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ABSTRACT

There have been many decades of work on optimizing query pro-
cessing in database management systems. Recently, modern ma-
chine learning (ML), and specifically reinforcement learning (RL),
has gained increased attention as a means to develop a query op-
timizer (QO). In this work, we take a closer look at two recent
state-of-the-art (SOTA) RL-based QO methods to better understand
their behavior. We find that these RL-based methods do not general-
ize as well as it seems at first glance. Thus, we ask a simple question:
How do SOTA RL-based QOs compare to a simple, modern, adaptive
query processing approach? To answer this question, we choose
two simple adaptive query processing techniques and implemented
them in PostgreSQL. The first adapts an individual join operation
on-the-fly and switches between a Nested Loop Join algorithm and
a Hash Join algorithm to avoid sub-optimal join algorithm decisions.
The second is a technique called Lookahead Information Passing
(LIP), in which adaptive semijoin techniques are used to make a
pipeline of join operations execute efficiently. To our surprise, we
find that this simple adaptive query processing approach is not only
competitive to the SOTA RL-based approaches but, in some cases,
outperforms the RL-based approaches. The adaptive approach is
also appealing because it does not require an expensive training
step, and it is fully interpretable compared to the RL-based QO ap-
proaches. Further, the adaptive method works across complex query
constructs that RL-based QO methods currently cannot optimize.
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1 INTRODUCTION

Query optimizers (QOs) are performance-critical components of
database management systems (DBMS) as they pick efficient phys-
ical query plans for input declarative queries. At the same time,
QOs are notoriously hard to develop, fine-tune, and maintain. As
a result, machine learning (ML) has been explored as a means to
either improve the performance of an existing QO or to shorten the
effort required to develop a new QO [44, 45, 57].

However, learned query optimizers have several potential draw-
backs. From the perspective of a query optimizer developer, before
applying a new method to the query optimizer, they need to un-
derstand two critical questions: 1) where does the improvement
come from, and 2) when could the learned optimizer fail. As with all
ML-based software, these two questions are difficult to answer for
learned query optimizers. First, ML models have a black-box nature;
their decisions and performance for different inputs are hard to
explain. Second, learned QOs may overfit to the data and scenarios
used during training, thus, exhibiting weak robustness to workload
variations. This is a classic problem with ML-based software, and
while recent works attempt to resolve it using methods such as
transfer learning, it remains challenging. Finally, current learned
QOs have focused mainly on non-complex query structures and it
is unclear if they can generalize to complex SQL structures such as
common table expressions (CTEs). Due to the above challenges, to
the best of our knowledge, to date, no mainstream database engine
(commercial or open source) has adopted a learned QO approach,
which may indicate that there may be some way to go before learned
query optimizers go mainstream. However, a learned QO is not the
only approach that aims for intelligent query processing.

Adaptive query processing is a different popular approach to
efficient query processing. There is a rich body of work here, as
these techniques have been studied by the database community
for decades (e.g., [11, 19, 24, 25, 28, 33, 35, 37, 59]). An adaptive
approach to query processing aims to use runtime methods to adjust
the query processing steps to achieve high performance. In contrast
to a learned QO approach, an adaptive query processing approach
does not intrinsically overfit to any workload since there is no
static training step. Moreover, adaptive query processing techniques
have already been adopted by several DBMS products, including
Oracle [15], SQL Server [56], Spark SQL [52], and SQLite [29].

An interesting observation is that philosophically there is a key
similarity between a reinforcement learning (RL) based optimizer
and adaptive query processing. Compared with a traditional QO, a
learned QO utilizes neural network-based models that are trained
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on latency observations over static training workloads to 1) refine
cost estimation and 2) predict a join order and configuration of
physical operators that will minimize the processing time of a query.
In an adaptive query processing engine, such cost estimations are
replaced with more accurate runtime statistics. These statistics are
then used to optimize both joins [59] and physical operators [19].
Effectively, both RL and adaptive query processing methods refine
the traditional cost estimations to pick a more efficient plan. The
adaptive approach performs the refinement using runtime statistics,
whereas an RL-based QO uses a pre-trained model. Given this
observation of their similarity, we ask the central question of the
paper: How do learned query optimizers to efficient query processing
compare to an adaptive query processing approach?

First, we analyze a state-of-the-art (SOTA) learned QO to obtain
a better understanding of the key facts that lead to better query per-
formance and its proneness to overfitting. To this end, we conduct
an ablation study on the two optimization aspects that RL-based
query optimization considers: 1) join order selection, and 2) phys-
ical operator selection for each join. We use Balsa [57], a leading
RL-based QO that considers the entire optimization space of join
orders and physical operators, to perform this study. We find that
the join orders selected by Balsa contribute more towards improved
performance, making join order selection a critical contribution of
Balsa. Moreover, we find that these performance gains are greater
for queries that have the same structural pattern as the queries in
the training set. For queries with patterns that are not present in the
training set, we find that using the plans generated by the learned
QO may even lead to lower performance. Our evaluation highlights
the importance of join order selection for improved performance,
but it also highlights that the RL-based QO does not generalize ef-
fectively. Interestingly, adaptive query processing methods support
a contrary view. They have shown that even in the presence of
bad join orders, one can achieve efficient query execution times for
equijoin queries [59].

To answer the central question of how RL-based query optimiz-
ers compare with adaptive query processing, we implement two
representative adaptive processing techniques in PostgreSQL and
evaluate them against two state-of-the-art learned query optimiz-
ers, Balsa [57] and Bao [44]. PostgreSQL was chosen as the platform
for this comparison because it has been widely used in previous
research on learned query optimization. These two adaptive pro-
cessing techniques are well-established adaptive query processing
techniques that are easy to implement and maintain, and have
been widely used in industrial database systems [15, 29, 56]. Like
RL-based query optimizers, these two techniques tackle two key
aspects of adaptation: 1) adapting query processing to mitigate
the impact of bad join orders, and 2) picking a performant join
algorithm at runtime.

For the first aspect, we use a simple adaptive mechanism called
Lookahead Information Passing (LIP) [59]. LIP generalizes semijoin
techniques to optimize the pipeline of equijoin operations. It uses
bloom filters to implement semijoins and uses an adaptive technique
to order the filters at runtime. The adaptive ordering of the bloom
filters results in the bloom filter sequence matching the optimal
join order, and in practice, a bad query plan with LIP often has a
performance that is similar to the performance of a query plan with
an optimal join order [48, 59].
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Figure 1: A simple adaptive query processing (LIP+AJA) ap-
proach vs. two learned query optimizers (Balsa and Bao).

The second adaptive method is another simple approach, which
is to simply pick the join algorithm at runtime to avoid common
sub-optimal choices. An adaptive join algorithm (AJA) checks at
runtime if a hash join algorithm should be switched to a nested
loop join algorithm instead. Commercial systems often implement
such adaptations. For example, this method has been used in SQL
Server for many years [2, 56].

Our key finding is that with these two adaptive query processing
techniques (LIP+AJA), query execution time is not only comparable
to learned QOs (Balsa and Bao), but in many cases, LIP+AJA even
outperforms the learned QOs in reducing the query run time. Fig-
ure 1 highlights a key result: Following the approach of Balsa [57],
we derive two workloads from the join order benchmark (JOB) [41]:
1) JOB-Rand and 2) JOB-Slow. JOB-Rand workload tests the perfor-
mance of learned QOs and LIP+AJA on randomly selected queries.
It consists of 19 randomly selected queries in the test set, while
the rest 94 JOB queries are used to train the learned QOs. As for
JOB-Slow, it is designed to test learned QOs and LIP+AJA on the
slowest queries in terms of PostgreSQL run time. JOB-Slow reserves
the 19 slowest queries as the test set, and the remaining ones are
considered as training queries.

Figure 1 shows that on the JOB-Rand workload, using the adap-
tive query processing (LIP+AJA) approach results in performance
that matches Balsa and outperforms Bao. On the JOB-Slow work-
load, the adaptive LIP+AJA approach outperforms Balsa and Bao:
LIP+AJFA improves PostgreSQL by 2.0x, while Balsa and Bao im-
prove PostgreSQL by 1.4x (additional details are presented in Sec-
tion 6.2). Further, the adaptive approach with LIP+AJA also works
with CTEs, which the learned QO methods have not been able to
tackle so far. An additional advantage of the adaptive approach is
that it does not require any expensive training/re-training step.

The key contributions of this paper are:

e We experimentally analyze a recent SOTA learned query
optimizer, Balsa, and show that the learned QO-based ap-
proach may have key limitations related to generalization.
We propose using a simple adaptive query processing ap-
proach (LIP+AJA) with two key techniques: Lookahead In-
formation Passing (LIP) and Adaptive Join Algorithm (AJA).
Like learned QOs, LIP+AJA tackles two orthogonal aspects
that can lead to higher query performance: equijoin order
selection, and the choices of physical equijoin algorithms.



Although the two techniques LIP and AJA have been sepa-
rately proposed before, we combine these two techniques
in a unified adaptive query processing framework.

We evaluate the LIP+AJA approach on the commonly used
JOB [41] and Stack [44] benchmark queries. We show that
this approach speeds up the JOB and Stack queries signif-
icantly and, in many cases, is better than what Balsa and
Bao can achieve.

We demonstrate the versatility of the LIP+AJA approach
by applying it to six TPC-H queries that contain CTEs.
A speedup of 1.4x was observed in this workload, which
learned QOs have not been able to tackle to-date.

2 BACKGROUND

This section introduces the necessary background and the termi-
nologies that are used throughout the paper.

2.1 Query Optimization

There are two critical optimization dimensions considered by most
query optimizers: 1) join order, and 2) physical operators. Both
dimensions largely affect the execution latency of the query plans.
Join Order. In a query plan with multiple equijoins (the focus
of this paper and also the focus of previous work on ML-based
QO), the join order defines the order of relations in which the
equijoins are performed. A good join order starts with the join
operation that prunes most of the data and minimizes the data
that is passed to subsequent joins. While optimizing the join order
is critical to the efficiency of a query plan, obtaining a good join
order is challenging given the large exponential search space and
inaccurate cost estimation models [41].

Physical Operators. In a physical plan, the physical operators de-
fine the algorithm that is used to perform the logical operations. In
this paper, we only consider the two important operators, namely
scan and equijoin. There are two commonly supported physical op-
erators for the scan operation: 1) index scan, and 2) sequential scan.
An index scan can be more efficient when a large number of records
are eliminated by the selection criteria on the indexed attribute,
otherwise, a sequential scan is more efficient. Three algorithms are
commonly used for the equijoin operation: 1) hash join, 2) nested
loop join, and 3) merge join. Hash join can be more efficient for
large relations; nested loop join can be a better choice for small
relations; merge join can outperform the other two when the two
input relations are sorted on the join key. The choice of physical
operators is also critical when assembling an efficient query plan.
Cost Models. The goal of a query optimizer is to select a plan that
minimizes the execution cost. Since the real execution cost cannot
be retrieved upfront, a query optimizer uses a cost model to make
an estimate, and use a search algorithm to identify which choice of
join order and physical join algorithms will minimize the query cost
given the cost model [50]. However, the cost model often provides
weak estimates of the true cost of a query plan due to inaccurate
cardinality estimates, especially for intermediate results [41]. This
phenomenon is especially true when there are data correlations
and/or dependencies in the underlying database. Thus, even an
exhaustive exploration of the plan search space (using dynamic
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programming [8, 50]) can produce a suboptimal query plan with a
high execution cost.

2.2 Reinforcement Learning in QO

Reinforcement Learning (RL) has recently become a popular founda-
tion for proposals that aim to rethink query optimizers [44, 45, 57].
In this paper, we focus on two SOTA RL-based query optimizers:
Balsa [57] and Bao [44].

In Balsa, states correspond to partial plans, and actions corre-
spond to steps in building a query plan. An RL-based optimizer
generates query plans in a bottom-up fashion: it starts with a sin-
gle scan node and builds plans by adding new joins to the current
node, constructing partial plans, until there are no tables that can be
added to the join. For example, consider a query that needs to join
the tables {A, B, C}. The RL-based optimizer starts by considering
performing a single scan over one of the tables A, B, or C. Given a
chosen table, the next possible actions correspond to joining this
table with one of the other tables. For example, if Table A is chosen
first, the next actions can be A b4 B or A 1 C. The search proceeds
in an iterative manner until the desired join conditions are met.

At the core of Balsa lies a cost model powered by a neural net-
work (NN). The input of the NN is a (partial) physical query plan
with information on both the join order and the physical operators.
Given this input, the NN outputs a real number that estimates the
overall minimum query latency corresponding to the plan [57]. At
each step during the search, partial plans are given to the learned
cost model, and the cheapest partial plan is kept for further search-
ing. The NN-based cost model is trained on collected true query
latencies by executing physical query plans in the underlying DBMS.
During training, at each iteration, the RL-based optimizer first gen-
erates plans for training queries with the current cost model. The
generated plans are then fed into the DBMS execution engine to
retrieve the true execution cost. Finally, the NN-based cost model
is re-trained/updated using the plans and their corresponding exe-
cution costs. RL-based query optimizers also balance exploitation
(selecting the min-cost plan) and exploration (selecting an unseen
plan) to learn a more accurate cost model.

As for Bao, although Bao also adopts an NN-based cost model
that predicts the performance of query plans, the action space of
Bao is restricted by a limited set of hints that steer the underlying
query optimizer. These hints specify the usage of a combination of
different join operators (hash, merge, and nested loop joins) and
scan operators (sequential, index, and index-only scans) [4]. Bao
predicts hints of physical operators for a given query and relies
on the underlying query optimizer to select the join order. Given a
query, Bao first builds query plans for each of the hints by passing
the query with hints to the underlying query optimizer, and then
uses the NN-based cost model to select a plan to execute. The
training loop for Bao is similar to that of Balsa: it uses the actual
execution cost of the query plan as the training ground truth, and
it also strikes a balance between exploitation and exploration.

3 ANALYZING LEARNED QUERY OPTIMIZERS

Given a declarative query, the optimization space considered by
learned query optimizers is 1) the order in which joins are evaluated
and 2) the physical operators. To better understand the individual



Table 1: Test query sets from JOB, Stack, and TPC-H.

# of avg. # min. # max. #

queries ofjoin ofjoin of join

JOB-Join-1 23 4 3 4
JOB-Join-2 18 6 5 6
JOB-Join-3 21 7 7 7
JOB-Join-4 21 8 7 8
JOB-Join-5 21 11 10 11
JOB-Join-6 9 14 13 16
JOB-Rand 19 7 4 11
JOB-Slow 19 7 4 11
JOB-Rand-CV 19 %5 - - -
Stack-Join-1 1,172 3 3 3
Stack-Join-2 1,108 5 5 5
Stack-Join-3 2,409 6 6 6
Stack-Join-4 1,202 7 7 7
Stack-Join-5 100 8 8 8
Stack-Join-6 200 10 10 11
Stack-Rand 1,238 6 3 11
Stack-Slow 1,238 6 3 11
Stack-Rand-CV | 1,238 X 5 - - -
TPC-H-Complex 6 4 3 8

impact of these two dimensions, we conduct an ablation study on
the predictions of the learned query optimizer. For learned query
optimizers, these optimization decisions can be made either directly
(Balsa) or indirectly through hints provided to the underlying opti-
mizer (Bao). Since Bao only focuses on steering hints for physical
operators and relies on the underlying query optimizer for join
orders, we choose to use Balsa for our study in this section as it
covers the entire optimization space.

3.1 Where do the Improvements Come from?

Balsa jointly predicts join orders and physical operators, and both
predictions contribute to better query plans. To uncover the individ-
ual contributions of these dimensions, we perform an ablation study
over each dimension by considering the following configurations:
(1) We consider using the exact query plan generated by Balsa,
i.e., we use both the predicted join order and the physical
operators in the generated plan; we refer to this configuration
as Balsa in the figures and the discussions that follow.
We consider using only the join order that is predicted by
Balsa, and couple that decision with the physical join algo-
rithms that are chosen by the original PostgreSQL optimizer;
we refer to this configuration as Balsa-JO.

Our hypothesis is that if Balsa-JO is as good as Balsa, then the
join order selection contributes more to the performance gains.
Otherwise, picking the join algorithm is the more critical decision.
Benchmarks and Metrics. We evaluate Balsa on two workloads: 1)
JOB [41] and 2) Stack [44]. We follow the analysis setup presented
in the Balsa work [57] and consider two train-test splits of each
workload: 1) randomly selected queries as the test set, and 2) the
slowest queries (in terms of PostgreSQL run times) as the test set.
Specifically, for JOB, we use JOB-Rand and JOB-Slow as described
in Section 1. As for Stack, we create two similar train-test splits: 1)

@
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Stack-Rand and 2) Stack-Slow. In Stack-Rand, we randomly select
1,238 queries added to the test set and use the remaining ones as
training queries. For Stack-Slow, we use the slowest 1,238 queries in
PostgreSQL as the test queries, and the remaining queries are used
to train the learned QOs. Table 1 summarizes these four workloads
(along with other workloads introduced later in Section 6).

Given that different initialization of the Balsa model can result in
diverse workload performance, we conduct five independent train-
ing of Balsa using distinct random initialization. In the following
experiments, we report the mean workload run times of the five
different predicted query plan sets, along with the standard errors
of the mean workload run times.

Training Setups. Similar to [57], we use Balsa with PostgreSQL as
our test framework. We explore four configurations:

o Balsa-overfit. In this setup, all queries in the workload (all
113 queries in the JOB benchmark [41], or all 6,191 queries
in the Stack benchmark [44]) are added to the training set.
We use the trained model to predict the plans (both physical
join algorithms and join orders) for the queries in the test
set. With this setup, we seek to evaluate Balsa’s memoriza-
tion performance and the best-case improvements that it
can provide for fixed query workloads.

Balsa-overfit-JO. In this setup, we use the same model
as Balsa-overfit, i.e., a model trained on all queries, but we
only consider the predicted join order. Then, we use the
PostgreSQL optimizer to select the join algorithms. This
configuration allows us to understand the contribution of
the join order in isolation.

Balsa. This setup is the original Balsa configuration. The
model is trained only on the training portions of the JOB-
Rand and the JOB-Slow workloads.

Balsa-JO. This configuration uses the learned Balsa model
obtained by the previous configuration but, again, we only
consider the predicted join order provided by Balsa and use
the PostgreSQL optimizer to select the join algorithms.

For all settings of Balsa, we limit the wall-clock time to 10 hours
(including training, planning, and execution) for all JOB train-test
splits, and 100 hours for all Stack train-test splits. We use the model
after the last iteration to predict the query plans. We choose this
cutoff time as it matches the one used in the Balsa paper [57]; we
also use the implementation provided by the authors [5].
Results. The results on the four workloads (JOB-Rand, JOB-Slow,
Stack-Rand, and Stack-Slow) are shown in Figure 2. For JOB-Rand
(Figure 2a), Balsa-overfit improves the workload execution time
over PostgreSQL by 2.5 (15.6s saved) when the tested queries are
also present in the training set. If we only apply the join orders
predicted, Balsa-overfit-JO yields a comparable speedup of 2.1x
(12.2s saved) over PostgreSQL. This result highlights that when the
queries are in the training set, the join order predicted by Balsa’s
RL model is the critical decision that improves execution time.

When trained and tested on different queries, Balsa has a speedup
of 1.5x% (8.6s saved). As expected, the improvement is lower than
that of Balsa-overfit. If we only use the join orders generated by the
learned model, i.e., we use the Balsa-JO configuration, we observe
similar average runtime as the original PostgreSQL , and with larger
standard errors. In addition, the performance gap between the Balsa
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Figure 2: Performance comparisons of Balsa when all queries
are used for training (Balsa-overfit) and when only the join
order prediction is considered (JO).

and the Balsa-JO configurations is not statistically significant as
the standard error intervals overlap, which aligns with our observa-
tion that join orders contribute to performance improvement. Our
findings are similar for JOB-Slow, Stack-Rand, and Stack-Slow as
shown in Figure 2b, 2¢, and 2d.

Takeaways. Our analysis reveals that the join order decision plays
a more significant role in performance improvements. The per-
formance difference between utilizing both join order and join
algorithm decisions and relying only on join order selection is not
statistically significant. In addition, given that Balsa-JO has a larger
standard error compared with Balsa and they share the same join
orders, we conclude that Balsa predicts join orders that are closely
tied with some specific join algorithms to have better run times,
which the PostgreSQL query optimizer is not capable of predicting.

3.2 How Generalizable is a Learned QO?

Next, we turn our attention to the generalization properties of Balsa.
From the results in Section 3.1, we know that Balsa generates good
plans in many cases. However, since both the JOB and Stack queries
are built from underlying query templates [41, 44], the training sets
in the JOB-Rand, JOB-Slow, Stack-Rand, and Stack-Slow workloads
have underlying structural similarities. Thus, the results described
in Section 3.1 do not fully characterize how Balsa performs on
completely “new” queries, especially queries with new join patterns.
Such generalization is important in practice, especially when the
workload changes frequently. To this end, we experimentally study
how Balsa generalizes to new join patterns.

Benchmark and Training Setup. To evaluate the generalization
of Balsa to unseen join patterns, we split the queries in the JOB and
Stack benchmarks into six groups with increasing number of joins
in the query groups. These groups are denoted as JOB-Join-1 to
JOB-Join-6 for the JOB benchmark, and Stack-Join-1 to Stack-Join-6
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Figure 3: Balsa on queries with different numbers of joins.

for the Stack benchmark in Table 1. JOB-Join-1 and Stack-Join-1
have the least number of joins, while JOB-Join-6 and Stack-Join-6
with the most join operations. We perform a cross-validation using
the six groups of queries. In each fold, we hold out the selected
test query group, and train Balsa on the remaining JOB or Stack
benchmark queries. Below, we also report Balsa-overfit, which is
trained on all the queries in the benchmarks (Section 3.1).
Results. The results for JOB and Stack benchmarks are shown in
Figure 3. On JOB benchmark (Figure 3a), Balsa-overfit improves
query performance from 1.1x (JOB-Join-4) to 3.0x (JOB-Join-6)
compared to PostgreSQL. However, when Balsa is used to optimize
queries with join patterns that are not in the training set, it is un-
able to improve query performance. We find that the query plans
generated by Balsa yield worse run times compared to vanilla Post-
greSQL(compare the blue and red bars). For the Stack benchmark
shown in Figure 3b, Balsa-overfit constantly surpasses PostgreSQL,
while Balsa cannot produce query plans with better run time since
the join patterns are not seen in the training set.

Takeaway. We show that for queries with join patterns not in the
training set, the plans generated by Balsa lead to worse execution
time than the plans created by the original PostgreSQL optimizer.

4 ADAPTIVE QUERY PROCESSING

Adaptive query processing takes an approach in which rather than
assuming that a query plan generated by a query optimizer is opti-
mal, it optimizes select aspects of the query processing pipeline by
leveraging runtime measurements and pipeline characteristics.
Adaptive query processing and RL-based optimizers share a sim-
ilar “objective”: minimize the processing cost for join and physical
operators. In contrast to an RL-based QO, which uses a pre-trained
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Figure 4: Overview of adaptive query processing with LIP+AJA.

cost model to estimate plan costs, adaptive query processing op-
timizes joins and physical operators using statistics collected at
runtime. Since adaptive query processing is not trained, it is intrin-
sically not overfitting to any query pattern or data set.

While there are a large number of adaptive query processing
techniques in the community (e.g., [2, 21, 26, 33, 38]), in this paper,
we take a relatively simple approach and pick two techniques to
build a rudimentary adaptive query processing framework. Our
goal is not to build and evaluate a comprehensive adaptive query
processing framework (that is an orthogonal research topic), but to
show how a simple adaptive framework compared to learning-based
QO approaches. The simple adaptive query processing framework
that we consider in this paper combines two existing adaptive
mechanisms: Lookahead Information Passing (LIP) and Adaptive
Join Algorithm (AJA).

4.1 The LIP+AJA Adaptive Framework

Figure 4 shows an overview of our proposed LIP+AJA framework.
This framework takes a physical query plan as input and optimizes
the execution of that plan. The input is a plan that can be generated
by any query optimizer (learned or not). For all experiments, we
use the PostgreSQL optimized plans as input to our adaptive frame-
work, except for the experiments discussed in Section 6.3 where
LIP+AJA uses plans that are generated by Balsa and Bao, and for
the experiment discussed in Section 6.4 where random plans are
fed into LIP+AJA.

For a given execution plan, LIP+AJA first uses LIP to rewrite the
execution plan by injecting bloom filters in the equijoin portion
of the pipeline. Next, it replaces all physical join operators with
adaptive join operators (AJA). Finally, it executes the rewritten plan
using an adaptive execution strategy.

LIP generalizes the well-known semijoin technique to optimize
an equijoin pipeline [59]. The main idea behind LIP is that a good
join order applies the most selective join operation first, reducing
tuples that are passed to subsequent join operations. Likewise,
LIP uses lookahead bloom filters [59] to push down the selection
predicates in the equijoin pipeline, making the query execution not
sensitive to the join orders [59].
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Specifically, during planning, for each selection predicate o; on
T; in the query plan, LIP examines whether there are tables T; that
equijoin with T; on attribute a;; in the “lower levels" of the query
plan. If such T; tables exist, then a lookahead bloom filter ogF, is
planned to push down o; to T;. During execution, the bloom filter
oBF, is built by scanning 0;(T;) and adding the set of join keys
a;j to opF,. Later when the DBMS execution engine is processing
the join on Tj, each join key a;; in T; is tested for membership in
ogF,. If there are multiple bloom filters ogf, s on the same table, LIP
has an adaptive reordering mechanism of the bloom filters based
on the collected runtime statistics [59]. This adaptive reordering
mechanism makes the bloom filter probing order converge to the
optimal join order over time. For further details about LIP, we refer
the reader to [29, 48, 59].

In our adaptive query processing framework, all joins are exe-
cuted using an adaptive join algorithm (AJA) that selects the join
algorithm on-the-fly to avoid a bad join algorithm selection. AJA
starts the join operation using a hash join algorithm by default,
and if the number of keys inserted in the hash table is smaller
than a threshold T, AJA switches to a faster nested loop join algo-
rithm [2, 56].

There are two strategies of nested loop join algorithms that
AJA considers: 1) simple (naive) nested loop join, and 2) index
nested loop join [30]. Compared to simple nested loop join, index
nested loop join algorithm utilizes the index built on the inner table
join key to avoid exhaustive scanning of the inner table. Given
the different complexity of the two nested loop join algorithms,
we apply two different values of the threshold T (T = V;,4 or
T = Vy,onina) depending on the index availability on the inner side
join key. If an index is available on the inner table join key and
the built hash table is smaller than the threshold T = V;,4, AJA
switches to an index nested loop join, using the rows in the built
hash table as the outer loop and the other table with the index as
the inner loop. Otherwise, if there is no such index, AJA uses the
threshold T = V,,oping to determine whether to switch the original
hash join to a simple nested loop join.

The pseudocode for AJA is shown in Algorithm 1. AJA takes
two join components Ry, Ry (tables or intermediate results), along



Algorithm 1 Adaptive join algorithm (AJA)

Input: Join components Ry, Ry, threshold values V.4, Vionind
Output: join result R,

. hash_table = HashBuild(Ry) // Build the hash table on R;.

. if index is available on Ry and |hash_table| < V;p,4:

R, = IndexNestedLoop(hash_table, Ry)

. else if index is not available on Rz and |hash_table| < V,onina:
o = SimpleNestedLoop(hash_table, Ry)

. else:

Ry, = HashProbe(Rz, hash_table) // Continue with hash join.
. return R,

® N oUW e

with the two threshold values (V;,,4 and V,,opninq) as inputs. The two
threshold values V;,,4 and V,,p,ing are universal for the underlying
database. As in SQL Server 2019 [2, 56], AJA starts by operating
as a hash join operator. It first builds a hash table (Line 1). If there
exists an index on the join key of Ry and the number of keys in
the hash table (|hash_table| in Line 2) is smaller than the threshold
T = Vjpq, it switches to an index nested loop join (Line 2 and 3). In
the index nested loop join, the outer loop is built using the existing
hash table to avoid rescanning R;. If there is no such index on Ry,
the threshold value V,,,p,;q4x is used to determine whether to switch
to a simple nested loop join (Line 4 and 5). Finally, if AJA decides
not to switch to any type of the nested loop join, it continues the
hash join by probing the hash table with rows in Ry (Line 7).

The two values V;,,4 and V,,y,ing of threshold T are system de-
pendent and differentiate the costs between the hash join and the
two flavors of nested loop join algorithms. We use a grid search
method with a 1-join query template to determine the two values.
We present how we pick the values of the threshold in Section 5.3.

4.2 Discussion

Compared to learned query optimizers, the adaptive LIP+AJA ap-
proach does not overfit to any data or query workload. The only
input signals to LIP+AJA are the statistics collected during query
execution, including the selectivities of the bloom filters (LIP) and
the number of keys added to hash tables (AJA). This adaptive frame-
work also provides potential robustness to bad input query plans:
First, for a sub-optimal join order, LIP reduces data movement by
pushing down a semijoin filter to a lower level in the query plan, and
this method has been shown to be robust to a variety of input join
orders [48, 59]. Second, AJA is robust to the original join algorithm
selection since it picks the join algorithm on the fly. We experi-
mentally demonstrate the robustness of LIP+AJA in Sections 6.3
and 6.4. In addition, since the bloom filter only uses an atomic
bit-setting primitive in the construction phase and is read-only in
the probe phase, LIP is fully parallelizable. Thus, LIP is compatible
with parallel query execution plans.

We note that LIP+AJA also introduces runtime overhead. Specif-
ically, LIP introduces the overhead of building and probing bloom
filters, and AJA introduces the overhead of building and rescanning
a hash table. In practice, these overheads are small, as described in
Sections 5.4.
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5 IMPLEMENTATION

Although LIP+AJA can be integrated into any DBMS, we chose
PostgreSQL as the target DBMS as it is also the platform used
in many previous works on learned QO. We implement LIP as a
PostgreSQL extension and perform a proof-of-concept simulation
of AJA. This section introduces the implementation and simulation
details. We also analyze the overheads introduced by LIP+AJA.

5.1 LIP as a PostgreSQL Extension

We implemented LIP as a PostgreSQL extension. The input to LIP
is the optimized plan from PostgreSQL. The LIP extension consists
of multiple user-defined C PostgreSQL functions [9] to initialize,
build, and probe the bloom filters. Table 2 lists the key functions
that are used in the LIP extension. To execute queries with LIP , we
rewrite the queries into two SQL blocks with these functions.
Bloom Filter Building Block. During initialization, the number of
the bloom filters needed (cf. Section 4.1) for the query at hand is
decided, and the memory space is declared in the corresponding
shared memory (using the pg_lip_bloom_init function). LIP uses
shared memory to store the bloom filters since PostgreSQL sup-
ports parallel query plans (for example, parallel sequential scan and
parallel hash join) and it may start multiple workers that use the
bloom filters at the same time. We use the method outlined in [18]
to pick parameters for our bloom filters. We feed into the model in
[18] a false positive rate threshold of 0.01 and a key threshold of
107, and get an optimized bloom filter configuration, which is 11
MiB in size and uses seven hash functions. To build a bloom filter
for a table, we scan the table once and add the valid keys to the
bloom filter using the function called pg_lip_bloom_add, which
internally uses MurmurHash2 as the hash function.

Query Execution Block. We rewrite an input query using the
probing function pg_lip_bloom_probe as a predicate. For a given
key, it probes the bloom filter and returns a boolean value.
Example. We use Query 17a from the JOB benchmark to illustrate
the use of the LIP extension functions. Figure 5 shows the original
query and the LIP-rewritten query. To build the bloom filters, we
add a SQL block that consists of queries to build the bloom filers
using the functions pg_lip_bloom_init and pg_lip_bloom_add.
Then, the original query is rewritten using subqueries to probe the
bloom filters using the pg_lip_bloom_probe function.

5.2 Optimization Rules of LIP

Not all bloom filters that LIP builds are equally effective. Turning
off ineffective bloom filters improves query execution time as both
building and probing the filters introduce overhead. The effective-
ness of a bloom filter depends on the number of rows pruned, and
this cost has to be balanced with the overhead that is incurred in
building and probing the bloom filter. While these decisions can
be more tightly integrated within the core data processing engine
(e.g., as was done in [48]), given our implementation that is based
on making changes to PostgreSQL using only the external query
rewrite and extensibility mechanisms (as is also the approach taken
in ML-based QO), we use two heuristics to aid our implementation.
Optimizing Bloom Filter Building. First, if the predicate o; used
to build the bloom filter cannot prune more than bf_build_pr of
the join keys (according to the cardinality estimator in PostgreSQL),



Table 2: Key functions supported in the PostgreSQL extension of LIP.

Function ‘ Parameter Return
pg_lip_bloom_init(int) The number of bloom filters initialized for a given query (integer). -
pg_lip_bloom_add(int, int) The index of the target bloom filter (integer); the value to be added (integer). -
pg_lip_bloom_probe(int, int) | The index of the target bloom filter (integer); the value being probed (integer). Boolean
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Figure 5: Query rewriting example with LIP.

then we turn off the bloom filter ogF,; i.e., such bloom filters are
deemed ineffective, and they are simply not constructed. Second, if
a bloom filter ogF, cannot be pushed to at least one level down in
the input query pipeline, we turn off that filter. Collectively, these
two heuristics prune bloom filters that are unlikely to be effective.
Optimizing Bloom Filter Probing. While we may choose to build
a bloom filter o, for a table T; if o; is selective, when we apply
oBF, to the next table T in the join order, the filter ogf, may not
prune sufficient rows. Hence, paying the cost to probe the filter
ogF, may not result in improved performance. To ameliorate this
situation, we introduce an optimization heuristic that adaptively
disables the probing of specific bloom filters at runtime. During
query processing, we measure the pruning rate of each filter on
the first valid_rows rows that it scans. Any filter that prunes fewer
than bf_probe_pr percentage of the input rows, is deactivated.
This decision is remembered for the next 10 X valid_rows input
rows that are scanned, after which the pruning rate of the filter
is re-evaluated, and it is activated if needed. To further optimize
the probing performance, if multiple bloom filters are activated on
a single table, we rearrange the order in which they are probed,
prioritizing the most selective filters first to minimize the number
of bloom filter probes [59].

Discussion. The hyper-parameters bf_build_pr,bf_probe_pr,and
valid_rows determine which lookahead bloom filters are built and
probed. Intuitively, increasing bf_build_pr and bf_probe_pr re-
sults in fewer bloom filters being built and probed, leaving the
most “effective” bloom filters in place. Decreasing the two constants
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loosens the restriction on the bloom filters, and more bloom filters
will be built and probed. The appropriate setting for bf_build_pr
and bf_probe_pr is dependent on the efficiency of the LIP imple-
mentation. Since our first version of LIP still has space for further
optimization (see Section 5.4), we aggressively set bf_build_pr to
0.9, and bf_probe_pr to 0.1. For the parameter valid_rows, we set
it to a value of 1000 for all our experiments.

5.3 Simulating AJA

Algorithm 1 shows the adaptive join algorithm following SQL
Server [2, 56]. In Algorithm 1, the hash table must be fully popu-
lated. For the simulation, we first execute the query with a hash join
algorithm to determine the actual cardinality of each hash table.
Beyond the cardinality computation step, our simulation follows
the same steps as Algorithm 1: if there is an index and the true car-
dinality collected is smaller than V;,,;, we use an index nested loop
join algorithm; if there is no such index available and the true car-
dinality collected is smaller than V,,,,;,4, We apply a simple nested
loop join algorithm; otherwise, AJA uses a hash join algorithm.
We specify the physical join algorithm in PostgreSQL by adding
execution hints to the query [1]. Since both the above simulation
and a deeper implementation of AJA use the same true cardinality,
the only runtime difference corresponds to the overhead of building
(Line 1) and re-scanning the hash table (Line 3 or 5). We analyze
this overhead in Section 5.4.
Determining Threshold Values V;,,; and V,,,,,;,,4. In Algorithm 1,
the two values V;,,4 and V,,,,,ing of threshold T determines when



AJA switches from a hash join algorithm to one of the nested loop
join algorithms. As V;;, 5 and V,,,,inq are relevant to the computation
costs of the join operators, we perform a grid search using a simple
select-join query template shown below from the IMDB data set [6].
In this template, we use a large fact table cast_info as Ry, which
allows the generated threshold T to be “safe” for large tables. In
practice, for data sets other than IMDB, this 1-join template can be
created accordingly using the two largest fact tables as Ry and Rs.

WITH R1 AS (SELECT + FROM title LIMIT n)
SELECT » FROM R1,
WHERE R1.1id

Using the template, we generate queries with varying values of
the parameter n. Each query is run using a hash join algorithm,
and two nested loop join algorithms - index nested loop join and
simple nested loop join (we construct the appropriate index on
the underlying inner table to evaluate the index nested loop join
option). In practice, by performing a grid search on n, we establish
the two cut-off values: V;,,; = 500,000 and V,,,ping = 1-

cast_info as R2

R2.movie_id;

5.4 Analyzing the Overheads

In addition to speeding up the query execution, applying LIP and
AJA may also introduce overheads to the query execution. In this
section, we describe such overheads in detail.

Overheads associated with LIP. There are two sources of over-
heads associated with the LIP mechanism: 1) the cost to build bloom
filters, and 2) the cost associated with probing the bloom filters.

During the bloom filter building phase, we scan input tables and
populate the bloom filters with join keys. This overhead grows
linearly as the number of keys added.

During the probing phase, LIP calculates the hash of the key and

checks the bloom filter for a hit. This overhead increases linearly
with the number of probes. If the bloom filter is selective, fewer
tuples will pass through the pipeline, reducing the effect of this
overhead. The heuristic proposed in Section 5.2 aims to disable
ineffective filters and reorder the enabled ones. The total building
and probing overheads of LIP account for 26% of the LIP+AJA query
execution time in the JOB-Rand workload and 18% in the JOB-Slow
workload (cf. Figure 1).
Overheads of AJA. As shown in Algorithm 1, AJA introduces
overheads if it decides to switch join algorithm. The overhead comes
from building a hash table that is not used for the join, and the cost
to rescan the hash table to start the nested loop join algorithm.

We estimate these overheads as follows: First, the hash table
building phase can be pipelined with the scan phase [7], resulting
in low latency impact, never exceeding two milliseconds in our
experiments. Thus, the estimated hash table building overhead is
2Xx 1 aja—NL)> Where 1 aja N1y indicates whether AJA switches
from hash join to a nested loop join. Additionally, we measured the
scanning cost of an in-memory hash table, finding that PostgreSQL
scans approximately 4000 rows per millisecond (in a single thread).
If the total number of keys in the hash table is n, then the estimated
hash table scanning overhead is z5t5 X 1 {aja—nNr}- Thus, the total
overhead is (2 + g505) X 1 {aja—n1}- This overhead is low in prac-
tice since we only switch the join algorithm when n is small. For
example, on JOB queries, AJA overhead takes less than 1% of the
query execution time.
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5.5 Discussion

As noted earlier, we have a simple implementation of LIP+AJA,
which follows the philosophy of “simplicity in implementation” as
previous papers in RL-based QO [44, 45, 57]. Nevertheless, there
are opportunities to make this implementation more efficient. In
our implementation, the bloom filter construction overhead is high
as the input tables are scanned twice and the bloom filter probe
functions are not efficient (cf. Section 5.4). A more sophisticated im-
plementation directly in the core code of PostgreSQL could reduce
these overheads. In addition, although our initial simulation of AJA
provides a framework to carry out our proof-of-concept evalua-
tions, implementing AJA as another joining method in PostgreSQL
could make it more general.

6 EVALUATION

In this section, we experimentally answer the central question of
this paper: How do the SOTA RL-based query optimizers compare to
the adaptive query processing with LIP+AJA? Our key finding is that
LIP+AJA is not only comparable, but it also outperforms RL-based
query optimizers in many cases. In addition, we also evaluate:

(1) CanLIP+AJA further optimize the plans generated by learned
query optimizers? See Section 6.3.

(2) How robust is LIP+AJA to random, possibly bad, query
plans? See Section 6.4.

(3) How does LIP+AJA perform on queries with subplans? See
Section 6.5.

6.1 Experimental Setup

Baselines. We use two representative but different RL-based query
optimizers, Balsa and Bao, with PostgreSQL as our baseline methods.
For Balsa and Bao, we use the source code provided by the authors [3,
5]. For JOB, we limit the wall-clock training time to 10 hours for
both Balsa and Bao, including the time to train the neural networks,
optimize the queries, and execute the workload. We selected such
time limitations as similar training times are reported in [57]. As
for Stack, since there is a larger number of queries in the workload,
we increase the training time limit to 100 hours.

Our Method. For LIP+AJA, we use the query plans generated by
the PostgreSQL query optimizer as input unless otherwise specified.
We report the end-to-end execution time of LIP+AJA, including
all the overheads introduced by LIP+AJA (cf. Section 5.4). As dis-
cussed in Section 4.2, LIP and AJA are compatible with parallel
query execution plans. Therefore, we have enabled parallel plans
in PostgreSQL and let PostgreSQL’s optimizer determine the num-
ber of workers to be launched. Parallel execution as provided by
PostgreSQL is also enabled for the learned QOs, Balsa and Bao.
Benchmarks. We use queries from three commonly used bench-
marks, JOB [41], Stack [44], and TPC-H [49]. A summary of the
test query sets is shown in Table 1.

JOB workloads. Same as Section 3.1, we follow the analysis setup
presented in Balsa [57] and evaluate query performance on 1) ran-
domly selected queries (JOB-Rand) and 2) slow queries (JOB-
Slow). In addition, to reduce the impact of randomness in JOB-
Rand, we employ a Monte Carlo cross-validation analysis and create
JOB-Rand-CV workload. In JOB-Rand-CV, we randomly select 19



queries as the test set five times, and for each of the five test sets,
the learned query optimizers are trained on the remaining queries.

Stack workloads. We also adopt the Stack workload [44] in our
study. This query workload consists of more than six thousand
analytical queries. As in Section 3.1, we adopt the two train-test
splits: 1) Stack-Rand and 2) Stack-Slow. Similar to the case of the
JOB workload, we create a Stack-Rand-CV workload to perform a
Monte Carlo cross-validation. The Stack-Rand-CV workload consists
of five sets of 1,238 randomly selected queries as the test queries.

TPC-H workloads. To evaluate LIP+AJA on queries with complex
subplans, we select TPC-H queries [49] with joins and sub-plans to
form a new query set, which we call TPC-H-Complex. Specifically,
this workload contains the TPC-H queries Q2, Q7, Q8, Q9, Q20, and
Q21. We use TPC-H data with a scale factor of 10 for this workload.

For each of the train-test configurations (except TPC-H-Complex),
Balsa and Bao are trained on the training part of the workload and
tested on the queries in the test set. For LIP+AJA, we directly run
queries in the test set, as no training step is required in this case.
Since current ML-based query optimizers are not able to tackle
queries with complex SQL structures (e.g., CTEs) in the TPC-H-
Complex workload, we only present results with LIP+AFA.
Metrics. We use the wall-clock query execution time as the main
evaluation metric. We repeat Balsa and Bao-related experiments
five times with different random initialization. We report the mean
workload run times of the five different predicted query plan sets,
along with the standard errors associated with the mean workload
run times. For LIP+AJA, we also run the test workload five times
and report the mean run time. Note that the run times reported for
LIP+AJA include all the overheads described in Section 5.4.
System Configurations. We use a machine with 40 CPU cores and
250GB RAM for all experiments. We use an NVIDIA Tesla V100 GPU
with 32GB of GPU memory to train the learned query optimizers
(Balsa and Bao). We use a configuration of PostgreSQL similar to
[41]: We use PostgreSQL 12.5 and set the memory limit per operator
(work_mem) to 4GB, buffer pool size (shared_buffers) to 4GB, and
the buffer cache size (effective_cache_size) to 32GB. We allow
at most eight parallel workers to work on a query. In addition, we
disable the genetic query optimizer in PostgreSQL, allowing queries
with a large number of joins to utilize the same query optimizer as
smaller queries. To allow faster query execution, we pre-construct
indices on foreign key attributes in all datasets [41, 57].

6.2 Performance of LIP+AJA

We first evaluate the end-to-end performance of all methods on
the JOB-Rand, JOB-Slow, Stack-Rand, and Stack-Slow workloads.
In addition, we break down the JOB-Rand workload to show the
query-by-query performance. Further, we evaluate Balsa, Bao, and
LIP+AJA on different random sets of queries by performing a Monte
Carlo cross-validation using JOB-Rand-CV and Stack-Rand-CV.
Performance. Figure 6 shows the performance of LIP+AJA, Balsa
and Bao. On the JOB-Rand workload, Balsa and Bao improve the
PostgreSQL by 1.5x (8.6s saved) and 1.2x (3.6s saved) respectively,
while LIP+AJA improves performance by 1.5x (8.5s saved). Balsa
and LIP+AJA have similar performance on random queries.
Turning our attention to JOB-Slow, we observe that Balsa and
Bao both improve PostgreSQL by 1.4X on average (Balsa saved 26.5s,
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Figure 6: Performance of LIP+AJA vs. learned QOs.

Bao saved 28.8s), while the improvement with LIP+AJA is 2.0x
(48.9s saved). In addition, comparing with the training performance
of learned query optimizers, LIP+AJA is comparable to Balsa-overfit
(1.9x, 47.3s saved) and Bao-overfit (1.8x, 44.8s saved) on JOB-Slow.

As for Stack-Rand, LIP+AJA (2.5%, 2409s saved) has a similar
performance to Balsa-overfit (2.6x, 2605s saved) and Bao-overfit
(2.3x, 2417s saved). However, LIP+AJA outperforms Balsa (2.3x,
1851s saved) and Bao (1.3x, 905s saved). In addition, for Stack-Slow,
LIP+AJA (2.6x, 7877s saved) can outperform the best-performing
learned QO configuration Balsa-overfit (1.7x, 5038s saved).
Performance Breakdown. To demonstrate performance variations
among different queries, we provide a runtime breakdown of the
JOB-Rand workload. We compare three approaches, namely Balsa,
Balsa-overfit, and LIP+AJA, with PostgreSQL, as depicted in Figure 7.
Negative values indicate improved performance. The queries in JOB-
Rand are sorted in descending order based on their PostgreSQL
runtimes. Therefore, query 17e is the slowest query on PostgreSQL,
while query 15b is the fastest query in Figure 7.

Among LIP+AJA, Balsa, and Balsa-overfit, the performance gain
for the JOB-Rand workload is primarily in the slower queries (from
17e to 20a), which are also part of the JOB-Slow workload.

However, for the faster queries (from 22c to 15b), Balsa-overfit
achieves a total runtime of 5.48s, outperforming PostgreSQL (7.15s).
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Figure 7: Performance breakdown of JOB-Rand.

On the other hand, both Balsa (10.52s) and LIP+AJA (8.65s) in-
troduce additional query runtime. The overhead in LIP+AJA is
attributed to the construction of ineffective bloom filters. Our opti-
mization rules (Section 5.2) do not prune these bloom filters due to
the lack of awareness regarding data correlation. Future work on
developing smarter optimization techniques can help mitigate this
overhead. Despite the overhead, LIP+AJA still demonstrates similar
average performance compared to Balsa. Additionally, Balsa-overfit
performs similarly to PostgreSQL on these faster queries.
Cross-Validation. Figures 6e and 6f show the cross-validation
results with JOB-Rand-CV and Stack-Rand-CV workloads respec-
tively. Since the five random test query sets have different workload
run times, we normalize the run time of each method relative to
PostgreSQL for each instance. On average, Balsa reduces the nor-
malized run time of JOB-Rand-CV to 0.82, while Bao achieves 0.92.
LIP+AJA achieves a normalized run time of 0.83. For Stack-Rand-
CV, LIP+AJA optimizes the average run time to 0.72, whereas the
best non-overfitting configuration, Balsa, reduces it to 0.76.
Takeaway. The above results lead to our key finding in this paper:
the performance of adaptive query processing using LIP+AJA is
comparable to that of the most recent SOTA RL-based query opti-
mizers, namely Balsa and Bao. In many cases, our “quick” implemen-
tation of LIP+AJA outperforms both Balsa and Bao. Additionally, it
is worth noting that LIP+AJA does not require any training step
and does not face the generalization challenge (Section 3.2).

6.3 Improving Plans Generated by Learned QOs

The general nature of the LIP+AJA method implies that it can be
used to optimize any query plan. In this experiment, we explore
the impact of using LIP+AJA on the query plans that are generated
by learned query optimizers. Thus, in this experiment, we simply
apply LIP+AJA on the query plans that Balsa and Bao generate. For
this experiment, we use the JOB-Rand and the JOB-Slow workloads.
Results. Figure 8 shows the results, denoted as Balsa w/ LIP+AJA
and Bao w/ LIP+AJA. For both the JOB-Rand and the JOB-Slow
workloads, we observe that Balsa w/ LIP+AJA and Bao w/ LIP+AJA
have performance that is similar to LIP+AJA, whose inputs are the
plans generated by the PostgreSQL query optimizer. In addition,
the standard errors are significantly reduced with LIP+AJA.

Takeaway. The above results show that LIP+AJA can also improve
the execution of the query plans generated by the learned QOs,

2972

I Balsa
s Bao

B PostgreSQL
I LIP+AJA

CSY Balsa w/ LIP+AJA
50 Bao w/ LIP+AJA

w
o

N
o

[
o

Run time (seconds)

o

(a) JOB-Rand (b) JOB-Slow

Figure 8: Applying LIP+AJA to plans from Balsa and Bao.

providing improvements in both workload execution time and ro-
bustness. Furthermore, our results demonstrate the robustness of
LIP+AJA, as it performs similarly even when given “suboptimal”
input plans generated by the PostgreSQL optimizer. This highlights
the potential for LIP+AJA to effectively process different input plans.
It is also important to note that in this experiment, the learned QOs
are not trained with LIP+AJA. Thus, enabling LIP+AJA during the
training may have the potential to further enhance performance.

6.4 Robustness of Adaptive Query Processing

In this experiment, we use randomly generated query plans to
evaluate the robustness of LIP+AJA across a range of query plans.
We generate several random query plans based on the JOB-Rand and
the JOB-Slow workloads (as described below), and then feed these
random plans as input to the adaptive query processing module.

Random Plan Generation. We generate random left-deep plans
according to the query’s join graph. We keep a list of tables as the
join order, which is initialized by randomly selecting one table. We
iteratively append one equijoin-able table until all the tables are
included. We simply use the PostgreSQL optimizer to select the
physical algorithms for the random plan. We repeat the generation
five times, generating five random plan sets for both workloads.

B PostgreSQL
PostgreSQL w/ random plan

B LIP+AJA w/ random plan

103 3
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Figure 9: Performance of LIP+AJA on JOB-Rand and JOB-
Slow with random input query plans.

Results. Figure 9 shows the results for this experiment. For these
randomly generated query plans, LIP+AJA w/ random plan reduces
both the run times and the standard errors over PostgreSQL with
random plans. For the JOB-Rand case, PostgreSQL w/ random plan



has an average run time of 346 seconds, while LIP+AJA w/ random
planbrings down the run time to 31 seconds. For JOB-Slow, LIP+AJA
reduces the run time from 832 seconds to 75 seconds.

Takeaway. Although we do not exhaustively generate (the expo-
nential number of) all random plans for the queries in the JOB-Rand
and JOB-Slow workloads, the above results demonstrate the robust-
ness of LIP+AJA to a variety of random input query plans.

6.5 Adaptive Query Processing on Subplans

Unlike learned query optimizers that have a static model architec-
ture, LIP+AJA is more flexible and can be applied to queries that
have complex SQL constructs. In this experiment, we test LIP+AJA
on queries with complex subqueries using the TPC-H-Complex
workload. Many of the queries in this workload contain an ORDER
BY clause, making the latency sensitive to the order of the output
rows. Since in the preliminary AJA (Algorithm 1), the order of the
results may not be the same as originally planned (for example,
if the join algorithm is switched to a nested loop join algorithm),
applying AJA to order-sensitive queries may introduce extra re-
ordering overhead. Thus, for this experiment, we let PostgreSQL’s
query optimizer choose the physical join operators, and we turn off
the AJA mechanism when the query has an ORDER BY subclause.

ﬁeo B PostgreSQL
S - P
240
£
S 20
c
&
O,

Figure 10: Performance of LIP on TPC-H-Complex.

Results. The results of this experiment are shown in Figure 10. For
this workload, LIP improves PostgreSQL by 1.4x.

Takeaway. LIP+AJA can be used on complex SQL query constructs,
making it more broadly applicable than current RL-based QOs.

7 RELATED WORK

The shortcomings of traditional optimization techniques have been
well documented and often stem from estimation errors [41]. Query
optimizers use estimation models to predict the cardinality of (par-
tial) query plans, estimate their cost, and choose the most efficient
plan. The simplifying assumptions used to build estimation mod-
els fail to accurately capture real data distributions, leading query
optimizers to rely on predictions with large errors.

Many approaches have been proposed to address the mentioned
shortcomings. Feedback loops can enhance estimate quality by
using observed statistics from previous queries [10, 21, 22, 47]. An-
other approach allows for query plans to change during execution
if the observed statistics differ significantly from the predicted sta-
tistics used at optimization time. Another set of techniques is to
selectively re-optimize sub-optimal plans/sub-plans while minimiz-
ing the cost of re-optimization [17, 20, 23, 32, 35, 37]. Adaptive query
processing is a third line of work that moves certain optimization
decisions to the execution layer of the database engine, making exe-
cution more efficient and robust [11, 12, 14, 19, 24, 28, 31, 33, 54, 59].
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Adaptive query processing generally delays making decisions until
some execution statistics have been collected, and thus it dramati-
cally reduces the dependence on having accurate estimates upfront.
The granularity of the adaptiveness varies and includes tuning
the physical implementation of an operator (e.g., [2, 19, 31]) and
making the entire equijoin pipeline more robust (e.g., [36, 59]). LIP
and AJA are selected as two typical adaptive methods addressing
orthogonal aspects of equijoin order selection and join operator
algorithms. LIP can be seen as a special case of SIP [36] as it reduces
the tuples from the fact table by using the classic semijoin tech-
nique [13, 16, 43, 55] to minimize unnecessary data movement. LIP
is also similar to the algorithm proposed in [58], but the reduction
step and the join step in LIP are interleaved. LIP also optimizes
the bloom filters in the query execution pipeline by introducing
adaptiveness in both the building and probing phases, which can
significantly improve its performance. For further details about LIP
and its connection to related work, we refer the readers to [59].
The recent success of ML has led to new ideas to improve query
optimization. To mitigate the impact of inaccurate estimates, ML
models have been proposed for cardinality estimation [27, 34, 39, 42,
51, 53]. These learned cardinality estimators still need to work with
a query optimizer to generate complete physical plans. Reinforce-
ment learning (RL) has recently become popular for end-to-end
query optimization [40, 44-46, 54, 57]. DQ [40] and ReJOIN [46] use
a neural network to learn the plan enumeration strategy. Bao [44]
optimizes queries by learning the optimization flags to set for each
input query. Neo [45] and Balsa [57] train neural network-based
cost models and generate plans that minimize the estimated costs.

8 CONCLUSIONS

In this paper, we compare a specific, simple, adaptive query process-
ing approach, LIP+AJA, with two SOTA RL-based query optimizers,
Balsa and Bao. We show that LIP+AJA is not only comparable to
the RL-based optimizers in terms of query execution performance,
but it is also better in many cases. In addition, the adaptive query
processing approach LIP+AJA is able to optimize complex query
constructs, which current RL-based query optimizers cannot tackle.
Further, the adaptive approach does not require an expensive re-
training step if the workload changes. Given the flexibility and
effectiveness of adaptive approaches to query processing, our com-
munity should continue to acknowledge their appeal, and future
ML-based query optimization proposals must consider comparing
their approach with adaptive query processing techniques.
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