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UNMIXED dJd-UNIFORM r-PARTITE HYPERGRAPHS

REZA JAFARPOUR-GOLZARI AND RASHID ZAARE-NAHANDI

ABSTRACT. In this paper, we characterize all unmixed d-uniform
r-partite hypergraphs under a certain condition. Also we give a
necessary condition for unmixedness in d-uniform hypergraphs with
a perfect matching of size n. Finally we give a sufficient condition
for unmixednes in d-uniform hypergraphs with a perfect matching.

1. Introduction

Unmixedness is one of the most important concepts in theory of
graphs and hypergraphs with nice and interesting algebraic and geomet-
ric interpretations (for instance see [4], [0], [7], [9], [10], [13]). According
to this, characterization of special classes of unmixed graphs has been
noteworthy in recent years. G. Ravindra in [8] and R. H. Villarreal
in [11] have characterized all unmixed bipartite graphs independently.
H. Haghighi in [2] has given a characterization for unmixed tripartite
graphs under a certain condition, and recently R. Jafarpour-Golzari and
R. Zaare-Nahandi in [5] have generalized Haghighi’s result for unmixed
r-partite graphs. On characterization of unmixed r-partite hypergraphs,
almost no study has been done. Only in [0] a classification of a very spe-
cial class of unmixed multipartite hypergraphs has been provided.

In this paper we give a characterization of all unmixed d-uniform r-
partite hypergraphs under a certain condition which we name it (xx).
Also we give necessary or sufficient conditions for unmixedness in more
general classes of d-uniform hypergraphs (Propositions 3.6, 3.8).

MSC(2010): Primary: 5E40; Secondary: 5C65.
Keywords: r-partite hypergraph, d-uniform hypergraph, minimal vertex cover, independent
set, unmixed, perfect matching.


http://arxiv.org/abs/1605.02655v1

2 REZA JAFARPOUR-GOLZARI AND RASHID ZAARE-NAHANDI

2. Preliminaries

In the sequel, we use [12] and [I] for terminology and notations on
graphs and hypergraphs respectively.

Let G = (V, E) be a simple finite graph. For z,y € V, x ~ y means
that x and y are adjacent. A subset M of V is said to be independent
if for every x,y € M, x » y. A vertex cover for G is a subset C of V
such that every edge of G, intersects C. A vertex cover C is minimal
whenever there is no any pure subset of C' which is a vertex cover. G is
called is called unmixed if all minimal vertex cover of G have the same
number of elements. A subset Q) of V is said to be a clique if for every
two distinct vertices x,y € @, x ~ y.

A hypergraph H on a finite nonempty set V is a set of nonempty
subsets of V' such that |J,cye = V. The elements of V' are called
vertices and each element of H is said a hyperedge. We denote by
V(H) and E(H), the sets of vertices and hyperedges of H respectively.
A hypergraph is said to be simple hypergraph or clutter if non of its
two distinct hyperedges contains another. The hypergraph H is called
d-uniform (or d-graph), if all its hyperedges have the same cardinality
d.

Definition 2.1. An r-partite (r > 2) hypergraph H, is a hypergraph
which V(H) can be partitioned to r subsets such that for every two ver-
tices x,y in one part, x,y do not lie in any hyperedge. Such a partition of
V(H) is called an r-partition of H. If r = 2,3, the r-partite hypergraph
is said to be bipartite and tripartite respectivily.

In the hypergraph H, two vertices x, y are said to be adjacent if there
is a hyperedge containing x and y. We say that a hyperedge e is adjacent
with a vertex x if x € e. For a vertex x of H, the neighborhood of z,
denoted by N(x), is the set of all vertices which are adjacent to x.

A subset M of V(#H) is called independent if it dose not contain any
hyperedge. An independent set M of H is said to be maximal whenever
it is not strictly contained in any other independent set. A subset C of
V(H) is called a vertex cover, if every hyperedge of H intersects it. A
vertex cover is said to be minimal if there is no any pure subset of it
which is also a vertex cover. It is clear that every maximal independent
set is complement of a minimal vertex cover and vice versa.

Definition 2.2. The hypergraph H is said to be unmized if all minimal
vertex covers of H have the same cardinality.
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A matching in a hypergraph H is a set of hyperedges which are disjoint
pairwise. A perfect matching is a matching such that every vertex of H
lies in at least one of its elements.

Let {1,...,n} is denoted by [n]. A simplicial complex on [n] is a set
A of subsets of [n] such that (a) {z} € A, for every z € [n], (b) if
FeAand GCF, then G € A. Each element of A is said to be a face.
Dimension of the face F', denoted by dim F, is defined as |F'| — 1 and
dimension of A is the maximum of dimentions of its faces.

Let A be a simplicial complex on [n] and S be a nonempty set of
subsets of [n] such that | Jycg N = [n]. The simplicial complex generated
by S is the set of all subsets of elements of S.

For a simplicial complex A or a hypergraph H on [n], and for r > 0,
the r-skeleton of A or H, is the set of all faces of A whose dimension is at
most r or all subsets of hyperedges of H with cardinality not exceeding
r 4 1, respectively.

Definition 2.3. Let H be a d-uniform (d > 2) hypergraph. A (d —1)-
subset of a hyperedge is called a submazximal edge, and the set of all
submazximal edges is denoted by SE(H).

For e € SE(H), the set {v € V(H) | eU {v} € E(H)}, is denoted by
N(e). If v € N(e), we write ¢ ~ v.

In a d-uniform hypergraph H, a clique is a subset W of V(H) such
that every its subset of size d, is a hyperedge in H.

3. Unmixed hypergraphs

Let H is a d-uniform r-partite hypergraph with 2 < d < r. We say
that H satisfies the condition (xx) for r > 2, if H can be partitioned to
r parts Vi = {x1;, -+ ,xpi}, 1 <0 < r,osuch that {xj1,250...,25} is a
clique for every 1 < j <n.

The authors in [5] have presented a necessary and sufficient condition
for unmixedness of an r-partite graph which satisfies the following con-
dition (x) for r > 2.

We say a graph G satisfies the condition (x) for an integer r > 2, if G
can be partitioned to r parts V; = {x14,...,2n;}, 1 < i < r, such that
for all 1 <j <mn, {zj1,...,xj} is a clique.

Let H be a d-uniform r-partite hypergraph (2 < d < r) on [n| which
satisfies the condition (xx) for r > 2. Then the 1-skeleton of H is an r-
partite graph which satisfies the condition (x) for r. But in general, the
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unmixedness of a hypergraph and its 1-skeleton, are two independent
facts, as the following example exhibits.

Example 3.1. The following clutter is not unmixed while its 1-skeleton
is unmixed as a graph.

3

Note that the sets {2,4,3} and {1,4} are two minimal vertex covers
with different sizes for the hypergraph.

Conversely, the following clutter is unmixed but its 1-skeleton is not.

3

Note that the sets {1,3} and {2,3,4} are two minimal vertex covers
with different sizes for the 1-skeleton.

This gives us a motivation for finding a necessary and sufficient condi-
tion under which a d-uniform r-partite (2 < d < r) hypergraph satisfying
the condition (xx) for r, is unmixed.

First we prove a lemma.

Lemma 3.2. Let H be a d-uniform r-partite (2 < d < r) hypergraph
which satisfies the condition (xx) for r. If H is unmized, then every
minimal vertex cover of H contains exactly r — d + 1 elements of each
clique {x;1,2j2...,Tjr}.

Proof. Let C' be a minimal vertex cover of H. For every 1 < ¢ < n,
C contains at least r — d + 1 vertices of the clique {zq1,242...,2¢r},
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because if C' contains at most r — d vertices of that clique, it dose not
cover hyperedges on remaining vertices. Therefore a vertex cover must
contain at least n(r—d+1) vertices. On the other hand, the set U::_f Ty,
is a minimal vertex cover of H with n(r —d+ 1) vertices. This completes
the proof. d

Now we present the main theorem of this paper.

Theorem 3.3. Let H be a d-uniform r-partite (2 < d < r) hypergraph
which satisfies the condition (xx) for r. Then H is unmized if and only
if the following condition holds.

For every 1 < q<m, ife,ea...,e._qro are submazximal edges such that
€1 ~ Lyqiq € ~ Lqigy-+> Cr—d+2 ~ xqirﬂ”z
where 1,19 . .., t.—qgro are distinct, then the set

epUesU...Ue_g42
s not independent.

Proof. Let H be unmixed. We show that the mentioned condition holds.
Suppose in contrary

€1 ~ Lyqiq € ~ Lqigy-+> Cr—d+2 ~ xqirﬂ”z
where 41,72 .. .,4,_412 are distinct but the set
F=e¢UeU...Uet_gt+2

is independent. Therefore there is a maximal independent set M con-
taining F'. Since M is a maximal independent set, C' := V(H)\M is a
minimal vertex cover of H which contains no any element of F'. Since
C'is a vertex cover of H, C' contains the vertices Ty, Tgiy; - -+ Tqip_ g 0
But by Lemma 3.2, C' contains exactly r —d+ 1 vertices of every clique,
a contradiction.

Conversely, let the mentioned condition holds. We show that H is
unmixed. It is enough to show that every minimal vertex cover of H
contains exactly r —d+1 vertices of each clique {zq41, 242 ..., 24 }. Let C
be an arbitrary minimal vertex cover and 1 < g < n. Then C' intersects
the set {zq1,242...,2Zqr} in at least r —d+ 1 elements. Let C intersects
the mentioned clique in at least r — d + 2 elements. Without loss of
generality, we assume that this elements are zq1, 22 ..., Zgr—qy2). For
each 7, 1 <14 <r —d+ 2, x4 is in the minimal vertex cover C. Then
there is a hyperedge e; covered only by x,. That is, e, N C = {x4}.



6 REZA JAFARPOUR-GOLZARI AND RASHID ZAARE-NAHANDI

Suppose that ¢; = e;\{x4}. Then the sets ¢; are submaximal edges such
that

€1 ~~ xqila €2 ~ xqiza sy Cp—dp2 ™ xqi.,«,d+2

and e Ueg U ... Ue._g10 dose not intersects C. But by hypothesis
epUegU...Ue_g42

is not independent. That is, it contains a hypergraph e which is not
covered by C a contradiction. ([l

The following theorem of Villarreal on unmixedness of bipartite graphs
can be concluded from the Theorem 3.3, where r = 2,d = 2.

Corollary 3.4. [I1, Theorem 1.1] Let G be a bipartite graph without
isolated vertices. Then G is unmized if and only if there is a bipartition
Vi={z1,...,z.},Va={u1,...,yq} of G such that: (a){z;,y;} € E(G),
for all i, and (b) if {x;,y;} and {xj,yr} are in E(G), and i,j,k are
distinct, then {z;,yr} € E(G).

The following theorem can be concluded from theorem 3.3, where
d=2.

Corollary 3.5. [5, Theorem 2.3] Let G be an r-partite graph which
satisfies the condition (%) for r. Then G is unmized if and only if the
following condition hold:

For every 1 < q <mn, if there is a set {Tp,s,--.,Tk,s,} Such that
Thisy ~ Lgly-- -5 Lhkps, ™~ Lqr,
then the set {xp sy, ..., Tk,s,} 15 not independent.

Now we prove two propositions about d-uniform (d > 2) hypergraphs
by methods used in the proof of Theorem 3.3.

Proposition 3.6. Let H be a d-uniform (d > 2) hypergraph on vertex
set {z;i| 1 < j <n,1<i<d} with perfect matching

{{$j17xj27'-'7xjd}| 1<5< ’I’L}

If H is unmized and has a minimal vertex cover of size n, then for every
1 <q<mn,ifey, ey be two submazimal edges such that

€1 ~ Tgiy, €2 ™~ Lgiy

where 11,19 are distinct, then the set e; U ¢y is not independent.
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Proof. Let 1 < ¢ < n be arbitrary. Let in contrary the set e; U ey is
independent . Therefore ¢; U ¢y is contained in a maximal independent
set M. Set T =V (G)\ M. T is a minimal vertex cover and since it dose
not contain any element of ¢; U eo, then 1" contains x4, , 4, and then T’
is at least of size n + 1, a contradiction. O

Example 3.7. In 3-uniform hypergraph
H = {{CL, b7 C}, {d7 €, f}7 {97 h7 1}7 {b7 g, 6}7 {Cu f7 h}}7
we have the perfect matching {{a,b,c},{d,e, f},{g,h,i}} of size 3.

We show by proposition 3.7 that H is not unmixed.

Let H be unmixed (by contrary). H has the minimal vertex cover
{b,e,h} of size 3. Now we have 2 hyperedges {a,b,c} and {b,g,e} in
relevence with the hyperedge {a, b, ¢} of perfect matching, but {g, e, h, f}
is independent, a contradiction.

Proposition 3.8. Let H is a d-uniform (d > 2) hypergraph on the vertex
set {z;i] 1 < j <n,1<i<d}with perfect matching

{{$j17$j27 cee 7$jd}| 1<5< n}
Then a sufficient condition for unmizedness of H is that for every 1 <
q < n, if e1, ey be two submazximal edges such that

€1 ™~ Tgiys €2 ™~ Tgiy
where 11,19 are distinct, then ¢e; U ey is not independent.

Proof. Let H satisfies the above condition. We show that H is unmixed.
It is enough to show that every minimal vertex cover of H contains
exactly one element of each hyperedge of the perfect matching. Let
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T be a minimal vertex cover. T contains at least one element of each
hyperedge of perfect matching. Suppose in contrary that T chooses
at least two elements from hyperedge {zq1,Zq2...,24q}. Without loss
of generality, let the elements x4, and x4 are chosen. Since x4 is in
minimal vertex cover, then there exist at least d — 1 distinct vertices
in N(zg1), such that they dose not belong to 7" and form a hyperedge
together with ;1. Name the set of these vertices ¢;. We have

€1 ~ Tq1-

Similarly, Since x,2 is in minimal vertex cover, with a similar argument,
there is a submaximal edge e consisting of d — 1 distinct vertices, no
one belonging to T', such that

€2 ~ Tg2-

Now e Uey dose not intersect 7. But according to hypothesis e; Ues is
not independent. That is, it contains a hyperedge e which is not covered
by T, a contradiction. O

4. Edge ideal of unmixed hypergraphs

In this section, we provide an algebraic interpretation for Theorem
3.3.

Definition 4.1. Let H be a hypergraph with V(H) = {z1,...,xm}. Let
Klzy,...,zy] be the polynomial ring with indeterminates x1, . .., Ty, and
coefficients in a field K. For a subset D = {x;,,...,z;,} C V(H), let
Xp =4, ...x;,. We define the edge ideal of H to be

I(H) == (X.| e € E(H)).

Klxy,...,zp]
I(H)

Let R be a commutative ring. An element a € R is called zero divisor
if there is b # 0 in R such that ab = 0.

The quotient ring K[H] := is called the edge ring of H.

Theorem 4.2. Let H be a d-uniform r-partite (2 < d < r) hypergraph
which satisfies the condition (xx) for r > 2. Then H is unmized if and
only if for every 1 < q < n, and every 1 < i1 < iy < ... < dp_gta <1,
Zgiy +Zgiy T -+ Tqi,_y., 15 N0t a zero divisor in K[H]. Here Ty, denotes
the image of x4, in K[H].
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Proof. Let ‘H be unmixed. If for some 1 < ¢ < n and some 1 < i1 <
Qg < ... <ip_qy2 <7, Tgiy +Tgiy +- - +Tgi,_,,, 18 zero divisor in K[H],
then there is a polynomial f ¢ I(H) in

S:K[xlla"'7xnlax127”’7xn27”’7'%17“7"'7‘%77,7”]

such that f.(2g + Tgi, + ... + T, _,.,) € I(H). The ideal I(H) is a
monomial ideal and therefore we may assume that f is a monomial and
then each monomial of must belong to I(H) (see [3]). That is, each
monomial of the above polynomial must be divided by some generator
of I(H) which comes from a hyperedge. Let fzg, be such a monomial.
Then there is a hyperedge e; in H such that X, |fzg,. But X, 1 f.
Then 4, |X., and e; \ {x4, } is a subminimal edge ¢; and X,,|f. There-
fore, for gi\, Tgiy, -+ Tgi,_y,0, There are r — d + 2 submaximal edges
€1,02,...,¢_qio such that X, |f, for 1 <t <r —d+ 2, and

€1 ~ Tqiy, €2 ™~ Tgigs -5 Cr—d+2 ™~ Lqip_g.o-
Now by theorem 3.3, the set
epUegU...Ue_g42

contains a hyperedge e. Now X¢ Ue,u..Ue,_yiolf- Then Xc|f. Then
f € I(H), a contradiction.

Conversely, let for for every 1 < g < n, and every 1 <i; <is < ... <
ir—dy2 < T, Tgiy + Tgiy + - + Tgi,_,,, s N0t zero divisor in K[H]. If
‘H is not unmixed, by theorem 3.3, there is an integer 1 < ¢ < n, and
submaximal edges ¢1, ¢9,...,¢._g12, such that

el ~ Lqiq» o ~ Lqigy - Cr—d+2 ~ :EqiridJrz.
where where 41,42 ...,%,_449 are distinct and
erUesU...Uer_g42

is an independent set. Set e; = ¢; Uz, for 1 <t <r —d+ 2. ¢’s are
hyperedge. Let X = X Ueyu..Ue,_gin- X 18 ot in I(H) but X.(z4; +
Tgiy + -+ 2gi,_,,,) € I(H), a contradiction. O
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