use cudaCpuDeviceId for device CPU, or use cudaGetDevice()
as usual to retrieve current GPU device id (default: 0)

Andreas Herten | Unified Memory | 24 April 2017 # 14 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Hints in Code

void sortfile(FILE *fp, int N) {
char *data;
// ...
cudaMallocManaged(&data, N);

fread(data, 1, N, fp);

cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, device);
cudaMemPrefetchAsync(data, N, device);
kernel<<<...>>>(data, N);
cudaDeviceSynchronize();

host_func(data);
cudaFree(data); }

Prefetch data to
avoid expensive
GPU page faults

Read-only copy of
data is created on
GPU during prefetch
→ CPU and GPU
reads will not fault

Andreas Herten | Unified Memory | 24 April 2017 # 15 17

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Tuning scale_vector_um
Express datamovement

TASK

Location of code: Unified_Memory/exercises/tasks/scale/
Look at Instructions.rst for instructions
1 Show runtime that data should bemigrated to GPU before kernel

call
2 Build with make (CUDA needs to be loaded!)
3 Run with make run

Or bsub -I -R "rusage[ngpus_shared=1]" ./scale_vector_um
4 Generate profile to study your progress – see make profile

See also CUDA C programming guide for details on data usage

Finished early? There’s onemore task in the appendix!

Andreas Herten | Unified Memory | 24 April 2017 # 16 17

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-tuning-usage

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Conclusions
What we’ve learned

Unified Memory is implemented differently on Pascal (JURON)
and Kepler (JURECA)
With CUDA 8.0, there are new API calls to express data locality

Thank you

for your att
ention!

a.herten@fz-juelich.de

Andreas Herten | Unified Memory | 24 April 2017 # 17 17

mailto:a.herten@fz-juelich.de

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Appendix
Jacobi Task
Glossary

Andreas Herten | Unified Memory | 24 April 2017 # 1 6

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Jacobi Task
Onemore time…

TASK

Location of code: Unified_Memory/exercises/tasks/jacobi/
See Jiri Kraus’ slides on Unified Memory from last year at
Unified_Memory/exercises/slides/jkraus-unified_memory-
2016.pdf
Short instructions
— Avoid data migrations in while loop of Jacobi solver: apply

boundary conditions with provided GPU kernel; try to avoid
remaining migrations

— Build with make (CUDA needs to be loaded!)
— Run with make run
— Look at profile – see make profile

Andreas Herten | Unified Memory | 24 April 2017 # 2 6

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary I

API A programmatic interface to software by well-defined
functions. Short for application programming
interface. 53

ATI Canada-based GPUsmanufacturing company; bought
by AMD in 2006. 53

CUDA Computing platform for GPUs from NVIDIA. Provides,
among others, CUDA C/C++. 4, 5, 49, 50, 53

GCC The GNU Compiler Collection, the collection of open
source compilers, among other for C and Fortran. 53

Andreas Herten | Unified Memory | 24 April 2017 # 3 6

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary II

LLVM An open Source compiler infrastructure, providing,
among others, Clang for C. 53

NVIDIA US technology company creating GPUs. 53
NVLink NVIDIA’s communication protocol connecting CPU↔

GPU and GPU↔ GPUwith 80GB/s. PCI-Express:
16 GB/s. 53

OpenACC Directive-based programming, primarily for many-core
machines. 53

OpenCL The Open Computing Language. Framework for writing
code for heterogeneous architectures (CPU, GPU, DSP,
FPGA). The alternative to CUDA. 53

Andreas Herten | Unified Memory | 24 April 2017 # 4 6

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary III

OpenGL The Open Graphics Library, an API for rendering
graphics across different hardware architectures. 53

OpenMP Directive-based programming, primarily for
multi-threadedmachines. 53

P100 A large GPUwith the Pascal architecture from NVIDIA.
It employs NVLink as its interconnect and has fast
HBM2memory. 53

SAXPY Single-precision A× X+ Y. A simple code example of
scaling a vector and adding an offset. 53

Tesla The GPU product line for general purpose computing
computing of NVIDIA. 53

Andreas Herten | Unified Memory | 24 April 2017 # 5 6

M
em

be
ro

ft
he

H
el
m
ho

ltz
As
so
ci
at
io
n

Glossary IV

Thrust A parallel algorithms library for (among others) GPUs.
See https://thrust.github.io/. 53

Andreas Herten | Unified Memory | 24 April 2017 # 6 6

https://thrust.github.io/

	Background on Unified Memory
	History of *gpu Memory
	Unified Memory on Pascal
	Unified Memory on Kepler

	Practical Differences
	Revisiting scale_vector_um Example
	Hints for Performance
	Task

	Appendix
	Appendix
	Jacobi Task
	Glossary

