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Abstract

Recent works showed that implementations of Quicksort using vec-
tor CPU instructions can outperform the non-vectorized algorithms in
widespread use. However, these implementations are typically single-
threaded, implemented for a particular instruction set, and restricted to
a small set of key types. We lift these three restrictions: our proposed
vqsort algorithm integrates into the state-of-the-art parallel sorter ips4o,
with a geometric mean speedup of 1.59. The same implementation works
on seven instruction sets (including SVE and RISC-V V) across four plat-
forms. It also supports floating-point and 16-128 bit integer keys. To the
best of our knowledge, this is the fastest sort for non-tuple keys on CPUs,
up to 20 times as fast as the sorting algorithms implemented in standard
libraries. This paper focuses on the practical engineering aspects enabling
the speed and portability, which we have not yet seen demonstrated for
a Quicksort implementation. Furthermore, we introduce compact and
transpose-free sorting networks for in-register sorting of small arrays, and
a vector-friendly pivot sampling strategy that is robust against adversarial
input.

1 Introduction

Due to fundamental properties of current and expected future CPUs, in-
cluding the per-instruction energy cost, it is important for software to be
designed to utilize SIMD and/or vector extensions. Although SIMD and
vector extensions differ at the architecture level, since SIMD requires sep-
arate instruction encodings for each vector size, we speak of SIMD/vector
extensions interchangeably, because software can be written in the same
way for both. An instructive example and the focus of this article is
sorting, which is an important part of many applications, including in-
formation retrieval. Replacing Quicksort from a standard library by a
vectorized Mergesort implementation can reduce energy usage by a fac-
tor of six [1]. Given these substantial gains in energy and computational
efficiency, it seems surprising that vectorized sorting is not used much in
practice. There are, however, some explanations for the so far limited
adoption of vectorized sorting. Developing SIMD software involves spe-
cialized domain expertise, including knowledge of the various instruction
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sets, which is not a trivial requirement. For instance, Intel lists some
11,000 vector instructions and variants. This would be less of an issue
if an implementation could be written once and used widely. However,
there are now at least five major instruction sets across three architectures:
x86 (AVX-512, AVX2), Arm (NEON, SVE), and RISC-V (V extension).
Thus, given the relative scarcity of domain expertise, especially for the
newer instructions sets, and the nontrivial implementation complexity of
state-of-the-art sorting algorithms, it is not surprising that previous im-
plementations of vectorized sorting are specific to an instruction set. Fur-
thermore, the availability of instruction sets is problematic. For instance,
AVX-512, proposed in 2013, is still not widely supported. AMD CPUs
may soon add support, whereas Intel’s heterogeneous Alder Lake platform
disables AVX-512 for consistency between its two types of cores. Thus,
AVX-512 cannot be relied upon, except perhaps in some supercomputers,
where the hardware is typically known and rarely upgraded. However,
even the prior AVX2 instructions are only available in 86% of a survey’s
respondents’ CPUs [2].

Here, we argue that it is no longer necessary to engineer software spe-
cific to an instruction set. For linear algebra or ‘vertical’ algorithms, where
the SIMD elements (lanes) are independent, autovectorization, that is,
synthesizing vector instructions directly from C++ code by the compiler,
is an appealing option. However, re-ordering vector lanes, which is funda-
mental to sorting, is infeasible via autovectorization [3]. In the absence of
viable compiler or language support, we use an abstraction layer, called
Highway, over platform-specific intrinsics (functions that map to vector
instructions). In C++, this is fairly straightforward as wrapper functions
like, for instance, Reverse are easier to use than calling the correspond-
ing _mm512_permutexvar_epi16 intrinsic directly. Many such libraries
have been developed. However, some difficulties arise when choosing a
set of functions efficiently implementable on x86, Arm NEON, Arm SVE,
and RISC-V V. The latter two involve ‘scalable vectors’ whose sizes are
unknown at compile time, which currently rules out some common C++
implementation techniques like wrapping vectors in a class to enable mem-
ber functions and specifying the vector size as a compile-time constant.
Furthermore, heterogeneous cloud servers and client devices offer differ-
ent instruction sets, requiring the application to decide at runtime which
instruction set is available for use. To the best of our knowledge, our High-
way C++ library is the only library that can handle ‘scalable vectors’ and
check for the best available instruction set at runtime. Application code is
expressed by using calls to Highway functions, also known as ops. This sin-
gle implementation is automatically compiled for each requested target by
using the preprocessor to re-include the code, and #pragma statements to
set the target architecture. Highway then chooses the appropriate version
at runtime. Here, we demonstrate the power of this approach by achieving
state-of-the-art performance results across multiple architectures from a
single implementation of a vectorized sorting algorithm.

Which sorting algorithms can be suitable for vectorization? Merge-
sort is commonly used [4, 5], but typically requires O(N) extra storage.
Mergesort also appears to be relatively slow in practice. An implemen-
tation using wider AVX-512 vectors reports sorting throughput [5] only
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comparable to the speed of a vectorized Quicksort using AVX2 vectors of
half the size [6]. Looking beyond comparison-based sorts, Radixsort scat-
ters keys to separate arrays. This has generally, except for one algorithm
tailored to the CRAY architecture and its memory characteristics [7], been
implemented for single elements without taking advantage of SIMD/vec-
tors. Recent instruction sets (AVX-512, Arm SVE, RISC-V V) include
support for vectorized scatter. However, the case where multiple lanes
are to be scattered to the same array still remains a problem, perhaps
to be handled with x86-specific conflict detection instructions, or by pro-
viding separate sets of arrays for each lane. The latter option results in
numerous arrays, which must either be grown as needed, or pre-allocated.
To avoid explicit checks whether arrays are full and to prevent commit-
ting large amounts of memory, a previously described demand-allocation
scheme using virtual-memory [8] may be applicable. However, this is
less portable and practical. Taking these disadvantages of Mergesort and
Radixsort into account, we decided to design and implement a vectorized
Quicksort, which is also more cache-friendly and thus requires less mem-
ory bandwidth, an increasingly scarce resource for shared-memory ma-
chines. Quicksort was already vectorized for early supercomputers [9, 10]
via compress instructions. It took several decades until microprocessors
were able to emulate them using table-driven permutation instructions,
which were applied to Quicksort only several years ago [11]. Subsequent
improvements include in-place partitioning using AVX-512-specific com-
press instructions [12], more robust pivot selection, and adding sorting
networks for small arrays [6]. As mentioned before, all of these works
target a single instruction set. Meanwhile, the in-place sample sort ips4o
constitutes the state-of-the-art for parallel, comparison-based sorting ac-
cording to a thorough experimental study [13], though its current form
does not take advantage of vector instructions.

This article introduces a vectorized implementation of Quicksort for
16–128 bit elements, implemented using the Highway library’s ‘portable’,
that is, multiplatform-dependent, intrinsics. In addition to the core Quick-
sort (recursive partitioning), our algorithm includes a sorting network
“base case” and robust pivot sampling. The resulting vqsort (vectorized
quicksort) is the fastest sorting implementation known to us for commer-
cially available shared-memory machines. Integrating vqsort speeds up
the state-of-the-art ips4o by a geometric mean of 1.59 and 2.89 in paral-
lel and single-core settings, respectively. We share the production-ready
open-source code [14]. Our specific contributions can be summarized as
follows:

• generality: support for 32/64-bit floating-point and 16/32/64/128-
bit integer keys in ascending or descending order,

• performance portability: the same implementation supports seven
instruction sets with close-to native performance,

• production-readiness: vqsort is open-sourced [14], tested, bounds-
checked via compiler instrumentation, documented, and works with
three major compilers.
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2 Vectorized quicksort

Conceptually, Quicksort is a simple algorithm. It recursively sorts arrays
by partitioning them with respect to some pivot element. The perfor-
mance of Quicksort crucially depends on the choice of the pivot element.
In this section we provide a portable partitioning, faster than AVX-512-
specific code (Section 2.1), and a vectorized, cache-aware, robust pivot
sampling (Section 2.2).

For small array sizes it pays off to switch to alternative sorting algo-
rithms/strategies such as sorting networks. Here, we provide a vectorized
sorting network which sorts 256 keys in several hundred CPU cycles (Sec-
tion 2.3, and more details in Section 3). Furthermore we support reverse
sort order and 128-bit keys (Section 2.3).

A simplified C++ implementation of Quicksort is shown in Algo-
rithm 1, where T refers to the key type, [begin,end) is the range to
sort within the keys array, pivot is a vector with all lanes set to the pivot
obtained per Section 2.2, buf is a preallocated buffer (sized according
to Section 2.3), and rng returns pseudorandom unsigned 64-bit integers.
The following sections explain the subroutines. For details we refer the
reader to the open-source code at https://github.com/google/highway/
blob/master/hwy/contrib/sort/vqsort-inl.h. The set of Highway ops
is documented at https://github.com/google/highway/blob/master/

g3doc/quick_reference.md.
After calling Partition (Section 2.1), which returns the starting index

of the second partition, the remainder of Algorithm 1 is concerned with
recursing to both partitions. It is desirable to have the recursive function
end with a call to itself. This enables so-called ‘tail recursion’, for which
a jump instruction suffices, avoiding the overhead of parameter passing
and setting up a stack frame.

Note that we call ChoosePivot (Section 2.2) before recursing, rather
than inside Recurse. This allows us to choose a safe pivot whenever a
degenerate (empty) partition is detected. With some advance knowledge
of the pivot and partitioning schemes (pivots are always one of the input
keys, and Partition moves to the left any key equal to the pivot), we are
assured the left partition is never empty. Conversely, the right partition is
only empty if the pivot is equal to the last value in sort order. If we again
choose the same pivot, there is even a risk of infinite recursion. Thus
we must handle this case separately. The most likely cause is that all
keys in the current range are equal. This is quite common in information
retrieval applications, in which keys are often drawn from a small subset
of the possible values. We check for this by scanning through the keys and
computing their minimum and maximum value. This can be vectorized
by accumulating per-lane min and max, then ‘reducing’ them to a single
min/max using Highway’s Min/MaxOfLanes. Eq is a Highway op that
returns a mask indicating whether the inputs are equal, and AllTrue

indicates whether all lanes of the mask are true. If the min and max are
equal, then all keys are also equal, and thus already sorted, so we do not
recurse further. Otherwise, the pivot was an unlucky choice. Because we
recursively use the median of three sampling, approximately one third of
the input must have been equal to the largest value. We only observe this
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Algorithm 1 Quicksort recursion

void Recurse(T* keys, int begin, int end, V pivot, T* buf, R& rng) {

int bound = Partition(keys, begin, end, pivot, buf);

int num_left = bound - begin;

int num_right = end - bound;

if (num_right == 0) { // Degenerate partition

V first, last;

ScanMinMax(keys + begin, end - begin, buf, first, last);

if (AllTrue(Eq(first, last))) return;

return Recurse(keys, begin, end, first, buf, rng);

}

if (num_left <= NBaseCase()) {

BaseCase(keys + begin, num_left, buf);

} else {

V next_pivot = ChoosePivot(keys, begin, bound, buf, rng);

Recurse(keys, begin, bound, next_pivot, buf, rng);

}

if (num_right <= NBaseCase()) {

BaseCase(keys + bound, num_right, buf);

} else {

V next_pivot = ChoosePivot(keys, bound, end, buf, rng);

Recurse(keys, bound, end, next_pivot, buf, rng);

}

}
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to happen with lower-entropy keys (e.g. uniform random 16-bit integers
within 32 or 64-bit elements). It happens less frequently with vectors of
size 16, which imply NBaseCase = 256: large enough that a narrow range
of values within such a partition is unlikely. We therefore use a simple
heuristic that still guarantees forward progress: choosing the first key in
sort order as the pivot will partition off at least some keys, otherwise, they
are all equal, which was handled above.

Having hoisted ChoosePivot out of the recursion, we also first check
whether the input is small enough to be handled directly in BaseCase

(Section 2.3). If so, the pivot would not be used anyway, and guaranteeing
a minimum input size is helpful for both Partition and ChoosePivot.

2.1 Partition

Partitioning the input array is defined as moving elements which compare
less than or equal to the pivot argument before the other elements. This
accounts for a large majority of compute time because it touches every
key during each of the expected log(n) passes over the input. Partition

follows the basic approach of Bramas [12]: an in-place bidirectional scan
using an AVX-512 instruction represented by the CompressStore Highway
op. This accepts a vector and a mask as input and writes to contiguous
memory all vector lanes whose corresponding mask bits are true. To
partition, we simply CompressStore elements at the left array side with
the mask obtained by comparing inputs to pivot, and again on the right
side with the negated mask, advancing the write positions according to
the number of elements written, and stopping once they meet. Inputs
are loaded from the left or right side to maintain the invariant that all
elements from the current loop iteration could be stored either on the left
or right sides. This entails checking the ‘capacity’ (difference between the
read and write positions) on either side, and loading from the one with
less. To establish the invariant before the loop, we begin by loading the
first and last vectors of the input to registers, to be partitioned after the
loop.

In contrast to Bramas’ explicit usage of AVX-512 instructions [12], the
Highway op is portable. For AVX-512, CompressStore maps directly to
an instruction except for 16-bit elements, which would require the not yet
widely available VBMI2 instruction set. On Arm SVE and RISC-V, the
op stores the result of a Compress instruction to memory. For instruction
sets without per-lane masking, Highway emulates this operation by re-
ordering the vector according to a pattern loaded from a table, where the
index is the concatenation of the mask bits [11].

We also find it is crucial for performance to unroll the partition loop [6],
possibly due to the conditional branch for deciding whether to load the
next elements from the left or right end of the array. We also find branch-
less computations of the next address to be slower on a Skylake CPU.
Perhaps this is because the branch predictor sometimes guesses correctly,
thus reducing latency. Unrolling simply repeats each step in the loop,
in our case only four times as a compromise between code size, number
of registers required, and sufficient latency hiding. However, four vectors
may exceed the minimum guaranteed input size NBaseCase (smaller inputs
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are handled by BaseCase). Thus we require an additional loop that par-
titions small arrays. This is by definition not time-critical, so we adopt a
simple approach: overwriting the input via CompressStore with the mask,
and again CompressStore with negated mask to a buffer. Finally, we can
append the buffer contents to the current write position in the input. We
must again handle inputs which are not multiples of the vector size. As
an extra complication, the Highway op CompressStore is allowed to over-
write memory after the valid lanes. This simplifies the Arm SVE and
RISC-V implementations by avoiding a masked store. Such overwriting
is fine for the padded buffer, but unacceptable for the writes to the origi-
nal input, for which we use the similar CompressBlendedStore op which
avoids such overwriting, either with masked stores, or by non-atomically
‘blending’ the valid result with the previous contents of memory following
it. Note that we also use this small loop (PartitionToMultipleOfUnroll
in the code) to handle remainders. This simplifies the loop in Partition

by allowing it to assume its input is a multiple of four vectors.
There is one further consideration: the first CompressBlendedStore

on the right end of the array may read past its end. Because the address-
sanitizer feature of LLVM and GCC compilers checks whether vector loads
are in-bounds, this may trigger errors which terminate the program. To
prevent this, we first load the last vector of inputs into a register. After
the remaining input has been partitioned, we make space for one vector
at writeL, the first index of keys in the right partition. This can be done
with a single vector load and store to the final vector by realizing that
we wish to copy an entire vector only if at least that many keys have
been written in total to the right partition. Otherwise, we arrange for the
right partition (less than a vector) to be stored as the final elements of
the last vector, by decreasing the load address by the number of vector
lanes less the right partition size. This is safe because we ensure the
input to Partition consists of at least two vectors. With space set aside,
we are able to store the left keys of the final vector starting at writeL,
and subsequently the right keys. The left keys overwrite the space made
above, i.e. duplicated keys. The next keys belong to the right partition:
either from the second vector of the right partition, or the ones we just
moved to the end. Thus writeL, increased by the number of left keys in
the final vector, is the boundary between left and right partitions, which
Partition returns.

The result of these efforts is portable code that outperforms AVX-512-
specific code [12] by a factor of 1.7, more specifically, our 11644 MB/s vs.
6891 as measured by their timePartitionAll<double> benchmark for 224

items, compiled via clang++ -O2 -mavx512f.

2.2 Pivot selection

ChoosePivot returns the pivot that will be passed to Recurse and thence
to Partition. Many published Quicksort implementations use medians of
constant-sized samples [15, 16]. However, this traditional approach would
benefit from some adaptation for vectors and caches. Loading elements
from random array indices is possible using vector Gather ops, but these
are expensive and emulated on the SSE4 and NEON instruction sets.
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Furthermore, it seems wasteful to fetch an entire cache line from memory
and then only utilize one element. We instead load nine 64-byte chunks
from random 64-byte-aligned offsets, and recursively reduce their elements
to a single median using medians of three as described below. The 64-byte
chunk size typically corresponds to the L1 cache line size. Note that it
would be onerous to detect the actual cache line size, and unnecessary for
correctness.

For each element index within a chunk, we determine the median of
three elements at same index within groups of three chunks we loaded.
Medians of three can be obtained with a sorting network consisting of four
conditional swaps: (0,2) (0,1) (1,2). The first grouping in this notation
corresponds to replacing elements 0 and 2 with their minimum and max-
imum, respectively. The latter two groupings only require a total of two
swaps because it suffices to correctly order element 1, the median. We
choose a sample size of three because sorting network size is superlinear
in the input size (e.g. already nine swaps for five inputs).

When implemented using vector ops, this network is able to produce
independent results per lane, independently of the vector width. Thus we
can iterate up to the chunk size in units of the vector size, storing the
resulting medians to a buffer. Note that such a loop pattern is typical of
vector-length-agnostic code, which is preferred for the sake of portability.

Random bits are generated using a variant of SFC64 [17], chosen be-
cause it would support guaranteed-unique streams, though we did not
use this capability. To obtain offsets, we use a division-free modulo al-
gorithm [18] which only requires a single random draw per value. This
comes at the cost of some bias, which we expect to be acceptable. Some
numbers are generated less frequently than others, but the range of num-
bers, i.e. chunk offsets, for sorting 230 elements is 224, implying a bias of
only 2−8.

We perform the above loads and median three times for a total of
nine chunks loaded and 192 bytes of medians. Given expected input sizes
from 220 to 230, this corresponds to roughly log(n) samples. We then
reduce the buffer to a single median, starting with the above approach
to store the median of three vectors from the input buffer to a second
buffer. Once there are fewer input elements than the vector size, we load
single elements into vectors and again compute medians with the same
approach, but only store the first lane. The remaining zero, one or two
input elements are ignored. Finally, we swap the buffers, recurse until
fewer than three medians remain, and choose the first to be the pivot.

Note that this constant-sized sampling strategy may lead to O(N) re-
cursions of the main Quicksort [15] in the worst case. The C++ library
implementation in clang/LLVM was also vulnerable to this but has been
fixed [19]. To prevent or rather detect such quadratic runtimes, we impose
a limit of 2·log2(n)+4 recursions. If exceeded, then we switch to Heapsort,
which we find to be “only” 20–40 times as expensive as vectorized Quick-
sort (Table 2). By contrast, binary Quicksort or pivot switching [20, 6]
may recurse up to 64 times for 64-bit inputs, or even 1024 times (log2 of
the maximum double-precision floating-point exponent).

In practice, our sample is large enough to make the worst case ex-
tremely unlikely to happen [16] except in adversarial settings, but de-
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tecting and handling it only adds a few hundred bytes of code plus a
well-predicted branch, and guarantees O(n · log(n)) worst-case runtime.

If malicious input is possible and Heapsort would be unacceptably
slow, a secure random generator makes it infeasible for adversaries to pre-
dict the sampling locations and thus cause a skewed pivot if the adversaries
are not able to access the random generator state in memory. Otherwise,
adversaries could simply clone and query the generator to determine the
sample locations.

One such generator using hardware AES instructions as the round
function of a generalized Feistel network is indistinguishable from random
unless the adversary can perform more than 264 work [21], which is more
expensive than the Heapsort fallback it might provoke. With thrifty use
of this more expensive generator (obtaining five 64-bit random values
for the nine 32-bit chunk offsets), the sort is only 1–2% slower if the
VQSORT_SECURE_RNG option is enabled. This seems to be a reasonable cost
for the increase in robustness, but we disable it by default to avoid the
dependency on external code.

We also considered sampling a large fraction of the input, but this
is considerably slower on average. Finding the actual median determin-
istically would also avoid any imbalance, but is reportedly an order of
magnitude slower than our Partition [22], and thus cannot accelerate it.

2.3 Base case

We now handle small arrays separately as a ‘base case’ of the recur-
sion, a common optimization for Quicksort [6, 23]. Sorting networks
built upon vector instructions can have much lower constant factors than
other algorithms because they execute fewer instructions and avoid con-
ditional branches. For moderate input sizes, this outweighs their higher
O(n · log2(n)) complexity. With 256 or 512-bit vectors and 16–32 registers
commonly available, it is feasible to sort 64–256 elements within registers
— an order of magnitude more than the five-element network found in
LLVM’s Quicksort.

However, vector instructions entail handling input arrays that do not
evenly divide the vector size. Although instruction sets typically provide
some capability for only loading/storing valid lanes, AMD’s x86 imple-
mentation does not guarantee it can safely be used:“Exception and trap
behavior for elements not selected for loading or storing from/to mem-
ory is implementation dependent. For instance, a given implementation
may signal a data breakpoint or a page fault for doublewords that are zero-
masked and not actually written” [24]. Thus the function BaseCase begins
by copying the input range to buf using the SafeCopyN op, which either
uses masking or non-vector instructions to handle any remainder elements.
To ensure correct results, we then pad the buffer with neutral elements
(the last value in sort order) such that they remain in place while sorting.
Our vectorized sorting network (Section 3) can then load entire aligned
vectors from the buffer, and store the sorted results there. Finally, we
again copy these outputs to the original array.

Note that the buffer size is O(1) with respect to the overall input
to Quicksort. Our sorting network reshapes n inputs into a matrix of

9



r = 16 rows and the smallest power of two c ≤ 16 columns, such that
r · c ≥ n and c elements fit within a vector. Thus NBaseCase is r · c
and the buffer size must be at least 256 elements, plus two vectors for
padding in case vectors are larger than c. We also reuse this buffer in
PartitionToMultipleOfUnroll and ChoosePivot. Thus it must also fit
at least nine vectors or four chunks plus two vectors. Because RISC-
V (and to a lesser extent Arm SVE) vectors may be large, the buffer
size may exceed the limit for stack allocation. Unfortunately, the C++
standard forbids std::sort from allocating memory dynamically. Thus
vqsort cannot be used as a drop-in replacement on those platforms.

A framework for generating sorting networks from a domain-specific
language has been proposed [25]. However, this relies on in-register trans-
position, which is slower than the transpose-free networks that we propose
and describe in more detail in Section 3.

2.4 Sort order and 128-bit keys

Note that user-specified comparators interact poorly with runtime dis-
patch (choosing the sort implementation based on CPU capabilities). We
implement the latter by calling the best available implementation through
an indirect pointer. Unlike function templates such as std::sort, this
would not allow us to inline user-specified functions. We expect that
calling back to a comparator through another function pointer would be
expensive. If custom comparisons are required, they can be inserted into
a patched version of the vqsort source code, and exposed as a different
sort function.

However, we do generalize comparisons to enable sorting in ascend-
ing or descending order, which can be selected using a type-tag argu-
ment: SortAscending or SortDescending. Our vqsort implementation
is agnostic to the sort order because it builds upon an abstraction layer:
OrderAscending and OrderDescending. These define Compare, First,
FirstValue for padding, and FirstOfLanes (which is equivalent to the
result of First applied to successive lanes, but implemented using High-
way’s MinOfLanes reduction op). For every First* there is also a corre-
sponding Last*.

Recall that 128-bit keys (or 64-bit keys with 64-bit associated data) are
helpful for some information retrieval applications. SIMD/vector instruc-
tion sets generally do not support 128-bit lanes natively. We can choose
to split them into 64-bit halves, such that one vector holds all lower halves
of some keys, or take advantage of the fact that Highway guarantees at
least 128-bit vectors to treat pairs of 64-bit lanes as unsigned 128-bit num-
bers. The former is likely more efficient, but may require major changes
to the memory layout of applications. Thus we pursue the latter and find
it to be about 0.7 times as fast as native 64-bit sorts on x86, which is
surprising given that 128-bit comparisons require at least five instructions
(taken care of by Highway). We reproduce the x86 implementation in
Algorithm 2 for illustration; the functions called there are all Highway
ops.
This returns true in both lanes iff the upper lane is less, or the upper
lane is equal and the lower lane is less. The additional cost of pairs as
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Algorithm 2 128-bit comparison using pairs of 64-bit lanes

V eqHL = VecFromMask(d, Eq(a, b));

V ltHL = VecFromMask(d, Lt(a, b));

V ltLX = ShiftLeftLanes<1>(ltHL);

V vecHx = OrAnd(ltHL, eqHL, ltLX);

return InterleaveUpper(d, vecHx, vecHx);

opposed to separate halves is due to the required interactions between
the upper and lower lanes. This is rather unusual and poorly supported
in SIMD/vector instruction sets, especially copying the upper lane to the
lower lane in the final line. However, it seems bearable, especially on
x86. On AVX2, the VecFromMask op does not perform any work because
masks are the same as vectors. On AVX-512, this op does map to one
instruction, but converting to a vector enables fusing OrAnd to a single
ternlog instruction, and surprisingly, shifting lanes has lower latency than
shifting masks.

Because the emulated 128-bit comparisons also depend on the sort
order, we integrate them into the same abstraction, adding a layer to
bridge the differences between single-lane keys and pairs: KeyLane vs.
Key128. These define functions such as Swap (for HeapSort), SetKey from
a pointer, and others such as ReverseKeys for use by our sorting network.
Shared code that depends on the order is grouped into TraitsLane and
Traits128. Finally, a SharedTraits wrapper class, abbreviated as st,
inherits from these and is passed to the top-level Sort function.

3 Sorting networks

For sorting arrays in the ‘base case’ (n ≤ 256) we use sorting networks.
The building blocks of sorting networks are compare-and-exchange mod-
ules. A compare-and-exchange module consists of two nodes. Each node
receives a value. The two values in the module are sorted using a min
and a max operation. In a sorting network, the compare-and-exchange
modules are combined in such a way that they always sort a fixed-length
sequence of values.

Before we start sorting the arrays with sorting networks, we copy the
elements into an aligned buffer as described in Section 2.3. We interpret
the buffer as a matrix in row-major order, where the number of columns
corresponds to the number of elements in a vector. Our vectorization
strategy for sorting networks works as follows: First, the columns of the
matrix are sorted, then the sorted columns are directly merged with vec-
torized Bitonic Merge networks [26]. We set the number of rows in the
matrix to 16. Actually, any reasonable number of rows can be used, be-
cause, as we will show, it is not necessary to transpose the matrix before
merging the sorted columns. We use a matrix with 16 rows because then
Green’s irregular sorting network [27], which has the smallest number of
compare-and-exchange modules for sorting 16 elements [28], can be ap-
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plied directly to sort the elements within the columns. Furthermore, 16
is a power of two. For Bitonic Merge, a power of two as the number of
elements to merge is particularly efficient.

To illustrate our vectorization approach to sorting networks, we discuss
a showcase example, where the capacity of elements in a vector is limited
to four, and a total of 16 elements needs to be sorted. These restrictions
result in a 4×4 matrix. Figure 1 provides a high-level overview of sorting
the 4 × 4 matrix and of our approach in general.
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Figure 1: Sorting a 4 × 4 matrix. For sorting columns we use sorting net-
works with a minimum number of compare-and-exchange modules. To merge
the sorted columns, we apply Bitonic Merge directly, without transposing the
matrix.

For sorting the values in each column, pairwise minima and maxima
vector operations are sufficient. Thus, sorting values within columns of
a matrix with sorting networks is particularly vector-friendly. Each vec-
torized compare-and-exchange operation executes the same compare-and-
exchange module in all columns simultaneously. The number of instruc-
tions required to sort the elements within the columns is therefore deter-
mined by the number of compare-and-exchange modules in the sorting
network. Sorting networks with a minimum number of compare-and-
exchange modules are particularly suitable for sorting elements within
columns. We use Odd-even Mergesort [26] because its five compare-and-
exchange operations for four elements correspond to the lower bound [28].

Usually, after sorting the values column-wise the matrix is transposed,
so that the sorted column vectors become row vectors [4, 5]. We avoid this
transposition and start merging with vectorized Bitonic Merge networks
on the sorted columns themselves. First, the adjacent columns of the
matrix are merged. All two-column submatrices are sorted after the first
merge (see Figure 1). Next, the adjacent two-column submatrices are
merged, resulting in sorted four-column submatrices. Since the showcase
has only four columns, the matrix is now sorted. If the matrix had eight
columns, another merge of the sorted four-column submatrices would be
required, and so on.

The basic idea behind merging sorted columns or sorted submatrices
is to permute the values of vectors so that the two nodes of each compare-
and-exchange module are placed under the same index in two different
vectors. In other words: After a permutation, the two nodes of a module
are vertically aligned between two different vectors. In our showcase,
each vector contains four values, thus a vectorized compare-and-exchange
operation between two vectors executes at most four different modules.
However, to demonstrate our merging strategy for sorted columns, we use

12



a vector size of two. A vector size of two is sufficient to illustrate the first
Bitonic Merge from Figure 1, since the operations used are symmetric at
larger vector sizes.
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(a) scalar Bitonic Merge
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(b) vectorized Bitonic Merge

Figure 2: Bitonic Merge of two sorted arrays. Each array contains four values.

Figure 2a contains the scalar version for merging two sorted four-
element subarrays. In the first merge step the compare-and-exchange
modules (1,8), (2,7), (3,6) and (4,5) are executed. To execute the same
modules using vectorized compare-and-exchange operations (coex) in a
4 × 2 matrix, we first swap the adjacent elements of the last two vectors
(see Figure 2b left). In the second merge step the compare-and-exchange
modules (1,3), (2,4), (5,7) and (6,8) are executed. In the vectorized ver-
sion (Figure 2b center), we swap the adjacent elements of the second and
fourth vectors before executing the two vectorized compare-and-exchange
operations. In the last step, adjacent elements must be compared and
exchanged. If we had more than two values per vector, the last merge
step of Figure 2b (right) could also be vectorized. But, then only half
of the capacity of the vectors would be used, since the nodes of a mod-
ule are within one vector and not distributed over different vectors. For
our example with two elements per vector, scalar compare-and-exchange
operations can be used in the last merge step instead.

Figure 2b shows how to apply Bitonic Merge to sorted columns. Simi-
larly, Bitonic Merge can be applied directly to merge sorted submatrices.
The basic idea remains the same: the values of the vectors are permuted
so that the two nodes of each module are under the same index in two dif-
ferent vectors, and then vectorized compare-and-exchange operations can
be performed between vectors representing the same modules but opposite
nodes.
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4 Performance evaluations

4.1 Memory bandwidth is the bottleneck

So far, we have focused on efficient use of vector instructions. However, in
our experience, memory bandwidth is usually the limiting factor for the
performance of vectorized software. Here also, we find that partitioning
cache-resident data is two to three times as fast as partitioning large
amounts of data in memory (Figure 3). This holds even for 128-bit keys,
which as we saw in Algorithm 2 require at least five instructions per
comparison.
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Figure 3: Partition throughput [MB/s] for various data types on a single 3 GHz
Xeon Gold 6154 core, by number of inputs.

From this, we can conclude that Skylake CPUs are surprisingly efficient
at executing vector instructions, but their single-core memory bandwidth
seems under-provisioned relative to the vector capabilities. This gap
widens when considering multiple cores. The aggregate sort throughput
of concurrent sorts of 100M items (far exceeding the L3 cache size), run-
ning on a simple thread pool, plateaus after using only 40% of the cores
(Figure 4).
We speculate that the memory bandwidth provisioning is a choice rather
than an unavoidable constraint. Non-vector workloads are less likely to
expose this limitation. Assuming SPEC 2017 benchmarks are representa-
tive, their 1.5 instructions per cycle and 0.4 loads per retired µop [29] im-
pute bandwidth requirements of 7.2 or 14.4 GB/s (for 32- or 64-bit loads)
at 3 GHz, for which Skylake cores seem adequately provisioned. However,
as we have seen, vector workloads such as Partition (which includes
non-negligible computation per load) can utilize more than twice that per
core. Fujitsu’s A64FX demonstrates that it is feasible to integrate High-
Bandwidth Memory (HBM) into CPUs, enabling about 1 TB/s bandwidth
per chip, shared among 48 cores. The upcoming Intel Sapphire Rapids
CPU with HBM may also deliver similar bandwidth increases. However,
these are supercomputer or server-class CPUs and not yet widely used or
available. As an alternative or complement to hardware improvements,
we also consider algorithm-level changes.
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Figure 4: Aggregate sort throughput [MB/s] for 100M uniform random i64 keys
on two Xeon Gold 6154 CPUs at 3 GHz, by number of independent instances,
plus parallel efficiency.

4.2 More bandwidth-friendly algorithms

Recall that Quicksort only splits N inputs into two partitions, requiring
about log2(N) recursions. If we instead scatter inputs into K partitions,
the base of the logarithm changes to K, which seems promising. However,
our method of compressing vector lanes and storing to each partition
seems unsuitable for K ≥ 8 and current vector lengths of 512-bits. Given
64-bit keys, we would only be writing one key on average to each partition,
and CompressStore can only execute every other clock cycle on Skylake.
Thus the throughput would be limited to 64 bytes per 32 cycles, or 6 GB/s
at 3 GHz, which is far below the Skylake L3 cache bandwidth as seen in
Figure 3. That leaves K = 4, which was previously found to be helpful [30]
in a non-vectorized context. That algorithm can benefit from conditional
branches, which allow some comparisons to be skipped. However, we
prototyped vectorized compress with K = 4 and found it to reach about
half the speed of K = 2, thus negating the gain from halving the number
of recursions.

If vectorized multi-pivot is unhelpful, what about the extreme case of
Samplesort, which is essentially a very large (K = 256) generalization? As
expected, ips4o scales better than vqsort (Figure 5a) because it requires
fewer passes over the data, thus reducing pressure on the shared memory
system. However, in absolute terms, it is slower in aggregate for less than
19 threads. For a possible explanation, we note that ips4o executes nearly
five times as many instructions (5.2T versus 1.1T) because its current form
does not take advantage of vector instructions. As mentioned in the intro-
duction, it may be possible to accelerate ips4o using vector instructions
for scattering keys, or also slightly accelerating the comparisons used to
classify keys into buckets. However, this appears to be difficult given our
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(b) hybrid of vqsort and ips4o

Figure 5: Aggregate sort throughput [MB/s] for 100M uniform random i64 keys
on two Xeon Gold 6154 CPUs at 3 GHz, by number of independent instances,
plus parallel efficiency.

goal of a portable and vector-length-independent algorithm. We instead
pursue a simpler approach. Given that ips4o scales better, but has lower
single-core throughput, we can switch to vqsort after several initial recur-
sions of ips4o. To this end, we simply change baseCaseSort to call vqsort,
set IPS4OML_BASE_CASE_SIZE to 8192, and tweak IPS4OML_BLOCK_SIZE

and IPS4OML_UNROLL_CLASSIFIER to 1024 and 6, respectively. This im-
proves scalability (Figure 5b) and the geometric mean of speedups relative
to ips4o is 1.18. One may consider that underwhelming. Although this
benchmark seems representative of applications that divide their tasks into
independent shards, the memory bandwidth bottleneck limits the speedup
that can be observed. Measurements from the CPU uncore at one sec-
ond granularity confirm that each socket sees up to 74 GB/s read+write
traffic, about 80% of the value observed when running the multithreaded
STREAM benchmark v5.10. Thus we also measure in two other settings.
First, a single instance of ips4o’s parallel mode using 16 threads is much
less bandwidth-intensive, about 12 GB/s according to the same uncore
measurements. The geometric mean of the speedups of our hybrid vs.
ips4o is 1.59 (Table 1). Second, although a single core with near-exclusive
usage of the L3 cache is likely not representative of server workloads, we
include the results for completeness. Our hybrid is 2.89 times as fast
as ips4o (geometric mean), though still only 39-70% the speed of vqsort
(Table 2). vqsort using AVX-512 is in turn 18.9, 20.0, 9.6, and 8.9 times
as fast as the LLVM C++ library implementation of std::sort. vqsort
using AVX-512 is 1.5 to 2.0 times as fast as on AVX2, which has half the
vector width but may permit slightly higher CPU clock frequencies.
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Table 1: Aggregate sort throughput [MB/s] using 16 threads on one Xeon Gold
6154 CPU for various algorithms and data types.100M uniform random keys,
turbo disabled

ips4o hybrid

f32 2385 2552
i32 1512 2904
i64 2710 4779

u128 2703 4719

Table 2: Single-core sort throughput [MB/s] on one Xeon Gold 6154 CPU for
various algorithms and data types. 1M uniform random keys; VQ256 denotes
vqsort using AVX2

ips4o hybrid vqsort VQ256 std Heapsort

f32 142 445 1135 715 60 29
i32 152 495 1161 795 58 28
i64 284 700 1137 628 118 53

u128 287 791 1142 569 128 53

4.3 Performance portability

Performance portability entails not only running on other platforms, but
also reaching a high degree of efficiency. We show that this is achievable
on recent x86 CPUs as well as on other platforms with weaker vector units.
We measured the same source code and benchmark on an Apple M1 Max
system (Table 3). Note that the results are not directly comparable with
the Xeon because the M1’s clock rate differs (3.2 GHz). Even with the
M1’s 128-bit vectors and the older NEON instruction set, we observe a 3-
8x speedup over the standard library. Thus vqsort appears to be practical
and useful on multiple architectures and instruction sets.

Table 3: Single-threaded sort throughput [MB/s] on M1 Max for 1M uniform
random keys.

vqsort std Heapsort

f32 498 63 10
i32 499 76 13
i64 471 151 69

u128 466 151 69
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5 Limitations

To facilitate vectorization, we imposed a constraint on sort keys, namely,
that they be 16/32/64-bit integers, floating-point numbers, or pairs of 64-
bit numbers representing a 128-bit integer. (Note that x86 CPUs prior to
Icelake are not able to efficiently re-order 8-bit elements across a register,
which requires the VBMI instruction set.) This constraint excludes some
applications that need to sort tuples or large items with custom com-
parators. However, we argue that sorting numbers is still in widespread
use: ‘columnar’ databases store the values of each column contiguously,
and fields are often encoded as numbers. Database query engines typi-
cally require a stable sort (order-preserving among equivalent keys), which
Quicksort is not, but can be made so by appending a unique (row) iden-
tifier to the least-significant bits of the key. Thus we have one important
target application, typically involving 64-bit numbers.

To understand the impact, we surveyed uses of sorting in Google’s
production workloads and found that sorting numbers is actually more
costly in total than sorting strings or user-defined types including tuples.
Our methodology starts by searching in Google’s entire source code depot
for occurrences of std::sort and the wrapper function absl::c_sort.
A small fraction of these are excluded based on their filename (e.g. non-
source files) or path (e.g. compiler test suites). We then exclude the
vast majority whose directories do not account for a relevant number of
samples in Google-wide CPU usage measurements. This leaves several
hundred occurrences, which are still too numerous for manual inspection.
We further filter out calls (about half) which have an extra comparator
argument. Note that some of them may define a lexicographical ordering
within 128 or fewer bits of data, which could be supported by vqsort.
However, this would be laborious to prove, so we exclude them from our
analysis. We then manually inspect the code, finding that the total CPU
time for sort calls with up to 128-bit keys outnumbers the total for other
sorts (e.g. strings and tuples) by a factor of two. Although we are surprised
by this result, the straightforward and mostly automated methodology
makes us reasonably confident that the analysis is valid. However, there
is one major caveat: we only find calls to the standard library sort. Other
potential sort-like algorithms such as tournament sort are not included in
the analysis.

We remark that vectorizing sorts with custom comparators is still pos-
sible. Partition already calls a comparison function. The larger change
required would be to replace Min/Max in Partition with comparisons and
conditional swaps, which we leave for future work.

6 Conclusions

We used the Highway cross-platform abstraction layer for implementing
vqsort (vectorized Quicksort) and utilizing the most efficient instructions
available on the current CPU. The algorithm features a new recursive
sorting network for up to 256 elements that mitigates the previously re-
ported [23] problem of excessive code size, and also a vector-friendly pivot
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sampling, with the surprising result that robustness versus adversarial
input increases CPU cost by less than 2%.

Our measurements indicate that vqsort makes very good use of AVX-
512 instructions. To the best of our knowledge, it is the fastest sort for
individual (non-tuple) keys on AVX2 and AVX-512, outperforming the
standard library’s sort by factors of 10 to 20. When using Arm NEON
on Apple M1 hardware, we observe a 3-8x speedup versus the standard
library. We are currently only able to test the code for SVE and RISC-
V via emulators which do not predict performance. SVE benchmarking
may be feasible once Amazon’s Graviton3 CPUs are publicly accessible.
However, we can reasonably expect good results because both provide
native compress instructions. Integrating vsort into the state-of-the art
parallel sorter ips4o [13] yields a speedup of 1.59 (geometric mean).

In contrast to previous works, which can be seen as proofs of concept,
we have focused on practical usability (support for 32/64-bit floating-
point and 16/32/64/128-bit integer keys in ascending or descending or-
der), and performance portability (supporting seven instruction sets
with close-to native performance).
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