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ABSTRACT
A time series motif intuitively is a short time series that repeats

itself approximately the same within a larger time series. Such

motifs often represent concealed structures, such as heart beats

in an ECG recording, the riff in a pop song, or sleep spindles in

EEG sleep data. Motif discovery (MD) is the task of finding such

motifs in a given input series. As there are varying definitions of

what exactly a motif is, a number of different algorithms exist. As

central parameters they all take the length 𝑙 of the motif and the

maximal distance 𝑟 between the motif’s occurrences. In practice,

however, especially suitable values for 𝑟 are very hard to determine

upfront, and found motifs show a high variability even for very

similar 𝑟 values. Accordingly, finding an interesting motif with

these methods requires extensive trial-and-error.

In this paper, we present a different approach to the MD problem.

We define 𝑘-Motiflets as the set of exactly 𝑘 occurrences of a motif

of length 𝑙 , whose maximum pairwise distance is minimal. This

turns the MD problem upside-down: The central parameter of our

approach is not the distance threshold 𝑟 , but the desired number

of occurrence 𝑘 of the motif, which we show is considerably more

intuitive and easier to set. Based on this definition, we present exact

and approximate algorithms for finding 𝑘-Motiflets and analyze

their complexity. To further ease the use of our method, we describe

statistical tools to automatically determine meaningful values for

its input parameters. Thus, for the first time, extracting meaning-

ful motif sets without any a-priori knowledge becomes feasible.

By evaluation on several real-world data sets and comparison to

four state-of-the-art MD algorithms, we show that our proposed

algorithm is both quantitatively superior to its competitors, find-

ing larger motif sets at higher similarity, and qualitatively better,

leading to clearer and easier to interpret motifs without any need

for manual tuning.
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1 INTRODUCTION
Time series (TS) are sequences of real values ordered along a spe-

cific dimension, with time as the most important dimension. The

concept of time series motif discovery (TSMD, or MD in short) was

first described in [22] and has since then emerged as an important

primitive for exploring and analyzing TS in the data mining and

management community [8, 16, 20, 22, 29, 30]. Intuitively, MD is the

problem of finding patterns, i.e., short TS, that repeat themselves ap-

proximately the same within a given TS. These motifs often reflect

concealed structures in the process generating the TS, such as heart

beats in an ECG recording [23] or sleep spindles and k-Complexes

in EEG sleep data [11]. Applications of MD exist across many do-

mains, such as seismic signals [28], electric household devices [27],

DNA sequences [6], electrocardiography data [18], wind generation

turbines [10], or audio signal analysis [7]. MD is also important as a

pre-processing step for classification, clustering, anomaly detection,

and rule discovery in TS [29]. For example, identified motifs can

help to speed up feature extraction in TS classification [12].

Though intuitively easy to describe, the specific definitions of

the MD problem for a TS 𝑇 differ notably between existing works.

Several tools focus only on motif pairs [20, 30], which are defined

as the most similar pair(s) of subsequences of 𝑇 of user-defined

length 𝑙 . However, real-world motifs typically do not only occur in

pairs; for example, heartbeats in ECG recordings are all similar to

each other. A more general and arguably more natural approach

to MD is the search for motif sets, defined as the largest set of

short TS approximately contained in 𝑇 and in some sense close to
each other. At least four different definitions exist for this in some
sense, namely (by date of publication): k-Motifs [22], Range Motif

(RM) [20], Learning Motif (LM) [8], and VALMOD Motif Sets [17]

(for precise definitions, see Section 2). All of these methods require

users to provide two central parameters: the motif length 𝑙 , and a

distance threshold 𝑟 . While the former can often be estimated using

domain knowledge, the latter is very hard to set. Yet, no algorithms

are known for learning the input parameters from the data.

In this paper, we introduce 𝑘-Motiflets, a novel definition for MD

that turns the problem upside-down. 𝑘-Motiflets take the desired

motif set size 𝑘 as parameter and maximize the similarity of the

motif set. As we will show, this 𝑘 is an integer with an easily under-

stood interpretation, and in many use cases the expected size of the

motif set is known prior to the analysis. Consider for example the

possible copyright fraud in the pop song “Ice Ice Baby” by Vanilla

Ice compared to “Under pressure” by Queen / David Bowie. Listen-

ing to these songs it is easy to get a first estimate of the number

of repetitions (parameter 𝑘) of the problematic sections. On the

other hand, it is impossible for humans to guess a good value for

real-valued distance between different repetitions (parameter 𝑟 ).
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Figure 1: Three major changes in k-Motiflets vs SotA: (1) the
use of k-NN vs range queries, (2) minimizing pairwise dis-
tances vs the radius, and (3) guided extraction ofmeaningful
motifs using the elbow plot.

We argue that guessing k is almost always easier, as the concept

of how many repetitions of a motif do you expect is much easier to

understand - though the guess itself need not be easy, and thus we

will also offer algorithms to learn 𝑘 . Furthermore, as 𝑘 is an integer,

there is only a very limited number of options, as use cases with

thousands of motif occurrences are rare. In contrast, the concept of

how far apart do you expect motifs to be at maximum is extremely

difficult to understand as distances, e.g. Euclidean distance, are mea-

sured by an opaque mathematical formula for which no intuition

exists. Furthermore, 𝑟 is a real value with infinitely many values,

and even small changes may lead to gross changes in motifs found.

We illustrate the three main contributions in Figure 1. Firstly
(Left): SotA is based on range queries, with radius 𝑟 as input. There

are indefinitely many ranges to probe, whereas most return the

samemotif. A simple, yet overseen improvement to only get distinct

motifs, is to use k-NN queries. Secondly (Center): Consider twomotif

sets with 3 subsequences each. While both have the same radius,

the right one has higher similarity. We use the maximal pairwise

distance, called extent, to find the TOPmotif among all k-NN queries.

Finally (Right): We introduce elbow plots for a guided extraction of

meaningful motif set sizes. Here, rapid changes in similarity when

increasing k represent a characteristic change from one motif to

another. Overall, we will show that these improvements reduce the

runtime and human efforts to find motif sets considerably. Consider

for example Figure 2. (Top) shows a TS extracted from the pop song

Ice Ice Baby by Vanilla Ice using the 2nd MFCC channel sampled

at 100Hz [30]. This TS is a particularly famous pop song, as it is

alleged to have copied its riff from "Under Pressure" by Queen and

David Bowie. It contains 20 repeats of the riff in 5 blocks with

each riff being 3.6 − 4s long. We applied our novel 𝑘-Motiflets to

this problem and compared results to those of VALMOD [17], two

implementations of k-Motifs - namely EMMA [14] and Set Finder

(SF) [1] - and LearningMotifs (LM) [8]).We first ran𝑘-Motiflets with

𝑘 = 20 and 𝑙 = 3.6s. From the found motif set, we inferred the radius

𝑟 . We then ran all competitors with this exact 𝑟 value but also with

some noise 𝜖 added on top (𝜖 ∈ {−10%, +10%}) to reflect a typical

trial-and-error scenario based on visual inspection of the data. Note

that in this setup competitors are provided with inputs with near-

optimal parameters, which are otherwise hard to guess. 𝑘-Motiflets

(orange squares in Figure 9 (b)) identified all 20 riffs. None of the

competitors found all occurrences though returning motif sets of
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Figure 2: A comparison of MD definitions on the pop song
Ice Ice Baby by Vanilla Ice. The TS contains one significant
motif: the famous riff has 20 repeats in 5 blocks of 4. From
the competitors, none correctly identifies all occurrences,
even when given optimal parameters. When adding a small
noise, blurred or too small motifs are reported. Only our ap-
proximate 𝑘-Motiflets identify all 𝑘 = 20 repeats of the riff.

size 20. Instead, competitors found subsets of the riff, but their

accuracy depends heavily on the precise parameterization. Already

a slight deviation in these parameters (which must be manually

set) leads to completely different motifs for all competitors; with

increasing deviation, the motif suddenly covers the entire TS, and

with decreasing values, the number of found occurrences shrinks

considerably. In summary, the contributions of this paper are as

follows:

(1) We define 𝑘-Motiflets, a novel definition for MD in TS. In

contrast to all prior works, this definition is based on the

desired size 𝑘 of the motif set, not the maximum distance 𝑟

between occurrences of a motif.

(2) We present exact and approximate algorithms for finding

𝑘-Motiflets. As 𝑘-Motiflet can be considered as an extension

of the Range Motif definition of motif sets, we thereby also

provide the first implementation of this definition.

(3) We analyze the complexity of both algorithms and show

that our polynomial-time approximate method is a 2-

approximation to our exponential-time exact algorithm.

(4) To further ease the use of the new method, we present exten-

sions of the algorithms, that can automatically learn the right
values for the two input parameters, namely motif size 𝑘 and

length 𝑙 , to discover interesting motifs. This considerably

reduces the time and effort needed in exploratory analysis.

(5) We perform extensive quantitative and qualitative evaluation

of our new methods on six real-world and 25 semi-synthetic

TS and compare them to four state-of-the-art competitors.

We show that our approximate algorithm finds larger motif

sets given the same distance threshold and motif sets with

smaller pairwise distances given the motif set size 𝑘 . We

furthermore illustrate that 𝑘-Motiflets lead to motifs that are

clearer and easier to interpret. Experiments show that our

approximate algorithm is faster than any of the competitors.
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2 BACKGROUND AND DEFINITIONS
In this section, we first formally define time series (TS) and the

z-normalized Euclidean distance, which we (like all prior work) will

use throughout this work. Next, we introduce the four existing MD

definitions and show their differences using a geometric metaphor.

We then introduce 𝑘-Motiflets by derivation from Range Motifs

(RM), and relate them to the prior work.

Definition 2.1. Time Series: A time series 𝑇 = (𝑡1, 𝑡2, . . . , 𝑡𝑛) of
length 𝑛 is an ordered sequence of 𝑛 real-values 𝑡𝑖 ∈ R.

Definition 2.2. Subsequence: A subsequence 𝑆𝑖;𝑙 of a time series

𝑇 = (𝑡1, . . . , 𝑡𝑛), with 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑖 + 𝑙 ≤ 𝑛, is a time series of

length 𝑙 consisting of the 𝑙 contiguous real-values from 𝑇 starting

at offset i: 𝑆𝑖;𝑙 = (𝑡𝑖 , 𝑡𝑖+1, ..., 𝑡𝑖+𝑙−1).

Works in MD typically exclude overlapping subsequences from

consideration for motifs, as their distance is naturally low.

Definition 2.3. Overlapping subsequences (Trivial Match): Two
subsequences 𝑆𝑖;𝑙 and 𝑆 𝑗 ;𝑙 of length 𝑙 of the same time series 𝑇

overlap iff they share at least 𝑙/2 common offsets of 𝑇 : (𝑖 − 𝑙/2) ≤
𝑗 ≤ (𝑖 + 𝑙/2).

In the context of MD, the similarity of two subsequences is

(almost exclusively) measured using the z-normalized Euclidean
distance.

Definition 2.4. z-normalized Euclidean distance (z-ED): Given two

subsequences 𝑆
(1)
𝑙

= (𝑠 (1)
1
, . . . , 𝑠

(1)
𝑙
) with mean 𝜇 (1) and standard-

deviation 𝜎 (1) and 𝑆 (2)
𝑙

= (𝑠 (2)
1
, . . . , 𝑠

(2)
𝑙
) with 𝜇 (2) and 𝜎 (2) , both

of length 𝑙 , their z-normalized Euclidean distance (z-ED) defined as:

z-ED(𝑆 (1)
𝑙
, 𝑆
(2)
𝑙
) =

⌜⃓⃓⎷ 𝑙∑︂
𝑡=1

(︄
𝑠
(1)
𝑡 − 𝜇 (1)

𝜎 (1)
−
𝑠
(2)
𝑡 − 𝜇 (2)

𝜎 (2)

)︄2
(1)

Using this distance function, we may now introduce a notion for

the approximate matching of subsequences as basis for MD.

Definition 2.5. r-match: Two subsequences 𝑆𝑖;𝑙 and 𝑆 𝑗 ;𝑙 of 𝑇 are

called 𝑟 -matching iff (a) 𝑧-𝐸𝐷 (𝑆𝑖;𝑙 , 𝑆 𝑗 ;𝑙 ) ≤ 𝑟 ∈ R and (b) they are

non-overlapping. A set 𝑆 of subsequences of 𝑇 is called 𝑟 -matching,

iff all subsequences in 𝑆 are pairwise 𝑟 -matching.

2.1 Pair Motifs and Motif Sets
We next define the two basic approaches to MD: pair motifs and
motif sets. A geometrical and intuitive explanation of their differ-

ences is shown in Figure 3. Note that the original definitions of LM,

VS and K-Motifs left it undefined whether the subsequences in a

motif set must be pairwise non-overlapping or not. As such, the

𝐾-Motif reference implementation [14] discovers sets of pairwise

overlapping subsequences. In this work, we require (by definition

of r-matching) all sequences in a motif set to be non-overlapping.

Definition 2.6. Top Pair Motif (PM) [20]: The top pair motif of

length 𝑙 ∈ N of 𝑇 is the pair of non-overlapping subsequences of

length 𝑙 of 𝑇 with minimal distance.

Obviously, two PMs may share the same distance. To solve ties

when enumerating PMs, the PMs are typically returned in the or-

der of appearance in the TS. Next, we present the four different

definitions of motif sets that capture approximately repeated sub-

sequences of a TS.

Definition 2.7. Top K-Motif [22]: Given radius 𝑟 ∈ R and length

𝑙 ∈ N, the top K-Motif is the largest set 𝑆 of subsequences of length

𝑙 of 𝑇 for which the following holds: There exists a subsequence

𝑆𝑖,𝑙 of 𝑇 which is 𝑟 -matching to all members of 𝑆 . We call 𝑆𝑖,𝑙 the

core of 𝑆 , and 𝑆 the motif set (or just motif).

Note that this definition requires that the core of the motif itself

is a subsequence of 𝑇 . This constraint is lifted in the following

definitions; in the latest and most liberal definition, i.e., the range

motif (see below), actually no core must exist anymore.

Definition 2.8. Top Learning Motif (LM) [8]: Given a time series

𝑇 , radius 𝑟 ∈ R and length 𝑙 ∈ N, the top LM of 𝑇 is the largest set

𝑆 of subsequences of length 𝑙 of 𝑇 for which holds: There exists a

core sequence 𝐶 which is 𝑟 -matching to all members of 𝑆 .

The only difference between k-Motifs and Learning Motifs is

that for the latter the core of 𝑆 must not be a subsequence of𝑇 itself.

For this reason, LM motifs are also called latent motifs [8].

An alternative definition for MD was introduced by VALMOD.

Definition 2.9. VALMOD Motif Set (VS) [17]: Given a time series

𝑇 , its pair motif 𝑆𝑖;𝑙 , 𝑆 𝑗 ;𝑙 , distance 𝑟 ∈ R and length 𝑙 ∈ N, the VS of
𝑇 is the set of subsequences that are 𝑟 −𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 to 𝑆𝑖;𝑙 or 𝑆 𝑗 ;𝑙 .

Thus, the VS always computes the top pair motif first and then

iteratively extends its two subsequences with close neighbours.

Accordingly, the pairwise distances of subsequences in a VS motif

may be up to 3𝑟 .

The to-date most liberal definition of MD is that of [20], which

does not require a core to exist. While it is more than a decade old,

no algorithm for computing such motifs has been published yet.

Definition 2.10. Top RangeMotif (RM) Set [20]: Given a time series

𝑇 , distance 𝑟 ∈ R and length 𝑙 ∈ N, the top RM of 𝑇 is the largest

set of subsequences 𝑆 from 𝑇 that are pairwise 2𝑟 -matching.

Figure 3 shows a geometrical explanation for the differences

between the five MD definitions based on the TS from Figure 1.

For illustration, we represent subsequences of 𝑇 as points in 2-

dimensional space. Geometrically, the LM set forms a hypersphere

with radius 𝑟 around a latent core 𝑆𝑙 . K-Motifs form a hyper-sphere

of radius 𝑟 around a core 𝑆𝑖;𝑗 of 𝑇 . VS is the union of two hy-

perspheres of radius 𝑟 around the pair motif. Finally, RM forms a

so-called Reuleaux Polygon: A shape created by the union of circles

of radius 𝑟 around the subsequences of the motif.

Observe that the circle of diameter 2𝑟 as defined by a LM is a

special case of a Reuleaux Polygon and consequently of a RM. All

points inside the LM have pairwise distance smaller than or equal

to its diameter 2𝑟 . In fact, RM returns the same shape as LM iff a

circular shape covers the most subsequences among all possible

shapes defined by Reuleaux Polygons. The opposite is not true, as

a Reuleaux Triangle of width 2𝑟 cannot be covered by a circle with

diameter 2𝑟 . Therefore, the RM is a more general definition than

LM; nevertheless, it is still under-researched. The computational

complexities of finding the exact LM or RM are unknown. Solving

PM and K-Motifs problem is quadratic in the TS length 𝑛. A list of

existing implementations can be found in Table 1.
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Figure 3: Illustration of the six different concepts of motif discovery.We consider six subsequences of fixed length as potential
motif set and plot them in a 2-dimensional space. From left to right: (a) PM, (b) VS, (c) 𝐾-Motif, (d) LM, (e) RM, (f) 𝑘-Motiflets,
for 𝑘 ∈ [2, 3, 4]. Geometrically, VS, LM and 𝐾-Motif are (unions of) hyperspheres; RM and 𝑘-Motiflets are Reuleaux polygons.

2.2 k-Motiflets
All of the aforementioned MD definitions have in common that

their motif sets depend on two parameters, i.e., the length 𝑙 of

subsequences and the distance threshold 𝑟 . Especially 𝑟 is very hard

to set in practice, as it is very difficult to get an intuition regarding

a threshold on the z-normalized distance of subsequences of a

TS. Furthermore, already slight variations of its value may lead

to grossly different motifs which makes tuning rather brittle. Yet,

no methods for learning the parameters from the data are known.

In contrast, 𝑘-Motiflets, which will be defined in the following,

is independent of 𝑟 . Instead, it requires users to set an integer

parameter 𝑘 that defines the size of the motif set to be discovered.

This measure is easy to understand, has much less possible values

(integer versus real), can be learned from the data (Section 5), and

inherently leads to smoothly growing motif sets in experimentation

(see Figure 6 for an example). Before introducing 𝑘-Motiflets, we

first have to define the extent of a motif.

Definition 2.11. Extent: Consider a TS 𝑇 and a set 𝑆 of subse-

quences of 𝑇 of length 𝑙 . The extent of 𝑆 is the maximal pairwise

distance of elements from 𝑆 :

𝑑 = 𝑒𝑥𝑡𝑒𝑛𝑡 (𝑆) = max

(𝑆 (1) ,𝑆 (2) ) ∈𝑆×𝑆
(z-ED(𝑆 (1) , 𝑆 (2) ))

We next define 𝑘-Motiflets. These could actually build on any of

the existing motif set definitions; we use RM to achieve maximal

flexibility.

Definition 2.12. Top 𝑘-Motiflet: Given a time series 𝑇 , cardinality

𝑘 ∈ N and length 𝑙 , the top 𝑘-Motiflet of 𝑇 is the set 𝑆 with |𝑆 | = 𝑘
subsequences of 𝑇 of length 𝑙 for which the following holds: All

elements of 𝑆 are pairwise 𝑑-matching, with 𝑑 = 𝑒𝑥𝑡𝑒𝑛𝑡 (𝑆), and
there exists no set 𝑆 ′ with 𝑒𝑥𝑡𝑒𝑛𝑡 (𝑆 ′) < 𝑒𝑥𝑡𝑒𝑛𝑡 (𝑆) also fulfilling

these constraints.

Note that the top 𝑘-Motiflet is not unique if two (or more) sets of

k-subsequences share the same smallest distance. k-Motiflets have

a blind spot for same 𝑘-retrieval. Given two motif sets of the same

size, only the one with smaller extent is reported. Thus, in some

pathological case, two motif sets of the same size 𝑘 may hide each

other, if one motif always has a smaller extent than the other for

all 𝑘 ′ ∈ [2 . . . 𝑘]. In this case, our algorithm will only return the

motif set with the smallest extent for each 𝑘 ′, creating the blind

spot. In contrast, SotA has a blind spot for same 𝑟 -retrieval. Given

two motif sets of the same radius, only the larger one (in terms of

𝑘) is reported. Thereby, SotA hides distinct motifs given the same

radius as input. Geometrically, a 𝑘-Motiflet is the smallest Reuleaux

polygon that covers 𝑘 subsequences. For the special case of 𝑘 = 2,

2-Motiflets return the pair of subsequences with smallest distance,

which is equal to the Pair Motif (PM) definition. For any 𝑘 ≥ 2

this represents the RM of size 𝑘 with smallest 𝑟 . Figure 3 illustrates

2, 3, 4-Motiflets in comparison to the other definitions.

3 RELATED WORK
MD in TS has been researched intensively for approximately 20

years. The first publication we are aware of was studied in the

context of summarizing and visualizing massive TS datasets [14].

In the following, we shall first discuss recent approaches to pair

MD and then focus on methods for the discovery of motif sets.

The MK algorithm [20] from Mueen et al. published in 2009

is likely the most widely used baseline for pair MD. However, it

is outperformed by more recent methods in terms of runtime, in

particular QUICK MOTIF [13], STOMP [32], SCRIMP [31], and

VALMOD [16]. QUICK MOTIF first builds a summarized represen-

tation of the data using Piecewise Aggregate Approximation (PAA)

and arranges these summaries in Minimum Bounding Rectangles

within a Hilbert R-Tree index for pruning. STOMP and SCRIMP

are based on the computation of the matrix profile [30], which

represents the 1-nearest-neighbor (1-NN) subsequence to each sub-

sequence of a TS. The subsequence pair with smallest distance

among all is the motif pair. VALMOD [16] addresses the limitation

that previous works always assumed a user-defined motif length 𝑙 .

Instead, they proposed an efficient algorithm for finding best pairs

within a range [𝑙𝑚𝑖𝑛 . . . 𝑙𝑚𝑎𝑥 ]. In our evaluation in Section 6, we

shall use VALMOD for fixed length 𝑙 only. VALMOD was extended

to return motif sets by performing a range-query around the two

pair motif sequences. A common characteristic of algorithms for

pair MD is a complexity of up to O(𝑛2𝑙), for a TS of length 𝑛 and a
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Table 1: Overview of state-of-the-art Pair Motif andMotif Set discovery definitions and implementations, given amotif length
𝑙 and TS of length 𝑛. Notably, no Range Motif discovery algorithm was published to-date. There are four different formal MD
definitions for Motif Sets we are aware of.

Motif Type Name Worst Case Complexity Properties Exact?

Motif Pairs [20]

MK [20] O(𝑙𝑛2) Admissible Pruning Yes

SCRIMP [31] O(𝑛2) Runtime independent of 𝑙 Yes

VALMOD [16] O( (𝑙𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛) · 𝑛2) Variable length over ranges Yes

K-Motifs [14]

EMMA [14] O(𝑙𝑛2) SAX-based, produces trivial-matches Heuristic

GrammarViz [25, 26] O(𝑛2) Discretization (SAX), variable length Heuristic

ScanMK [1] O(𝑙𝑛2) Heuristic

ClusterMK [1] O(𝑙𝑛2) Hierarchical Clustering Heuristic

SetFinder [1] O(𝑙𝑛2) Heuristic

Learning Motifs [8] Learning Motifs [8] O(𝑙𝑛) Non-convex Gradient Desc. Heuristic

VALMOD Motif Sets [16] VALMOD [16] O( (𝑙𝑚𝑎𝑥 − 𝑙𝑚𝑖𝑛) · 𝑛2) Variable length Exact

Range Motifs [20] None - No known implementation. -

k-Motiflets k-Motiflets O(𝑘 · 𝑛2 + 𝑛 · 𝑘2) Learn parameters 𝑙 and 𝑘 Both

fixed motif length 𝑙 (compare Table 1). Using SCRIMP to compute

the pairwise distance matrix, this may be reduced to O(𝑛2). Our
implementation of 𝑘-Motiflets is based on the fast formulation of

this problem as in SCRIMP [5, 31], but extended for 𝑘-NN distances;

it will be described in more detail in Section 4.

EMMA [14] was the first K-Motif discovery algorithm. It is based

on the discretization of subsequences using SAX. In short, Symbolic

Aggregate approXimation (SAX) [15] transforms an input TS into a

string (word) based on computing mean values over intervals, and

the discretization of these mean values. The SAX words are then

hashed into buckets, where similar subsequences hash into similar

buckets, and the buckets are subsequently post-processed to obtain

the final motif sets. Also GrammarViz [25, 26] is based on SAX, on

which it applies a linear-time algorithm Sequitur [21] for grammar

inference. From the detected rules, those are derived that represent

reoccurring subsequences. Like EMMA, the method is heuristic, as

both mine motifs in the discretized SAX space, which can lead to

two similar subsequences being considered as different.

ScanMK, ClusterMK, and SetFinder have been proposed by the

same authors [1] as solutions to K-Motif discovery. ScanMK initial-

izes set motif candidates with pair-motifs that are within a distance

lower than 𝑟 . From these two subsequences all nearby subsequences

within 𝑟 are queried and added to the set motif candidate. Finally,

the set is condensed to remove subsequences that are more than 2𝑟

apart. ClusterMK is based on a bottom-up hierarchical clustering

of the best-matching pairs of clusters within distance 𝑟 . First, the

closest pairs of subsequences are merged to form initial clusters.

A cluster is then represented by averaging its members. Cluster-

ing terminates once the distance between clusters is larger than

𝑟 . SetFinder directly searches the 𝑟 -matches of every subsequence

and outputs the highest cardinally set.

The concept of Learning Motif (LM) was introduced by Grabocka

et al. [8] to better deal with noisy TS. The paper approaches LM

discovery as a process which, starting from a random initialization,

iteratively modifies a motif core 𝑆 ′ to increase its frequency, i.e.,

the size of the surrounding motif, while keeping its radius fixed. As

the frequency function is not differentiable, they propose a smooth

Gaussian-kernel approximation that allows to use gradient ascent

to find the hopefully best hidden motif cores. The LM solution

is a heuristic, as the optimization problem is non-convex and the

gradient ascent might get stuck in a local optimum.

Range Motif (RM) discovery was defined in [20]. It is the most

liberal definition (see Section 2.1), as it does not require a motif

core to exist anymore. To-date, no algorithm has been published

implementing this RM concept. However, 𝑘-Motiflets are based on

RM, as for any 𝑘 ≥ 2 we return the RM with smallest 𝑟 to cover

exactly 𝑘 subsequences (see also previous Section). Our algorithms

for computing𝑘-Motiflets could thus easily be turned into a solution

for the original RM problem by running them for increasing values

of 𝑘 until the distance threshold is violated.

4 EXACT AND APPROXIMATE K-MOTIFLETS
In this section we will present two algorithms solving the 𝑘-Motiflet

problem. The first algorithm, presented in Section 4.2, is an efficient

heuristic with polynomial runtime. Furthermore, we show that it

is a 2-approximation of the exact solution. The second algorithm,

presented in Section 4.3, is exact but has exponential runtime in

𝑘 , and uses the heuristic solution as initial solution for pruning.

Before describing the concrete algorithms, we first give an intuition

of their inner working in Section 4.1.

Both algorithms expect parameters 𝑙 and 𝑘 to be given. While

we share the necessity to set 𝑙 manually with all other methods

except VALMOD, we replace the usual parameter 𝑟 (distance thresh-

old) with 𝑘 (size of the motif set). Although 𝑘 is much easier to

understand, setting it nevertheless might require time-consuming

exploratory analysis. To reduce these efforts, we shall present two

bespoke methods for learning both parameters 𝑙 and 𝑘 from the

data in Section 5.

4.1 Intuition of Approximate Solution
Given a motif length 𝑙 and a motif size 𝑘 , the algorithmic idea of our

algorithms for computing 𝑘-Motiflets is the following: we start by

building motif set candidates by joining each subsequence of a TS

𝑇 with its non-overlapping (𝑘 − 1)-NNs. Next, we compute for each

of these sets of cardinality 𝑘 the extent, i.e. the maximum over all

pairwise distances. Note that the subsequences in each set must not

be pairwise as similar to each other as both are to the core 𝑆 , as two
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Figure 4: Depicted are three sets (blue, red, orange) with
radius 𝑟 around a query. 𝑘-Motiflet discovery involves two
steps: (1.) (k-1)-NN search around each query subsequence,
and (2.) determine the extent of each set, i.e. 𝑑1, 𝑑2, 𝑑3. Finally,
the top 𝑘-Motiflet with smallest extent 𝑑2 is returned.

Algorithm 1 Compute Approximate k-Motiflets

1: procedure get_k_motiflets(𝑇 , 𝑘 , 𝑙 )
2: 𝐷𝑖,𝑗 ← calc_distance_matrix(T, l)

3: (𝑚𝑜𝑡𝑖 𝑓 𝑙𝑒𝑡, 𝑑) ← ({}, 𝑖𝑛𝑓 ) ⊲ bsf of extent

4: for 𝑖 ∈ [1, . . . , (len(T) − 𝑙 + 1) ] do
5: 𝑖𝑑𝑥 ← argwhere(𝐷𝑖 < 𝑑) ∪ {𝑖 }
6: if 𝑙𝑒𝑛 (𝑖𝑑𝑥) ≥ 𝑘 then
7: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ← non_trivial_kNN(𝑘, 𝑖𝑑𝑥)
8: 𝑑𝑖𝑠𝑡 ← pairwise_extent(𝐷,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒,𝑑)
9: if 𝑑𝑖𝑠𝑡 < 𝑑 then
10: (𝑑,𝑚𝑜𝑡𝑖 𝑓 𝑙𝑒𝑡 ) ← (𝑑𝑖𝑠𝑡, 𝑘_𝑠𝑢𝑏𝑠𝑒𝑡 )
11: end if
12: end if
13: end for
14: return (𝑚𝑜𝑡𝑖 𝑓 𝑙𝑒𝑡, 𝑑)
15: end procedure

neighbours of 𝑆 may be on opposite sites of the hyperspace centered

around 𝑆 . Thus, to find the best k-Motiflet, we cannot simply pick

the smallest (𝑘 − 1)-NN distance, but must explicitly determine the

motif set with smallest extent. This process is illustrated in Figure 4,

from (𝑛 − 1)-NN search (top) to computing the extent (bottom) and

choosing the motif set with smallest extent. Furthermore, without

further modifications this method is a heuristic, as it only considers

Motiflets built from the 𝑘 − 1-NNs of a core from 𝑇 .

We will first outline an approximate solution to the 𝑘-Motiflet

problem. We will show in Section 4.2.2 that this solution is a 2-

approximation and present an exact algorithm in 4.3.

4.2 Approximate k-Motiflet Algorithm
Algorithm 1 takes as an input the TS𝑇 , the size of the motiflet 𝑘 ∈ N
andmotif length 𝑙 ∈ N. First, we compute the pairwise z-normalized

distance matrix (line 2). The algorithm applies admissible pruning

to reduce the number of candidate sets using an upper bound on

the best-so-far extent 𝑑 (see line 3). It iteratively checks if there are

at least 𝑘 subsequences within a 𝑑-range (line 6). If true, we extract
the closest non-trivial 𝑘 subsequences (line 8), and determine the

pairwise extent of this set (line 9). In PAIRWISE_EXTENT(_, _, 𝑑)
we apply admissible pruning, too, by stopping the computation

once any pairwise distance exceeds 𝑑 . If the overall extent 𝑑𝑖𝑠𝑡 is

smaller than the best-so-far, we update the 𝑘-Motiflet (lines 10–13).

Finally the 𝑘-Motiflet and its extent 𝑑 are returned.

The presented algorithm is greedy and approximates the ex-

tent of the optimal set of subsequences in line 8, assuming

that the NNs of a query are also the ones in the 𝑘-Motiflet. In

NON_TRIVIAL_kNN() we order the subsequences by their dis-

tance to the query and return the closest non-trivial neighbours.

Figure 4 illustrates the idea of the algorithm and the steps involved

in computing a 3-Motiflet. We iteratively perform two steps for

each subsequence 𝑞: (1) search for the (𝑘 − 1)-NN of 𝑞, and (2)

determine their pairwise extent of the candidate set. Finally, the set

with minimal extent is returned (in red).

4.2.1 Complexity: The runtime of get_k_motiflets(𝑇 , 𝑘 , 𝑙) is

dominated by the computation of the pairwise z-normalized dis-

tance matrix (line 2). Our implementation is based on an efficient

formulation of this problem from [5, 31], extended for 𝑘-NN dis-

tances. This requires only O(𝑛2)-time, which is independent of the

motif length 𝑙 . Next, the algorithm iterates through all cells of the

distance matrix in lines 5–6 with O(𝑛2)-time. Checking for non-

trivial matches in line 8 requires 𝑘-times searching for the minimum

over one row of the matrix with a complexity of O(𝑘 · 𝑛2) over all
𝑛 rows. We can compute the maximum of 𝑘 pairwise distances in

O(𝑘2) (line 9). Accordingly, the for-loop is in O(𝑛 · 𝑘2). Thus, the
overall worst case runtime complexity is: O(𝑘 · 𝑛2) + O(𝑛 · 𝑘2). In
the best case, due to admissible pruning, the first subsequence (first

row of the matrix) is the top 𝑘-Motiflet and we can prune all further

computations in the first cell of each subsequent row. The best case
runtime complexity is thus: O(𝑛2) + O(𝑘2).
4.2.2 2-Approximation. Algorithm 1 only computes an approxi-

mate solutions, as it only considers Motiflets built from the (𝑘 − 1)-
NNs of a core from 𝑇 , whereas the top 𝑘-Motiflet may not contain

this core. In the following, we will first show that our method pre-

cisely is a 2-approximation, for 𝑘 = 3, by constructing a worst-case

instance, and then extend it to the case of 𝑘 > 3.

Case 𝑘 = 3: Figure 5 illustrates such a worst case example for

3-Motiflets in both the xy-plane (for ease of illustration) and xyz-

plane. The blue dots and red dots represent subsequences that

are equally distributed on a grid with an offset of 𝑟 . The offset

between the red dot and the blue dots in the xy-plane shall be

𝑟 + 𝜖 , for an arbitrarily small 𝜖 ∈ R+. In the case of 3-Motiflets our

approximate algorithm searches for 2-NNs of each subsequence,

which in this example are always one unit of 𝑟 away (illustrated by

the hyperspheres). Thus, the pairwise extent is at most 𝑑 = 2𝑟 for

two subsequences on the diameter. However, the optimal 3-Motiflet

can be seen in the center of the figure: for each of the blue dots,

the first 2-NNs are 𝑟 away, and only their 3-NN (red dot) is 𝑟 + 𝜖
away. Thus, the top 3-Motiflet has a pairwise distance of 𝑑 = 𝑟 + 𝜖 ,
and consists of two blue dots and one red dot. This example is also

the worst case instance for 𝑘 = 3. The factor is largest when 𝜖 is

close to 0, maximizing the difference of 2𝑑 and 𝜖 + 𝑟 . Increasing
or decreasing epsilon will reduce the factor of the approximation

as it is either not a part in the 𝑘-Motiflet 𝜖 > 𝑟0 or is found by

our approximate algorithm (for 𝜖 < 0). The worst case instance is

thus the case, when the red dot touches the intersections of the

circles. Case 𝑘 > 3: We now extend this worst case example to 𝑘 > 3

(using 𝐿1 distance for the sake of simplicity): Assume we have a
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Figure 5: Worst case example for k=3 on xy and xyz-plane.
Our approximate algorithm will return a 3-Motiflet with ex-
tent 2𝑟 . However, the optimal 3-Motiflets has extent 𝑟 + 𝜖.

subsequence in 𝑛 ≥ 𝑘 + 2-dimensional space 𝑆 = (0, 0, . . . , 0) with
𝑘−1-neighbours 𝐵𝑖 , 𝑖 ∈ [1, . . . , 𝑘−1], where only the i-th dimension

is set to 𝑟 . E.g.: 𝐵1 = (𝑟, 0, . . . , 0) and 𝐵2 = (0, 𝑟 , . . . , 0). 𝑆 and all 𝐵𝑖

constitute a 𝑘-Motiflet with extent 𝑑 = 2𝑟 . Now, we hide a single

subsequence 𝑅0 = (𝑟/2 + 𝜖, 𝑟/2 + 𝜖, 0, . . . , 0) at the intersections

of the hypersphere (as in Figure 5 for 𝑘 = 3). 𝑅0 has a distance of

𝑟 + 𝜖 to 𝑆 and 𝐵1. Finally, we add 𝑘 − 1 additional subsequences

𝑅𝑖 , 𝑖 ∈ [3, . . . , 𝑘+1], where the first two dimensions are set to 𝑟/2+𝜖
and the i-th dimension is set to 𝑟 . E.g. 𝑅3 = (𝑟 + 𝜖, 𝑟/2 + 𝜖, 𝑟, . . . , 0).
These are all distance 𝑟 away from 𝑅0, and at least 2𝑟 away from 𝑆 .

Thus, the top 𝑘-Motiflets consists of the subsequences 𝑅𝑖 and

𝑆 with total extent 𝑟 + 𝜖 , but the found 𝑘-Motiflet has extent 2𝑟

with 𝐵𝑖 and 𝑆 . Accordingly, our algorithm is a 2-approximation of

the exact solution. Note that 2 is the maximal error; we actually

observe much smaller factors on our real-world use cases, typically

lower than 1.1 also for much higher 𝑘 (see Section 6.3).

4.3 Exact k-Motiflets
The approximate algorithm gives an upper bound on the extent 𝑑

of the optimal 𝑘-Motiflet solution. The algorithmic idea of our exact

algorithm is based on an enumeration of all subsets of subsequences

of 𝑇 of size 𝑘 combined with aggressive pruning. The pruning is

based on the observation that the 𝑘-Motiflet must be within range

𝑑 of a subsequence 𝑆 in TS, as all other subsequences are within

pairwise distance of at most 𝑑 to 𝑆 . To obtain the overall smallest set

in terms of its extent, we hence may prune the 𝑑-range candidate

sets to return the smallest 𝑘-element set. However, enumerating

all subsets of 𝑘 subsequences from a set of 𝑘ˆ > 𝑘 elements is a

combinatorial problem, which has exponential growth in O(𝑘ˆ𝑘 ).
Algorithm 2 applies admissible pruning by using the best-so-far

extent 𝑑 . It initializes 𝑑 by the result of our approximate algorithm

in line 3. We iterate over all subsets of subsequences and return

those within 𝑑-range. For choosing candidate subsequences, we

have to check each subset of size 𝑘 and compute its extent (line 7–9).

Overall, there are O(𝑛𝑘 ) in the worst case. The 𝑘-element motif set

with lowest extent is the top 𝑘-Motiflet.

Thus, if we compare the approximate (Algorithm 1) and the exact

solution (Algorithm 2), the main difference is in the enumeration of

the candidate subsequences. Unfortunately, the exact algorithm has

Algorithm 2 Compute Exact k-Motiflets

1: procedure get_exact_k_motiflets(𝑇 , 𝑘 , 𝑙 )
2: 𝐷𝑖,𝑗 ← calc_distance_matrix(T, l)

3: (𝑚𝑜𝑡𝑖 𝑓 𝑙𝑒𝑡, 𝑑) ← get_k_motiflets(𝑇,𝑘, 𝑙) ⊲ approximation

4: for 𝑖 ∈ [1, . . . , (len(T) − 𝑙 + 1) ] do
5: 𝑖𝑑𝑥 ← argwhere(𝐷𝑖 < 𝑑) ∪ {𝑖 }
6: if 𝑙𝑒𝑛 (𝑖𝑑𝑥) ≥ 𝑘 then
7: for 𝑘_𝑠𝑢𝑏𝑠𝑒𝑡 ∈ non_trivial_subsets(𝑘, 𝑖𝑑𝑥) do
8: 𝑑𝑖𝑠𝑡 ← pairwise_extent(𝐷,𝑘_𝑠𝑢𝑏𝑠𝑒𝑡,𝑑)
9: if 𝑑𝑖𝑠𝑡 < 𝑑 then
10: (𝑑,𝑚𝑜𝑡𝑖 𝑓 𝑙𝑒𝑡 ) ← (𝑑𝑖𝑠𝑡, 𝑘_𝑠𝑢𝑏𝑠𝑒𝑡 )
11: end if
12: end for
13: end if
14: end for
15: return (𝑚𝑜𝑡𝑖 𝑓 𝑙𝑒𝑡, 𝑑)
16: end procedure

an exponential growth in the worst case, which makes it infeasible

for even small 𝑘’s, which we will show in the experimental section.

There are also good reasons to believe that the 𝑘-Motiflet problem

is NP-hard, but a formal proof still has to be found. However, we

will show that our approximate 𝑘-Motiflets algorithm gives good

results in our experimental evaluation in Section 6.

5 PARAMETER SELECTION
In this section, we present methods to automatically find suitable

values for the motif length 𝑙 and set size 𝑘 so, that meaningful

concealed structures of an input TS are found without domain

knowledge. No comparable method exists for any of the competitor

definitions. As MD in TS is an unsupervised problem, we cannot

claim to find optimal values under all circumstances. For instance,

the methods we present will not produce meaningful results when

applied to entirely random TS, as in those simply no "suitable" 𝑘 or 𝑙

exist at all. However, we found them to be very effective and helpful

in our experiments (Section 6). Our methods for determining values

for 𝑘 and 𝑙 are based on an analysis of the extent function:

Definition 5.1. Extent Function (EF): Assume a fixed length 𝑙 and

a time series T. Let 𝑆𝑘 be the top 𝑘-Motiflet with length 𝑙 of𝑇 . Then,

the extent function 𝐸𝐹 for 𝑇 is defined as 𝐸𝐹 (𝑘) = 𝑒𝑥𝑡𝑒𝑛𝑡 (𝑆𝑘 ).

Note that EF can be efficiently computed when starting from the

largest value to be considered, as 𝑒𝑥𝑡𝑒𝑛𝑡 (𝑆𝑘+1) is a (usually rather

tight) bound for 𝑒𝑥𝑡𝑒𝑛𝑡 (𝑆𝑘 ), which allows for aggressive pruning

in all cases but the first. When considering the curve of the EF, we

can observe the following: First, EF is monotonically increasing in

𝑘 . Second, if the slope of 𝐸𝐹 increases slowly from 𝑘 to 𝑘 + 1, then
𝑆𝑘 can be extended to 𝑆𝑘+1 with a motif that is very similar to the

subsequences of 𝑆𝑘 . A longer interval [𝑘, . . . , 𝑘 + 𝑛] for which EF

increases only slowly and that cannot be extended (i.e., 𝐸𝐹 (𝑘 − 1)
is considerably smaller than 𝐸𝐹 (𝑘) and 𝐸𝐹 (𝑘 + 𝑛 + 1) is consider-
ably larger than 𝐸𝐹 (𝑘 + 𝑛)) very probably stem from a set of 𝑛 + 1
subsequences of 𝑇 whose 𝑘 most similar elements build 𝑆𝑘 and

where for every increment of 𝑘 another highly similar subsequence

from 𝑇 exists and is added to build the next top motiflet. On the

other hand, if 𝐸𝐹 (𝑘 + 1) − 𝐸𝐹 (𝑘) is large, i.e., if we have a steep
increase between 𝑘 and 𝑘 + 1 - we call this an elbow point - then
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Figure 6: The EF (bottom) is a function of the cardinality

of 𝑘-Motiflets to the extent. Elbow points represent large
changes in similarity of the foundmotif, indicative of a con-
cept change from calibrations signal to heartbeats. The run-
time was 0.5s to compute the EF.

very probably the 𝑘-Motiflet could not be exceeded with further,

highly similar subsequences. In such cases, the 𝑘 + 1 motiflet very

likely is formed by an entirely new motif - with more occurrences,

but at the price of a larger extent. Examples for both observations,

i.e., long flat stretches and elbow points, can be found in Figure 6.

These considerations lead to the following two ideas: (a) Elbow

points in the EF indicate changes of motifs. The last value of 𝑘

before the elbow indicates a maximal motiflet, which we consider

a particularly meaningful value for 𝑘 . We study these points in

Section 5.1. (b) Long flat stretches of the EFs indicate a high num-

ber of occurrences of a motif, but depend on the motif length 𝑙 .

Accordingly, we consider values of 𝑙 leading to long flat stretches

as particularly meaningful. Section 5.2 describes how we find such

values.

5.1 Learning meaningful k
Elbow points, i.e. points with a notable increase in slope of the EF
between two values 𝑘 and 𝑘 + 1, indicate that the 𝑘-Motiflet cannot

be extended to 𝑘+1without a strong increase in its extent. Consider
Figure 6 as an example. We set the motif length to 1 sec, i.e. 60 bpm.

We observed the following: the EF (Figure 6 bottom) is flat until 6

repetitions of the calibration signal have been found. This stretch

ends with a notable increase in slope until 𝑘 = 16, where another

elbow point exists. These two points are characteristic for this TS.

The corresponding motifs are depicted at the bottom of the figure,

with 6 and 16 occurrences, respectively.

We tested differentmethods for finding elbow points, such as [24]

or scipy. We found that a simple threshold 𝛼 on the slope of the EF
performed best for the particular shapes that 𝐸𝐹 typically exhibit.

Given a list of 𝑘−1 extents 𝑝 = [𝑑𝑖 ]𝑘𝑖=2, we thus define elbow points

as follows:

𝑒𝑙𝑏𝑜𝑤 (𝑝 (𝑖), 𝑝 (𝑖 + 1)) =
{︃

1, iff𝑚1/𝑚2 > 𝛼

0, else

}︃
with𝑚1 = 𝑝 (𝑖 + 1) − 𝑝 (𝑖) + 𝜖 ,

𝑚2 = 𝑝 (𝑖) − 𝑝 (𝑖 − 1) + 𝜖

A small constant 𝜖 ∈ R+ is added to the slope to avoid dividing by

0. An elbow is found, if the slope rises by a factor of 𝛼 .

Perquisites and Limitations: Reliably detecting elbows is a hard

challenge. Our choice of 𝛼 relies on the assumption that the data

contains motif sets. These create visible elbows on all use cases

(compare Figure 8) . Yet, if this assumption is violated, such as

in random walk data, every elbow detection method is cursed to

fail. We would expect such random series to contain no reasonable

motif sets, and, in fact, the elbow function is a rather straight. Still,

our method reports “elbows” at the points where the line is not

completely straight. Some more research is needed to investigate

this. However, in our experiments the change in extent was always

so significant, that we choose to default this value to 𝛼 = 5, and

all experiments in this paper use this default. Yet, the user may

choose different elbow points without extra computations. Further

evaluations of learn-k on more data sets can be found on [9].

5.2 Learning Motif Length l
As described before, the length of a flat stretch in the EF corre-

sponds to a maximal motiflet. The existence and lengths of such

stretches depend on 𝑙 . For instance, if we set 𝑙 exactly to the peri-

odicity of the heartbeat or of the calibration wave in Figure 2, the

𝐸𝐹 contains two long flat stretches each corresponding to a (high)

number of occurrences of the respective motif. Learning a suitable

motif length thus can be approached by searching values for 𝑙 that

create long flat stretches in the 𝐸𝐹 .

Accordingly, one could find 𝑙 by computing EFs for a range of

𝑙 values and chose the one where the EF contains the longest flat

stretch. This, however, would have two drawbacks: (1) we would

assume that only a single motif exists, and (2) stretches of different

lengths may also exhibit different (small) slopes and are thus hard

to compare, i.e., given a single threshold for "flat" would be difficult.

Instead, we determine 𝑙 by calculating a normalized area under the
EF, abbreviated as 𝐸𝐹𝐴𝑈 , as steeper stretches or smaller stretches

- necessarily ending with an elbow point and thus an increase in

slope - lead to larger areas under 𝐸𝐹 .

For a given length 𝑙 , let 𝐸𝐹 (𝑙) be the list of the 𝑘 − 1 extents

𝑝 (𝑙) = [𝑑 (𝑙)
𝑖
]𝑘
𝑖=2

and 𝑒 (𝑙) be the number of identified elbows. The

𝐴𝑈 _𝐸𝐹 score for length 𝑙 is defined as:

𝐴𝑈 _𝐸𝐹 (𝑝 (𝑙) ) = 1

𝑒 (𝑙)

𝑘∑︂
𝑖=2

(𝑑 (𝑙)
𝑖
−𝑚𝑖𝑛(𝑝 (𝑙) ))

(𝑚𝑎𝑥 (𝑝 (𝑙) ) −𝑚𝑖𝑛(𝑝 (𝑙) ))
∈ [0, 1]

and 𝑏𝑒𝑠𝑡 = min

𝑙 ∈[𝑙_𝑚𝑖𝑛,𝑙_𝑚𝑎𝑥 ]
𝐴𝑈 _𝐸𝐹 (𝑝 (𝑙) )

I.e., in our implementation we iterate over reasonable values for

𝑙 and choose the value where 𝐴𝑈 _𝐸𝐹 () is minimal.

Figure 7 shows two plots of the AU_EF for a range of discrete

motif lengths 𝑙 ∈ [25, . . . , 200] for our running ECG example (left)

and also an EEG sleep data set (right). The AU_EF has its minimum

around 𝑙 = 0.8𝑠 to 𝑙 = 1𝑠 , equal to a heartbeat rate of 60-80 bpm. The

resulting motif sets are shown in Figure 6. In EEG sleep data the

local minima correspond to sleep spindles at 5𝑠 and K-Complexes

at 10− 20𝑠 in sleeping cycles. Further evaluations of this method on

more data sets can be found on our supporting web page [9]. On the

presented two datasets and ranges, learn-l took 1.5s for ECG and

18.6s on EEG. Runtimes vary with input ranges [𝑙_𝑚𝑖𝑛, 𝑙_𝑚𝑎𝑥].
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Figure 7: The Area Under the EF (AU_EF) captures the fre-
quency of approximate repeats. The minima roughly cap-
ture knownmotifs in the two datasets, corresponding to the
sleep spindles and K-Complex in sleep data (left) and heart-
beats at a rate of 60 to 80 bpm in ECG data (right).

Learning 𝑘 and learning 𝑙 for SotA. As other methods expect pa-

rameter 𝑟 (not 𝑘) as input, we would need to implement a learn-r
routine, i.e. sample some 𝑟 -values over an interval, compute the

corresponding size 𝑘 , and find elbow points. However, we observed

that in our experiments the scores computed by the competitor

algorithms were non-monotonically increasing with 𝑟 , due to the

heuristic nature of SotA. I.e. there typically is no elbow to find.

Instead, the size of the motif set sometimes suddenly drops with

increasing radius - compare experimental results in Figure 8. We

thus think that finding optimal parameters for other methods than

ours remains an interesting future research direction.

6 EXPERIMENTAL EVALUATION
Our experimental evaluation is three-fold: Firstly in Section 6.1 we

compare our approximate algorithm against SotA in a quantita-

tive analysis on six real world sets. We evaluate methods by the

similarity and cardinality of motif sets. Secondly in Section 6.2, we

compare our approximate 𝑘-Motiflet algorithm against SotA in

a qualitative analysis on three real world and 25 semi-synthetic

data sets - those for which motifs are known. We evaluate methods

by their ability to find these motifs. Finally in Section 6.3, we com-

pare our approximate and exact 𝑘-Motiflets regarding quality of

results, and both against competitors for runtimes.

Competitors: We compare our new algorithm to VALMOD [17],

EMMA [14], Set Finder (SF) [1], and Learning Motifs (LM) [8]. We

used the original implementation of EMMA and SF but performed

some runtime optimizations. In EMMA we improved the computa-

tion of means and stds from O(𝑛𝑙) to O(𝑛) using a sliding window

implementation. For SF, we improved the filtering of trivial matches

by sorting the indices first and then searching for overlaps in sorted

indices, rather than checking all pairs of indices. We used our own

python re-implementation of VALMOD because the reference im-

plementation is for pair motifs only. For LM, we used the JAVA

implementation provided by the authors.

Data Sets: We collected six challenging real-life and generated

25 semi-synthetic data sets. For four out of these, the literature

describes the existence of motifs though without actually anno-

tating them, see Table 2 for an overview. Muscle Activation was

collected from in-line speed skating [19] on motor driven treadmill

with EMG data of movements. It contains 29.899 measurements at

100𝐻𝑧, equal to 30𝑠 . Known motifs are muscle movement and a re-

covery phase. ECG Heartbeats contains a patient’s (ID 71) heartbeat

from the LTAF database [23]. It contains 3.000 measurements at

128𝐻𝑧, equal to 23𝑠 . The heartbeat rate is 60 to 80 bpm. Known

motifs are a calibration signal and the heartbeats. Vanilla Ice - Ice
Ice Baby: This dataset was used as introductory example. Its famous

riff has 20 repeats of roughly 3.6 to 4s and is 231s long. Physiodata
- EEG sleep data contains a recording of an afternoon nap of a 20

to 40 years old person [11]. Data was recorded with an extratho-

racic strain belt. It consists of 269.286 points at 100ℎ𝑧, equal to

45𝑚𝑖𝑛. Known motifs are sleep spindles and 𝐾-Complexes. Indus-
trial Winding Process records a plastic web being unwound from

an unwinding reel, over a traction reel, and finally rewound on a

rewinding reel [2]. Recordings correspond to the traction of the

second reel’s angular speed. It contains 2.500 points sampled at

0.1𝑠 , corresponding to 250𝑠 . Functional near-infrared spectroscopy
(fNIRS) contains brain imaginary data recorded at 690𝑛𝑚 intensity.

There are 208.028 measurements. It contains four motion artifacts,

due to movements of the patient, which dominate MD [4]. 25 x
Synthetic (Hexagon/UCR):We took the first 25 TS from the Hexagon

challenge [3] and implanted, at random offsets, motif sets of sizes

𝑘 ∈ {5, . . . , 10} and length 𝑙 = 500 using a bell shape. We recorded

ground truth motif size 𝑘 and radius 𝑟 for each.

Setting parameters 𝑟 , 𝑙 , and 𝑘 : A direct comparison of 𝑘-Motiflets

to competitors is impossible, due to different parameterizations:

Competitors require motif length 𝑙 and radius 𝑟 , whereas𝑘-Motiflets

require length 𝑙 and the number 𝑘 of motif occurrences. Regarding

𝑙 , we used the known value, if a value was known (see Table 2), and

otherwise learn 𝑙 as described in Section 5.2. In any case, the value

of 𝑙 was the same for all methods in all experiments. In contrast, the

method for setting 𝑘 / 𝑟 are necessarily different each evaluation.

Hardware: All scalability experiments ran on a server running

LINUX with 2xIntel Xeon E5-2630v3 and 64GB RAM, using python

version 3.8.3. Reproducibility: To ensure reproducible results we

provide source codes and results on our website [9].

6.1 Quantitative Analysis
Wefirst compare the results of the approximate𝑘-Motiflet algorithm

to that of four state-of-the-art competitors using the six real TS.

For these comparisons we performed an unbiased computation of

extents and cardinalities of found motif sets at equivalent values

of 𝑟 (respectively 𝑑 = 2 · 𝑟 ) and 𝑘 . In this evaluation, we find an

MD method 𝑀1 better than an MD method 𝑀2, when 𝑀1 finds

larger motif sets at the same radius, smaller radii for the same

motif cardinality, or both. The meaningfulness of the motif sets as

found by different methods will be discussed in Section 6.2. We

first ran each competitor for increasing values of 𝑟 and counted the

cardinality 𝑘 and real extent of the found top motif sets, generating

pairs of (𝑘, 𝑟 ). We then ran 𝑘-Motiflets for increasing values of

𝑘 and measured the extent of the found top motif set(s). which

generates comparable pairs. Finally, we plotted the achieved extents

by growing cardinality for each method. A good method finds motif

sets with small extents even with increasing cardinalities, i.e. its

line would be rather flat (parallel to x-axis). Figure 8 shows that 𝑘-

Motiflets in this regard shows the best performance of all methods.
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Table 2: Properties of real world use cases.

Length Known Motifs Motif Length 𝑙 Range for 𝑘

Muscle Activation 29899 (30s) Activation and Recovery Known: ~ 120 ms 𝑘𝑠 = [2 . . . 20]
ECG Heartbeats 3000 (23s) Calibration and Heartbeats Known: ~ 0.8 − 1 s 𝑘𝑠 = [2 . . . 20]
EEG Sleep Data 269286 (45 min) Sleep Spindles and K-Complex Known: 1-6s and 30s 𝑘𝑠 = [2 . . . 20]
Ice Ice Baby 23095 (231s) Riff (20x) Known: ~ 4 s 𝑘𝑠 = [2 . . . 20]

Industrial Winding 2499 (250s) None Learned: 𝑙 ∈ {2, 3, . . . , 15} 𝑘𝑠 = [2 . . . 12]
fNIRS 208028 None Learned: 𝑙 ∈ {1000, 1200, · · · , 4000} 𝑘𝑠 = [2 . . . 20]

25 x Synthetic (Hexagon/UCR) 7500-15000 Implanted Motifs Known: 𝑙 = 500, 𝑘 = [5 . . . 10]
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Figure 8: Relationship between cardinality and extent of the
motifs. The curves of 𝑘-Motiflets are always below all com-
petitors, e.g., it returns the largestmotif setwith highest sim-
ilarity on all datasets by far.

For each value of 𝑘 in each data set, it finds a motif set that has

smaller than or at least equally small extent as all competitors; in

turn, for each possible extent, it finds a larger or at least equally

large motif set. Despite its distinct definitions, there is no clear

second place among the other competitors, and we saw a different

ranking on each of the use cases presented. Recall that Valmod

will return the Pair Motif for 𝑘 = 2. Thus, this experiment also

shows that the special case of the 2-Motiflets is equal to Pair Motif

discovery, as the results are always equal to those of Valmod for

𝑘 = 2.

6.2 Qualitative Analysis
In this section we discuss the quality of the discovered motif sets.

The purpose is to compare methods not only by the size and extent

of found motifs as in the previous section, but also to consider

whether these motifs are actually meaningful, i.e., correspond to

important events in the process producing the TS. We assume that

a method finds a motif set if the reported motifs overlap with the

ground truth.

Real-world datasets with Silver Standard Labels: The literature
mentions motifs for 4 of our 6 data sets. Yet, for none of them

the precise motif occurrences are annotated, but only their rough

shape and length. We used this information for creating a silver

standard by exploiting 𝑘-Motiflets unique ability learn meaningful

values for 𝑘 and 𝑙 (Section 5). Specifically, we learned values for

𝑘 and 𝑙 directly from the data, and compared the results with the

descriptions from the papers. In all cases, the two Top-2 motifs

corresponded very well to the descriptions. We compared the ability

of the other methods to recover the respective motifs. We provided

the competitors with proper values of 𝑟 and 𝑙 , derived from the

silver standard, but also with an added noise of −10% and +10% to

0 5 10 15 20

Seconds
−2.5

0.0

2.5

5.0

(a) Dataset: ECG Heartbeat
calibration heartbeats

0 5 10 15 20

Motiflets Top-1
SF Top-1 

SF Top-1 -10%
SF Top-1 +10%

EMMA Top-1 
EMMA Top-1 -10%

EMMA Top-1 +10%
VALMOD Top-1 

VALMOD Top-1 -10.0%
VALMOD Top-1 +10.0%

LM Top-1 
LM Top-1 -10%

LM Top-1 +10%

(b) Position of Top Motif Sets

(c) Shape of Optimal Motif Sets by Method

0.0 0.5 1.0

Seconds

Motiflets Top-1
k=16,d=81

0.0 0.5 1.0

Seconds

SF Top-1 
k=16,d=118

0.0 0.5 1.0

Seconds

EMMA Top-1 
k=16,d=277

0.0 0.5 1.0

Seconds

VALMOD Top-1 
k=14,d=77

0.0 0.5 1.0

Seconds

LM Top-1 
k=16,d=140

Figure 9: The ECG trace [23] contains twomotifs, starts with
6 calibration signals, followed by 16 heartbeats. For brevity,
we show heartbeat results. Our approximate 𝑘-Motiflets
identify all 𝑘 = 16 heartbeats. Only SF and LM find all occur-
rences of the heartbeats with optimal parameters, too, and
adding noise results in blurred or too small motifs.

reflect trial-and-error tuning. Note that in this setting our method

has to recovermeaningful motifs without any additional knowledge,

while competitors are provided with close to optimal input values.

Full results are shown on our webpage.

Ice Ice Baby by Vanilla Ice: This song contains one famous motif

set with 20 repetitions roughly 4s long from the introductory exam-

ple. Learning-k (Section 5) took 3.4s. Given these silver standard

parameters, all competitor methods find this riff but with up twice

as large extent. 𝑘-Motiflets is the only method to correctly find all

20 repeats of the riff. All other methods include other subsequences

into this motif, and with small noise added, this becomes worse.

ECG Heartbeats: This data set was used throughout this paper.

It contains two top motif sets, namely calibration and heartbeats

(Figure 9). We discuss only the top-1 motif, and our webpage shows

the full results [9]. Learn-l took 1.5s, and learn-k took 0.5s. Our

k-Motiflet algorithm then identified 16 heartbeats. Given silver

standard parameters, only SF and LM find the top-1 motif, too, and

accuracy depends heavily on the precise parameterization. EMMA

only returns a blurred calibration signal.
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Recovery (#20, 16%):

Trigger is off

Move is recovery

Gastroc is low

Vastus is low

Gluteus is low

Prep. foot contact (#20, 26%):

Trigger is off

Move is swing

Gastroc is low

C3 (#20, 21%):

Trigger is off

Move is swing

Gastroc is low

Vastus is low

Pre-Activation (#19, 7%):

Trigger is off

Move is swing

Gastroc is low

Gluteus is high

Swing (#20, 18%):

Trigger is off

Move is swing

Gastroc is low

Vastus is low

Gluteus is low

C5 (#18, 5%):

Trigger is off

Move is swing

Gastroc is low

Vastus is high

Gluteus is high

C7 (#20, 36%):

Trigger is off

Gastroc is low

Vastus is low

Gluteus is low

C8 (#20, 39%):

Trigger is on

Move is glide+push

Gastroc is high

Vastus is high

C9 (#20, 34%):

Trigger is on

Move is glide+push

Gastroc is high

Vastus is high

Gluteus is high

Push (#13, 3%):

Trigger is on

Move is glide+push

Gastroc is high

Vastus is high

Gluteus is very high

Push-GA (#14, 4%):

Trigger is on

Move is glide+push

Gastroc is very high

C12 (#21, 44%):

Trigger is on

Move is glide+push

Vastus is high

Active gliding (#22, 38%):

Trigger is on

Move is glide+push

Vastus is high

Gluteus is high

Push-VA (#15, 4%):

Trigger is on

Move is glide+push

Vastus is very high

Push-GM (#18, 5%):

Trigger is on

Move is glide+push

Gluteus is very high

Fig. 15 TSKR representation of coincidences: Lattice of margin-closed Chords for Skating data

(a)Phrase explaining most observed movement cycles. Chords (e.g.
Push Gluteus) can be expanded to show the coinciding Tones. Tones
(e.g. Gluteus is very high) are obtained from the numerical sensor
time series.

(b) One instance of the largest
Allen pattern. The 10 intervals are
connected with 45 pairwise rela-
tions.

Fig. 16 Patterns found in inline skating data

Chords and provides details on the successive activation of the three major leg
muscles.

The pruning by margin-closedness largely reduced the number of patterns
so they could easily be analyzed manually to trade off pattern size vs. pat-
tern frequency. We analyzed the search space of Chords in dependence of the
parameters to quantify the pruning effects. In Fig. 18 the number of Chords
found is shown on the left for different values of the parameter α determining
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Fig. 15 TSKR representation of coincidences: Lattice of margin-closed Chords for Skating data

(a)Phrase explaining most observed movement cycles. Chords (e.g.
Push Gluteus) can be expanded to show the coinciding Tones. Tones
(e.g. Gluteus is very high) are obtained from the numerical sensor
time series.

(b) One instance of the largest
Allen pattern. The 10 intervals are
connected with 45 pairwise rela-
tions.

Fig. 16 Patterns found in inline skating data

Chords and provides details on the successive activation of the three major leg
muscles.

The pruning by margin-closedness largely reduced the number of patterns
so they could easily be analyzed manually to trade off pattern size vs. pat-
tern frequency. We analyzed the search space of Chords in dependence of the
parameters to quantify the pruning effects. In Fig. 18 the number of Chords
found is shown on the left for different values of the parameter α determining

Activation and Recovery
of gluteus muscle

Figure 10: Top-2 motif sets for Muscle Activation [19]. The
top-1 motif set found by the approximate 𝑘-Motiflets alg.
corresponds to the activation phase and the top-2 motif to
the recovery phase. All methods find the activation phase,
but with up to 100% larger extent. Valmod and LM found the
recovery phase, again with up to 100% larger extent.

Muscle Activation: The two top motifs present in this dataset are

the activation (top-1) and the recovery phase (top-2) of the Glu-

teus Maximus muscle and have 13 and 12 occurrences, respectively.

Learn-l took 5.0s and learn-k took 3.9s. Given silver standard pa-

rameters, all competitor methods find the activation phase, e.g. the

found motif set overlaps with the actual motifs, but with up to 100%

larger extent. 𝑘-Motiflets and VALMOD are the only to identify

both the activation phase as top-1 motif and recovery phase as top-2

motif but their extent 𝑑 = 794 is at least 75% larger than that of 𝑘-

Motiflets (𝑑 = 592). The other methods identify the activation phase

either as top-1 and top-2 motif. With small noise added, SF and

EMMA stay locked on the activation phase, VALMOD alternates

between both motifs.

Semi-Synthetic Data Sets with Gold Standard Labels: To measure

the precision of the different MD methods we generated a semi-

synthetic 25 dataset benchmark from [3] with implanted motif sets.

For each method, we used the gold standard parameters as inputs,

i.e. the size 𝑘 for 𝑘-Motiflets or the radius of the implanted motif set

𝑟 for the competitors. Figure 11 shows the results as (a) precision,

measured as overlap of reported methods with actual positions,

and (b) the ratio of size of the result to the size of the implanted

motif. Left: using only the size of the motif set, 𝑘-Motiflets have a

precision of 100% on all but 3 datasets. Yet, even with exact range 𝑟

the competitors struggle to find the implanted motif set. The best

competitors are SF and EMMA with far inferior median precision

around 75%. Right: Note, that SF and EMMA report far larger motif

sets for some datasets. The reason is the same as for 𝑘-Motiflets to

fail on three datasets: there is a motif set present in the datasets
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Figure 11: 25 semi-synthetic datasets with ground truth: Pre-
cision (left) and size (right) of the found motif sets by MD
method. 𝑘-Motiflets performs best.
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Figure 12: Runtime of the approximate vs. exact algorithms
withmotif length 𝑙 = 100. Left: as a function of the TS length
𝑛, with fixed cardinality 𝑘 = 5. Right: as a function of 𝑘 with
fixed TS length 𝑛 = 10000. Both scale quadratic in 𝑛 but the
exact algorithm is exponential in 𝑘 .

of the same or larger size 𝑘 ′ as the implanted size 𝑘 , but with a

smaller overall radius 𝑟 ′ as the implanted radius 𝑟 , and we have an

arguably wrong gold standard. Thus, this present motif set hides the

implanted motif set for 𝑘-Motiflets and leads to higher reports for SF

and EMMA. Implanting motif sets with a guaranteed gold standard

itself is a non-trivial problem, which we will address in future work.

k-Motiflets outperform its competitors, as the hypersphere defined

by SotA (compare Figure 1 and Figure 3) is always overestimating

the actual hypersphere of the TOP motif set. E.g. the query radius

around existing sequences is up to twice as large as needed by

k-Motiflets, returning many false positives.

6.3 Runtimes and exact k-Motiflets
In the previous section, we evaluated the quality of the approximate

𝑘-Motiflet algorithm compared to four state-of-the-art MDmethods.

We did, however, not yet consider the exact 𝑘-Motiflet algorithm,

because (a) its runtime is exponential in the size of the motif set

and thus probably infeasible for larger values of 𝑘 , and (b) we did

not expect the motif sets found by the approximate version to be

much worse than that found by the exact version. In this section, we

experimentally verify both of these assumptions and subsequently

also compare their runtimes to that of all competitors.

Scalability of approximate and exact 𝑘-Motiflet algorithms: We first

study the scalability of the approximate and the exact 𝑘-Motiflet

algorithm regarding the length 𝑛 of a TS and the cardinality 𝑘 of

the motif sets. To this end, we use the largest TS from our data sets

(fNIRS), encompassing 𝑛 = 269.286 time points.
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Figure 14: Quality as a ratio of the extents of the top-1 mo-
tif sets of the approximate to the exact algorithm. Left: Box-
plot over ratio as a function of 𝑘 ∈ [2, ..., 9] with 𝑛 = 10000.
Right: Boxplot over fractions of the full length n, 𝑛′ ∈
[1/8%, 1/7%, . . . , 100%] with fixed cardinality 𝑘 = 5.

Figure 12 (left) shows runtimes with growing TS length 𝑛, mea-

sured with fixed 𝑘 = 5. Interestingly, the runtimes of both meth-

ods are almost equal, resulting in 11 minutes for the full TS. Fig-

ure 12 (right) shows runtimes for growing values of 𝑘 at a fixed

length 𝑛 = 10.000. Exact and approximate algorithms differ ex-

tremely for values of 𝑘 > 7, where the exponential complexity of

the exact version results in a steep increase of the runtime. For

instance, the runtime for 𝑘 = 7 is 4 seconds, 5.7 minutes for 𝑘 = 8,

and already close to 12 days for 𝑘 = 9. Thus, the exact algorithm

becomes untraceable for larger 𝑘 , even with the admissible prun-

ing we implemented. In contrast, the runtime of the approximate

algorithm remains below 2 minutes even for 𝑘 = 30. We further

plot the runtimes of the learn-k algorithm from Section 5.1. The

runtime overhead introduced by learn-k is around a factor of 2-3,

i.e. the runtime is 4.56s vs 12.5s at motif sets of size 𝑘 = 30.

Quality of approximation: We next studied the difference in results

produced by the approximate and the exact 𝑘-Motiflet algorithms,

depending on the length of a TS and on the chosen value of 𝑘 .

We first ran both algorithms on a growing prefix of all datasets

for a fixed value 𝑘 = 5 and measured the ratio of the extents of

the approximate to the exact solution over 𝑛 (i.e,. higher values

mean that the approximate version is closer to the optimal solution).

Results are shown in the box-plot in Figure 14 (right). For some

datasets when varying𝑘 , the approximate and exact solution always

returned the same motifs, such as for heartbeats, window and EEG

Figure 14 (left). Overall, we observed that the ratio is consistently

over 91% for varying 𝑘 , and 89% for varying 𝑛. This means that

the approximate version finds motif sets close to the same extent

as the exact algorithm. We performed an in-depth analysis of the

differences of results between the two methods. Interestingly, we

found that they mostly come from cases where the parameter 𝑘

was set smaller than the actual number of motif occurrences, which

lead to the two methods finding different subsets of the same motif,

which in turn led to slightly different extents. If the motif had e.g.

8 occurrences, and we require 𝑘 = 4 occurrences, the approximate

solution might find other 4 (of the 8) subsequences than the exact

solution. When we move to the full frequency 𝑘 = 8, however,

differences in extent faded away.

Runtime of competitors: Finally, we compared the scalability of the

approximate 𝑘-motiflet algorithm to its four competitors using the

(largest) fNIRS dataset. For a fair comparison given different input

parameters, we first set 𝑘 = 5, determined the extent of the top mo-

tif set as found by 𝑘-Motiflets, and used the corresponding radius

as input for all competitors. We emphasize that the runtimes never-

theless are difficult to compare as the implementations use different

languages (Java versus Python) and also show different efforts for

runtime optimization. Under these circumstances, Figure 13 shows

that our implementation of 𝑘-Motiflets is faster than all competitor

implementations we tested (despite being programmed in Python),

though the differences to all methods except EMMA are rather

small (less than factor 2).

7 CONCLUSION
Often the first step in analyzing unlabelled TS is motif discovery,

used to derive hypotheses from the data based on similar, frequent

subsequences. However, existing tools for MD show a high variance

in the discovered motifs depending on the given input parameter.

If these parameters are set incorrectly this leads to the discovery of

pure noise. In this paper, we presented a novel definition for motif

set discovery, named𝑘-Motiflets, which are the sets of subsequences

with exactly 𝑘 approximate repeats and highest similarity in a

given TS. We argued that the value of 𝑘 is much easier to set by

a user than the usually used parameter 𝑟 , which is the maximal

similarity of a motif set. We presented an approximate and an exact

algorithm for finding 𝑘-Motiflets and proved that the former is a

2-approximation of the latter, which has exponential runtime in 𝑘 .

We also presented two algorithms along with our 𝑘-Motiflets for

automatically learning appropriate values for 𝑙 and 𝑘 without any

a-priori knowledge of the motifs. By qualitative and quantitative

evaluation on six real-world and 25 semi-synthetic use cases, we

showed that the approximate algorithm produces better motifs than

all its competitors at lower runtimes, and that its results come very

close to the exact algorithm despite an exponentially lower runtime.

Future work will consider variable length or multivariate motif

discovery. We envision new and better elbow detection methods

in the case of time series where no motif set is present, violating

our assumptions, and also addressing the blind spot of k-Motiflets

detecting distinct motif sets of the same size.
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