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Abstract
Read-Copy Update (RCU) is a scalable, high-performance
Linux-kernel synchronization mechanism that runs low-
overhead readers concurrently with updaters. Production-
quality RCU implementations for multi-core systems are
decidedly non-trivial. Giving the ubiquity of Linux, a rare
“million-year” bug can occur several times per day across
the installed base. Stringent validation of RCU’s complex
behaviors is thus critically important. Exhaustive testing is
infeasible due to the exponential number of possible execu-
tions, which suggests use of formal verification.

Previous verification efforts on RCU either focus on sim-
ple implementations or use modeling languages, the latter re-
quiring error-prone manual translation that must be repeated
frequently due to regular changes in the Linux kernel’s RCU
implementation. In this paper, we first describe the imple-
mentation of Tree RCU in the Linux kernel. We then discuss
how to construct a model directly from Tree RCU’s source
code in C, and use the CBMC model checker to verify its
safety and liveness properties. To our best knowledge, this
is the first verification of a significant part of RCU’s source
code, and is an important step towards integration of formal
verification into the Linux kernel’s regression test suite.

Categories and Subject Descriptors [D.2.4]: Software/Pro-
gram Verification—Model checking; [D.1.3]: Concurrent
Programming—Parallel programming

[Copyright notice will appear here once ’preprint’ option is removed.]

Keywords Software Verification, Parallel Computing, Read-
Copy Update, Linux Kernel

1. Introduction
The Linux operating system kernel [1] is widely used in a
variety of computing platforms, including servers, safety-
critical embedded systems, household appliances, and mo-
bile devices such as smartphones. Over the past 25 years,
many technologies have been added to the Linux kernel, one
example being Read-Copy Update (RCU) [18].

RCU is a synchronization mechanism that can be used
to replace reader-writer locks in read-mostly scenarios. It
allows low-overhead readers to run concurrently with up-
daters. Production-quality RCU implementations for multi-
core systems must provide excellent scalability, high through-
put, low latency, modest memory footprint, excellent energy
efficiency, and reliable response to CPU hotplug operations.
The implementation must therefore avoid cache misses, lock
contention, frequent updates to shared variables, and exces-
sive use of atomic read-modify-write and memory-barrier
instructions. Finally, the implementation must cope with the
extremely diverse workloads and platforms of Linux [19].

RCU is now widely used in the Linux-kernel networking,
device-driver, and file-storage subsystems [19, 20]. To date,
there are at least 75 million Linux servers [2] and 1.4 billion
Android devices [6], which means that a “million-year” bug
can occur several times per day across the installed base.
Stringent validation of RCU’s complex implementation is
thus critically important.

Most validation efforts for concurrent software rely on
testing, but unfortunately there is no cost-effective test strat-
egy that can cover all corner cases. Worse still, some of er-
rors that testing does detect might be difficult to reproduce,
diagnose, and repair. The concurrent nature of RCU and the
sheer size of the search space suggest use of formal verifica-
tion, particularly model checking [4].
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Formal verification has already been applied to some as-
pects of RCU design, including Tiny RCU [17], userspace
RCU [10], sysidle [17], and interactions between dyntick-
idle and non-maskable interrupts (NMIs) [16]. But these ef-
forts either validate trivial single-CPU RCU implementa-
tions in C (Tiny RCU), or use special-purpose languages
such as Promela [13]. Although special-purpose modeling
languages do have advantages, a major disadvantage in the
context of the Linux kernel is the difficult and error-prone
translation from source code. Other researchers have applied
manual proofs in formal logics to simple RCU implementa-
tions [11, 21]. These proofs are quite admirable, but require
even more manual work, in addition to the translation effort.

Worse yet, Linux kernel releases are only about 60 days
apart, and RCU changes with each release. Thus, any manual
work must be replicated about six times a year so that me-
chanical and manual models or proofs remain synchronized
with the Linux-kernel RCU implementation. Therefore, if
formal verification is to be part of Linux-kernel RCU’s re-
gression suite, the verification methods must be scalable and
automated. To this end, this paper describes how to build a
model directly from the Linux kernel source code, and use
the C Bounded Model Checker (CBMC) [7] to verify RCU’s
safety and liveness properties. To the best of our knowledge,
this is the first automatic verification of a significant part of
the Linux-kernel RCU source code.

2. Background
2.1 What is RCU?
Read-copy update (RCU) is a synchronization mechanism
that is often used to replace reader-writer locking. RCU read-
ers run concurrently with updaters, and so RCU avoids read-
side contention by maintaining multiple versions of objects
and ensuring they are not freed until all pre-existing readers
complete, that is, until after a grace period elapses. The basic
idea is to split updates into removal and reclamation phases
that are separated by a grace period [18]. The removal phase
removes reader-accessible references to objects, perhaps by
replacing them with new versions.

Modern CPUs guarantee that writes to single aligned
pointers are atomic, so that readers see either the old or
new version of the data structure. These atomic-write seman-
tics enable atomic insertions, deletions, and replacements
in a linked structure. This in turn enables readers to dis-
pense with expensive atomic operations, memory barriers,
and cache misses. In fact, in the most aggressive configu-
rations of Linux-kernel RCU, readers can use exactly the
same sequence of instructions that would be used in a single-
threaded implementation, providing RCU readers with ex-
cellent performance and scalability.

As illustrated in Figure 1, grace periods are only needed
for those readers whose runtime overlaps the removal phase.
Those that start after the removal phase cannot hold refer-
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Figure 1: RCU Concepts

int x = 0;

int y = 0;

int r1, r2;

void rcu_reader(void) {

rcu_read_lock();

r1 = x;

r2 = y;

rcu_read_unlock();

}

void rcu_updater(void) {

x = 1;

synchronize_rcu();

y = 1;

}

...

// after both rcu_reader()

// and rcu_updater() return

assert(r2 == 0 || r1 == 1);

Figure 2: Verifying RCU Grace Periods

ences to the removed objects and thus cannot be disrupted
by objects being freed during the reclamation phase.

2.2 Core RCU API Usage
The core RCU API is quite small and consists of only
five primitives: rcu read lock(), rcu read unlock(),
synchronize rcu(), rcu assign pointer(), and rcu

dereference() [19].
An RCU read-side critical section begins with rcu

read lock() and ends with a corresponding rcu read

unlock(). When nested, they are flattened into one large
critical section. Within a critical section, it is illegal to
block, but preemption is legal in a preemptible kernel. RCU-
protected data accessed by a read-side critical section will
not be reclaimed until after that critical section completes.

The function synchronize rcu() marks the end of the
updater code and the beginning of the reclaimer code. It
blocks until all pre-existing RCU read-side critical sections
have completed. Note that synchronize rcu() does not
necessarily wait for critical sections that begin after it does.
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Consider the example given in Figure 2. If the RCU read-
side critical section in function rcu reader() begins before
synchronize rcu() in rcu updater() is called, then it
must finish before synchronize rcu() returns, so that the
value of r2 must be 0. If it ends after synchronize rcu()

returns, then the value of r1 must be 1.
Finally, to assign a new value to an RCU-protected

pointer, RCU updaters use rcu assign pointer(), which
returns the new value. RCU readers can use rcu dereference()

to fetch an RCU-protected pointer, which can then be safely
dereferenced. The returned value is only valid within the
enclosing RCU read-side critical section. The rcu assign

pointer() and rcu dereference() functions work to-
gether to ensure that if a given reader dereferences an RCU-
protected pointer to a just-inserted object, the dereference
operation will return valid data rather than pre-initialization
garbage.

3. Implementation of Tree RCU
The primary advantage of RCU is that it is able to wait for an
arbitrarily large number of readers to finish without keeping
track every single one of them. The number of readers can
be large (up to the number of CPUs in non-preemptible im-
plementations and up to the number of tasks in preemptible
implementations). Although RCU’s read-side primitives en-
joy excellent performance and scalability, update-side prim-
itives must defer the reclamation phase till all pre-existing
readers have completed, either by blocking or by register-
ing a callback that is invoked after a grace period. The per-
formance and scalability of RCU relies on efficient mecha-
nisms to detect when a grace period has completed. For ex-
ample, a simplistic RCU implementation might require each
CPU to acquire a global lock during each grace period, but
this would severely limit performance and scalability. Such
an implementation would be quite unlikely to scale beyond
a few hundred CPUs. This is woefully insufficient because
Linux runs on systems with thousands of CPUs. This has
motivated the creation of Tree RCU.

3.1 Overview
We focus on the “vanilla” RCU API in a non-preemptible
build of the Linux kernel, specifically on the rcu read

lock(), rcu read unlock(), and synchronize rcu()

primitives. The key idea is that RCU read-side primitives
are confined to kernel code and, in non-preemptible imple-
mentations, do not block. Thus, when a CPU is blocking, in
the idle loop, or running in user mode, all RCU read-side
critical sections that were previously running on that CPU
must have finished. Each of these states is therefore called a
quiescent state. After each CPU has passed through a qui-
escent state, the corresponding RCU grace period ends. The
key challenge is to determine when all necessary quiescent
states have completed for a given grace period—and to do
so with excellent performance and scalability.

For example, if RCU used a single data structure to record
each CPU’s quiescent states, the result would be extreme
lock contention on large systems, in turn resulting in poor
performance and abysmal scalability. Tree RCU therefore
instead uses a tree hierarchy of data structures, each leaf of
which records quiescent states of a single CPU and prop-
agates the information up to the root. When the root is
reached, a grace period has ended. Then the grace-period
information is propagated down from the root to the leaves
of the tree. Shortly after the leaf data structure of a CPU re-
ceives this information, synchronize rcu() will return.

In the remainder of this section, we discuss the imple-
mentation of the non-preemptible Tree RCU in the Linux
kernel version 4.3.6. We first briefly discuss the implemen-
tation of read/write-side primitives. We then explain Tree
RCU’s hierarchical data structure which records quiescent
states while maintaining bounded lock contention. Finally,
we discuss how RCU uses this data structure to detect qui-
escent states and grace periods without individually tracking
readers.

3.2 Read/Write-Side Primitives
In a non-preemptible kernel, any region of kernel code that
does not voluntarily block is implicitly an RCU read-side
critical section. Therefore, the implementations of rcu

read lock() and rcu read unlock() need do nothing
at all, and in fact in production kernel builds that do not have
debugging enabled, these two primitives have absolutely no
effect on code generation.

In the common case where there are multiple CPUs run-
ning, the update-side primitive synchronize rcu() calls
wait rcu gp(), which is an internal function that uses
a callback mechanism to invoke wakeme after rcu() at
the end of some later grace period. As its name suggests,
wakeme after rcu() function wakes up wait rcu gp(),
which returns, in turn allowing synchronize rcu() to re-
turn control to its caller.

3.3 Data Structures of Tree RCU
RCU’s global state is recorded in the rcu state structure,
which consists of a tree of rcu node structures with a child
count of up to 64 (32 in a 32-bit system). Every leaf node
can have at most 64 rcu data structures (again 32 on a 32-
bit system), each representing a single CPU, as illustrated
in Figure 3. Each rcu data structure records its CPU’s qui-
escent states, and the rcu node tree propagates these states
up to the root, and then propagates grace-period informa-
tion back down to the leaves. Quiescent-state information
does not propagate upwards from a given node until a qui-
escent state has been reported by each CPU covered by the
subtree headed by that node. This propagation scheme dra-
matically reduces the lock contention experienced by the up-
per levels of the tree. For example, consider a default rcu
node tree for a 4,096-CPU system, which will have have
256 leaf nodes, four internal nodes, and one root node. Dur-
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Figure 3: Tree RCU Hierarchy
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struct rcu_state

Figure 4: Array Representation for a Tree of rcu node

Structures

ing a given grace period, each CPU will report its quiescent
states to its leaf node, but there will only be 16 CPUs con-
tending for each of those 256 leaf nodes. Only 256 of the
CPUs will report quiescent states to the internal nodes, with
only 64 CPUs contending for each of the four internal nodes.
Only four CPUs will report quiescent states to the root node,
resulting in extremely low contention on the root node’s
lock, so that contention on any given rcu node structure is
sharply bounded even in very large configurations. The cur-
rent RCU implementation in the Linux kernel supports up to
a four-level tree, and thus in total 644 = 16, 777, 216 CPUs
in a 64 bit machine.1

3.3.1 rcu state Structure
Each flavor of RCU has its own global rcu state struc-
ture. The rcu state structure includes a array of rcu

node structures organized as a tree struct rcu node

node[NUM RCU NODES], with rcu data structures con-
nected to the leaves. Given this organization, a breadth-first
traversal is simply a linear scan of the array. Another ar-
ray struct rcu node *level[NUM RCU LVLS] is used to

1 Four-level trees are only used in stress testing, but three-level trees are
used in production by 4096-CPU systems.

point to the left-most node at each level of the tree, as shown
in Figure 4.

The rcu state structure uses unsigned long fields
->gpnum and ->completed to track RCU’s grace periods.
The ->gpnum field records the most recently started grace
period, whereas ->completed records the most recently
ended grace period. If the two numbers are equal, then cor-
responding flavor of RCU is idle. If gpnum is one greater
than completed, then RCU is in the middle of a grace pe-
riod. All other combinations are invalid.

3.3.2 rcu node Structure
The tree of rcu node structures records and propagates
quiescent-state information from the leaves to the root, and
also propagates grace-period information from the root to
the leaves. The rcu node structure has a spinlock ->lock

to protect its fields. The ->parent field references the parent
rcu node structure, and is NULL for the root. The ->level

field indicates the level in the tree, counting from zero at the
root. The ->grpmask field identifies this node’s bit in the
->qsmask field of its parent. The ->grplo and ->grphi

fields indicates the lowest and highest numbered CPU that
are covered by this rcu node structure, respectively.

The ->qsmask field indicates which of this node’s chil-
dren still need to report quiescent states for the current grace
period. As with rcu state, the rcu node structure has
->gpnum and ->completed fields that have values identi-
cal to those of the enclosing rcu state structure, except at
the beginnings and ends of grace periods when the new val-
ues are propagated down the tree. Each of these fields can be
smaller than its rcu state counterpart by at most one.

3.3.3 rcu data structure
The rcu data structure detects quiescent states and handles
RCU callbacks for the corresponding CPU. The structure is
accessed primarily from the corresponding CPU, thus avoid-
ing synchronization overhead. As with the rcu state struc-
ture, different flavors of RCU maintain their own per-CPU
rcu data structures. The ->cpu field identifies the corre-
sponding CPU, the ->rsp field references the correspond-
ing rcu state structure, and the ->mynode field references
the corresponding leaf rcu node structure. The ->grpmask
field identifies this rcu data structure’s bit in the ->qsmask
field of its leaf rcu node structure.

The rcu data structure’s ->qs pending field indicates
that RCU needs a quiescent state from the corresponding
CPU, and the ->passed quiesce indicates that the CPU
has already passed through a quiescent state. The rcu data

also has ->gpnum and ->completed fields, which can lag
arbitrarily behind their counterparts in the rcu state and
rcu node structures on idle CPUs. However, on the non-idle
CPUs that are the focus of this paper, they can lag at most
one grace period behind their leaf rcu node counterparts.

The rcu state structure’s ->gpnum and ->completed

fields represent the most current values, and are tracked
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Figure 5: Callback Queuing in rcu data

closely by those of the rcu node structure, which allows the
->gpnum and ->completed fields in the rcu data struc-
tures to be are compared against their counterparts in the
corresponding leaf rcu node to detect a new grace period.
This scheme allows CPUs to detect beginnings and ends of
grace periods without incurring lock- or memory-contention
penalties. The rcu data structure manages RCU callbacks
using a four-segment list [14].

3.3.4 RCU Callbacks
The rcu data structure manages RCU callbacks using
a ->nxtlist pointer tracking the head of the list and
an array of ->nxttail[] tail pointers that form a four-
segment list of callbacks [14], with each element of the
->nxttail[] array referencing the tail of the correspond-
ing segment, as shown in Figure 5. The segment ending
with ->nxttail[RCU DONE TAIL] (the “RCU DONE TAIL

segment”) contains callbacks handled by a prior grace pe-
riod that are therefore ready to be invoked. The RCU WAIT

TAIL and RCU NEXT READY TAIL segments contain call-
backs waiting for the current and the next grace period, re-
spectively. Finally, the RCU NEXT TAIL segment contains
callbacks that are not yet associated with any grace period.
The ->qlen field counts the total number of callbacks, and
the ->blimit field specifies the maximum number of RCU
callbacks that may be invoked at a given time, thus limiting
response-time degradation due to long lists of callbacks.2

Back in Figure 5, the ->nxttail[RCU DONE TAIL] ar-
ray element references ->nxtlist, which means none of
the callbacks are ready to invoke. The ->nxttail[RCU

WAIT TAIL] element references callback 2’s ->next pointer,

2 Workloads requiring aggressive real-time guarantees should use callback
offloading, which is outside of the scope of this paper.

meaning that callbacks CB 1 and CB 2 are waiting for the
current grace period. The ->nxttail[RCU NEXT READY

TAIL] element references that same ->next pointer, mean-
ing that no callbacks are waiting for the next grace period.
Finally, the callbacks between the ->nxttail[RCU NEXT

READY TAIL] and ->nxttail[RCU NEXT TAIL] elements
(CB 3 and CB 4) are not yet assigned to a specific grace
period. The ->nxttail[RCU NEXT TAIL] element always
references either the last callback or, when the entire list is
empty, ->nxtlist.

Cache locality is promoted by invoking callbacks on the
CPU that registered them. For example, RCU’s update-side
primitive synchronize rcu() appends callback wakeme

after rcu() to the end of the ->nxttail[RCU NEXT

TAIL] list in the current CPU (Section ??). They are ad-
vanced one segment towards the head of the list (via rcu

advance cbs()) when the CPU detects the current grace
period has ended, which is indicated by the ->completed

field of the CPU’s rcu data structure being one smaller
than its counterpart in the corresponding leaf rcu node

structure. The CPU also periodically merges the RCU NEXT

TAIL segment into the RCU NEXT READY TAIL segment by
calling rcu accelerate cbs(). In a few special cases, the
CPU merges the RCU NEXT TAIL segment into the RCU

WAIT TAIL segment, bypassing the RCU NEXT TAIL seg-
ment. This optimization applies when the CPU is starting
a new grace period. It does not apply when a CPU notices
a new grace period because that grace period might well
have started before the callbacks were added to the RCU

NEXT TAIL segment. This is a deliberate design choice: It
is more important for the CPUs to operate independently
(thus avoiding contention and synchronization overhead)
than it is to decrease grace-period latencies. In those rare
occasions where low grace-period latency is important,
the synchronize rcu expedited() should be used. This
function has the same semantics as does synchronize

rcu(), but trades off efficiency optimizations in favor of
reduced latency.

Each RCU callbacks is an rcu head structure which has
a ->next field that points to the next callback on the list and
a ->func field that references the function to be invoked at
the end of an upcoming grace period.

3.4 Quiescent State Detection
RCU has to wait until all pre-existing read-side critical sec-
tions have finished before it can safely allow a grace period
to end. The performance and scalability of RCU rely on its
ability to efficiently detect quiescent states and determine
whether the set of quiescent states detected thus far allows
the grace period to end. If each CPU (or, in the case of pre-
emptible RCU, each task) has passed through a quiescent
state, a grace period has elapsed.

The non-preemptible RCU-sched flavor’s quiescent states
apply to CPUs, and are user-space execution, context switch,
idle, and offline state. Therefore, RCU-sched only needs to
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track tasks and interrupt handlers that are actually running
because blocked and preempted tasks are always in quies-
cent states. Thus, RCU-sched needs only track CPU states.

3.4.1 Scheduling-Clock Interrupt
The rcu check callbacks() is invoked from the sched-
uling-clock interrupt handler, which allows RCU to peri-
odically check whether a given busy CPU is in the user-
mode or idle-loop quiescent states. If the CPU is in one of
these quiescent states, rcu check callbacks() invokes
rcu sched qs(), which sets the per-CPU rcu sched

data.passed quiesce fields to 1.
The rcu check callbacks() function invokes rcu

pending() to determine whether a recent event or cur-
rent condition means that RCU requires attention from
this CPU. If so, rcu check callbacks() invokes raise
softirq(), which will cause rcu process callbacks()

to be invoked once the CPU reaches a state where it is safe
to do so (roughly speaking, once the CPU has interrupts,
preemption, and bottom halves enabled). This function is
discussed in detail in Section 3.5.

3.4.2 Context-Switch Handling
The context-switch quiescent state is recorded by invoking
rcu note context switch() from schedule() (and,
for the benefit of virtualization, also from rcu virt note

context switch()). The rcu note context switch()

function invokes rcu sched qs() to inform RCU of the
context switch, which is a quiescent state of the CPU.

3.5 Grace Period Detection
Once each CPU has passed through a quiescent state, a
grace period for RCU has completed. As discussed in Sec-
tion 3.3, Tree-RCU uses a hierarchy of rcu node struc-
tures to manage quiescent state and grace period informa-
tion. Quiescent-state information is passed up the tree from
the leaf per-CPU rcu data structures. Grace-period infor-
mation is passed down from the root. We focus on grace-
period detection for busy CPUs, as illustrated in Figure 6.

3.5.1 Softirq Handler for RCU
RCU’s busy-CPU grace period detection relies on the RCU

SOFTIRQ handler function rcu process callbacks(),
which is scheduled from the scheduling-clock interrupt. This
function first calls rcu check quiescent state() to re-
port recent quiescent states on the current CPU. Then rcu

process callbacks() starts a new grace period if needed,
and finally calls invoke rcu callbacks() to invoke any
callbacks whose grace period has already elapsed.

Function rcu check quiescent state() first invokes
note gp changes() to update the CPU-local rcu data

structure to record the end of previous grace periods and
the beginning of new grace periods. Any new values for
these fields are copied from the leaf rcu node structure to
the rcu data structure. If an old grace period has ended,
rcu advance cbs() is invoked to advance all callbacks,
otherwise, rcu accelerate cbs() is invoked to assign a
grace period to any recently arrived callbacks. If a new grace
period has started, ->passed quiesce is set to zero, and if
in addition RCU is waiting for a quiescent state from this
CPU, ->qs pending is set to one, so that a new quiescent
state will be detected for the new grace period.

Next, rcu check quiescent state() checks whether
->qs pending indicates that RCU needs a quiescent state
from this CPU. If so, it checks whether ->passed quiesce

indicates that this CPU has in fact passed through a quiescent
state. If so, it invokes rcu report qs rdp() to report that
quiescent state up the combining tree.

The rcu report qs rdp() function first verifies that the
CPU has in fact detected a legitimate quiescent state for the
current grace period, and under the protection of the leaf
rcu node structure’s ->lock. If not, it resets quiescent-state
detection and returns, thus ignoring any redundant quiescent
states belonging to some earlier grace period. Otherwise, if
the ->qsmask field indicates that RCU needs to report a
quiescent state from this CPU, rcu accelerate cbs() is
invoked to assign a grace-period number to any new call-
backs, and then rcu report qs rnp() is invoked to report
the quiescent state to the rcu node combining tree.

The rcu report qs rnp() function traverses up the
rcu node tree, at each level holding the rcu node struc-
ture’s ->lock. At any level, if the child structure’s ->qsmask
bit is already clear, or if the ->gpnum changes, traversal
stops. Otherwise, the child structure’s bit is cleared from
->qsmask, after which, if ->qsmask is non-zero, traversal
stops. Otherwise, traversal proceeds on to the parent rcu
node structure. Once the root is reached, traversal stops
and rcu report qs rsp() is invoked to awaken the grace-
period kthread (kernel thread). The grace-period kthread
will then clean up after the now-ended grace period, and,
if needed, start a new one.
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3.5.2 Grace-Period Kernel Thread
The RCU grace-period kthread invokes rcu gp kthread(),
which contains an infinite loop that initializes, waits for, and
cleans up after each grace period.

When no grace period is required, the grace-period
kthread sets its rcu state structure’s ->flags field to RCU
GP WAIT GPS, and then waits within an inner infinite loop
for that structure’s ->gp state field to be set. Once set,
rcu gp kthread() invokes rcu gp init() to initialize
a new grace period, which rechecks the ->gp state field
under the root rcu node structure’s ->lock. If the field
is no longer set, rcu gp init() returns zero. Otherwise,
it increments rsp->gpnum by 1 to record a new grace pe-
riod number. Finally, it performs a breadth-first traversal of
the rcu node structures in the combining tree. For each
rcu node structure rnp, we set the rnp->qsmask to in-
dicate which children must report quiescent states for the
new grace period (Section 3.3.2), and set rnp->gpnum and
rnp->completed to their rcu state counterparts. If the
rcu node structure rnp is the parent of the current CPU’s
rcu data, we invoke note gp changes() to set up the
CPU-local rcu data state. Other CPUs will invoke note

gp changes() after their next scheduling-clock interrupt.
To clean up after a grace period, rcu gp kthread()

calls rcu gp cleanup() after setting the rcu state field
rsp->gp state to RCU GP CLEANUP. After the function re-
turns, rsp->gp state is set to RCU GP CLEANED to record
the end of the old grace period. Function rcu gp cleanup()

performs a breadth-first traversal of rcu node combining-
tree. It first sets each rcu node structure’s ->completed

field to the rcu state structure’s ->gpnum field. It then
updates the current CPU’s CPU-local rcu data structure
by calling note gp changes(). For other CPUs, the up-
date will take place when they handle the scheduling-clock
interrupts, in a fashion similar to rcu gp init(). After
the traversal, it marks the completion of the grace period
by setting the rcu state structure’s ->completed field to
that structure’s ->gpnum field, and invokes rcu advance

cbs() to advance callbacks. Finally, if another grace period
is needed, we set rsp->gp flags to RCU GP FLAG INIT.
Then in the next iteration of the outer loop, the grace-period
kthread will initialize a new grace period as discussed above.

4. Verification Scenario
We use the example in Figure 2 to demonstrate how the dif-
ferent components of Tree RCU work together to guarantee
that all pre-existing read-side critical sections finish before
RCU allows a grace period to end. This example will drive
the verification, which will check for violations of the asser-
tion at this end of the code.

We focus on the implementation of the non-preemptible
RCU-sched flavor. We further assume there are only two
CPUs, and that CPU 0 executes function rcu reader() and
CPU 1 executes rcu updater(). When the system boots,

the Linux kernel calls rcu init() to initialize RCU, which
includes constructing the combining tree of rcu node and
rcu data structures via rcu init geometry() and initial-
izing the fields of the nodes in the tree for each RCU flavor
via rcu init one(). In our example it will be a one-level
tree that has one rcu node structure as root and two children
that are rcu data structures for each CPU. Function rcu

spawn gp kthread() is also called to initialize and spawn
the RCU grace-period kthread for each RCU flavor.

Referring again to Figure 2, suppose that rcu reader()

begins execution on CPU 0 while rcu updater() concur-
rently sets x to 1 and then invokes synchronize rcu() on
CPU 1. As discussed in Section 3.2, synchronize rcu()

invokes wait rcu gp(), which in turn registers an RCU
callback that will invoke wakeme after rcu() some time
after rcu reader() exits its critical section.

However, this critical-section exit has no immediate ef-
fect. Instead, a later context switch will invoke rcu note

context switch(), which in turn invokes rcu sched

qs(), recording the quiescent state in the CPU’s rcu

sched data structure’s ->passed quiesce field. Later, a
scheduling-clock interrupt will invoke rcu check callbacks(),
which calls rcu pending() and notes that the ->passed

quiesce field is set. This will cause rcu pending() to re-
turn true, which in turn causes rcu check callbacks()

to invoke rcu process callbacks(). In its turn, rcu

process callbacks() will invoke raise softirq(RCU

SOFTIRQ), which, once the CPU has interrupts, preemption,
and bottom halves enabled, calls rcu process callbacks().

As discussed in Section 3.5.1, RCU’s softirq handler
function rcu process callbacks() first calls rcu check

quiescent state() to report any recent quiescent states
on the current CPU (CPU 0). Then it checks whether the
CPU 0 has passed a quiescent state. Since a quiescent state
has been recorded for CPU 0, rcu report qs rnp() is in-
voked to traversal up the combining tree. It clears the first bit
of the root rcu node structure’s qsmask field (recall that the
RCU combining tree has only one level). Since the second
bit for CPU 1 has not been cleared, the function returns.

Since synchronize rcu() blocks in CPU 1, it will re-
sult in a context switch. This triggers a sequence of events
similar to that described above for CPU 1, which results in
the clearing of the second bit of the root rcu node struc-
ture’s ->qs mask field, the value of which is now 0, indi-
cating the end of the current grace period. CPU 1 therefore
invokes rcu report qs rsp() to awaken the grace-period
kthread, which will clean up the ended grace period, and, if
needed, start a new one (Section 3.5.2).

Lastly, rcu process callbacks() calls invoke rcu

callbacks() to invoke any callbacks whose grace period
has already elapsed, for example, wakeme after rcu(),
which will allow synchronize rcu() to return.
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5. Modeling RCU for CBMC
The C Bounded Model Checker (CBMC)3 is a program an-
alyzer that implements bit-precise bounded model checking
for C programs [7]. CBMC can demonstrate violation of as-
sertions in C programs, or prove their safety under a given
loop unwinding bound. It translates an input C program into
a formula, which is then passed to a modern SAT or SMT
solver together with a constraint that specifies the set of error
states. If the solver determines the formula to be satisfiable,
an error trace giving the exact sequence of events is extracted
from the satisfying assignment. Recently, support has been
added for verifying concurrent programs over a wide range
of memory models, including SC, TSO, and PSO [3].

In the remainder of this section we describe how to con-
struct a model from the source code of the Tree RCU imple-
mentation in the Linux kernel version 4.3.6, which can be
verified by CBMC. Model construction entailed stubbing out
calls to other parts of the kernel, removing irrelevant func-
tionality (such as idle-CPU detection), removing irrelevant
data (such as statistics), and adding preprocessor directives
to conditionally inject bugs (described in Section 6.1). The
Linux kernel environment and the majority of these changes
to the source code are made through macros in separate files
that can be reused across different versions of the Tree RCU
implementation. The biggest change in the source files is to
use arrays to model per-CPU data, which could potentially
be scripted. The resulting model is C code with assertions
that can be also run as a user program, which provides im-
portant validation of the model itself.

Initialization
Our model first invokes rcu init() which in turn invokes:
(1) rcu init geometry() to compute the rcu node tree
geometry; (2) rcu init one to initialize the rcu state

structure; (3) rcu cpu notify() to initialize each CPU’s
rcu data structure. This boot initialization tunes the data-
structure configuration to match that of the specific hardware
at hand. For example, a large-system tree might resemble
Figure 3, while a small configuration has a single rcu node

“tree”. The model then calls rcu spawn gp kthread() to
spawn the grace-period kthreads discussed below.

Per-CPU Variables and State
RCU uses per-CPU data to provide cache locality and to re-
duce contention and synchronization overhead. For example,
the per-CPU structure rcu data records quiescent states
and handles RCU callbacks (Section 3.3.3). We model this
per-CPU data as an array, indexed by CPU ID.

It is also necessary to model per-CPU state, including
the currently running task and whether or not interrupts
are enabled. Identifying the running task requires a (trivial)
model of the Linux-kernel scheduler, which uses an integer
array cpu lock, indexed by CPU ID. Each element of this

3 http://www.cprover.org/cbmc/

array models an exclusive lock. When a task schedules on
a given CPU, it acquires the corresponding CPU lock, and
releases it when scheduling away. We currently do not model
preemption, so need model only voluntary context switches.

A pair of integer arrays local irq depth and irq lock

is used to model CPUs enabling and disabling interrupts.
Both arrays are indexed by CPU ID, with the first recording
each CPU’s interrupt-disable nesting depth and the second
recording whether or not interrupts are disabled.

Update-Side API synchronize sched()

Because our model omits CPU hotplug and callback han-
dling, we cannot use Tree RCU’s normal callback mecha-
nisms to detect the end of a grace period. We therefore use
a global variable wait rcu gp flag, which is initialized
to 1 in wait rcu gp() before the grace period. Because
wait rcu gp() blocks, it can result in a context switch,
the model invokes rcu note context switch(), followed
by a call to rcu process callbacks() to inform RCU
of the resulting quiescent state. When the resulting quies-
cent states propagate to the root of the combining tree, the
grace-period kthread is awakened. This kthread then invokes
rcu gp cleanup(), the modeling of which is described be-
low. Then rcu gp cleanup() calls rcu advance cbs(),
which invokes pass rcu gp() to clear the wait rcu gp

flag flag. The CPROVER assume(wait rcu gp flag

== 0) in wait rcu gp() prevents CBMC from contin-
uing execution until wait rcu gp flag is equal to 0, thus
modeling the needed grace-period wait.

Scheduling-Clock Interrupt and Context Switch
The rcu check callbacks() function detects idle execu-
tion, usermode execution, and to invoke RCU core process-
ing in response to state changes. Because we model neither
idle nor usermode execution, the only state changes are qui-
escent states and the beginnings and ends of grace periods.
We therefore dispense with rcu check callbacks() (Sec-
tion 3.5.1). Instead, we directly call rcu note context

switch() just after releasing a CPU, which in turn calls
rcu sched qs() to record the quiescent state. Finally, we
call rcu process callbacks(), which notes grace-period
beginnings and ends and reports quiescent states up RCU’s
combining tree.

Grace-Period Kthread
As discussed in Section 3.5.2, rcu gp kthread() invokes
rcu gp init(), rcu gp fqs(), and rcu gp cleanup()

to initialize, wait for, and clean up after each grace period,
respectively. To reduce the size of the formula generated
by CBMC, instead of spawning a separate thread, we di-
rectly call rcu gp init() from rcu spawn gp kthread

and rcu gp cleanup() from rcu report qs rsp(). Be-
cause we model neither idle nor usermode execution, we
need not call rcu gp fqs().

8 2016/10/11

http://www.cprover.org/cbmc/


Kernel Spin Locks
CBMC’s CPROVER atomic begin(), CPROVER atomic

end(), and CPROVER assume() built-in primitives are
used to construct atomic test-and-set for spinlock t and
raw spinlock t acquisition and atomic reset for release.
We use GCC atomic builtins for user-space execution:
while ( sync lock test and set(lock, 1)) acquires
a lock and sync lock release(lock) releases it.

Limitations
We model only the fundamental components of Tree RCU,
excluding, for example, quiescent-state forcing, grace-period
expediting, and callback handling. In addition, we make the
assumption that all CPUs are busy executing RCU related
tasks. As a result, we do not model the following scenarios:
1. CPU hotplug and dyntick-idle; 2. Thread-migration fail-
ure modes in the Linux kernel involving per-CPU variables;
3. RCU priority boosting. Moreover, we model scheduling-
clock interrupts as direct function calls, which, as discussed
later, results in failures to model one of the bug-injection sce-
narios. Lastly, the test harness we use only passes through
a single grace period, so cannot detect failures involving
multiple grace periods.

6. Experiments
In this section we discuss our experiments verifying the
Linux-kernel Tree RCU implementation. We first describe
several bug-injection scenarios used in the experiments.
Next, we report results of user-space runs of the RCU model.
Then we describe how verify our RCU model using CBMC.
Finally, we discuss the experimental results. We performed
our experiments on a 64-bit machine running Linux 3.19.8
with eight Intel Xeon 3.07 GHz cores and 48 GB of memory.

6.1 Bug-Injection Scenarios
Because we model non-preemptible Tree RCU, each CPU
runs exactly one RCU task as a separate thread. Upon com-
pletion, each task increments a global counter thread cnt,
enabling the parent thread to verify the completion of all
RCU tasks using a statement CPROVER assume(thread

cnt == 2). The base case uses the example in Figure 2,
including its assertion assert(r2 == 0 || r1 == 1).
This assertion does not hold when RCU’s fundamental
safety guarantee is violated: read-side critical sections can-
not span grace periods [9]. We also verify a weak form of
liveness by inserting an assert(0) after the CPROVER

assume(thread cnt == 2) statement. This assertion can-
not hold, and so it will be violated if at least one grace pe-
riod completes. Such a “verification failure” is in fact the
expected behavior for a correct RCU implementation. On
the other hand, if the assertion is not violated, grace periods
never complete, which indicates a liveness bug.

To validate our verification, we also run CBMC with
the bug-injection scenarios described below,4 which are
simplified versions of bugs encountered in actual practice.
Bugs 2–6 are liveness checks and thus use the aforemen-
tioned assert(0), and the remaining scenarios are safety
checks which thus use the base-case assertion in Figure 2.

Bug 1 This bug-injection scenario makes the RCU update-
side primitive synchronize rcu() return immediately
(line 523 in tree plugin.h). With this injected bug, up-
daters never wait for readers, which should result in a safety
violation, thus preventing Figure 2’s assertion from holding.

Bug 2 The key idea behind this bug-injection scenario is
to prevent individual CPUs from realizing that quiescent
states are needed, thus preventing them from recording qui-
escent states. As a result, it prevents grace periods from
completing. Specifically, in function rcu gp init(), for
each rcu node structure in the combining tree, we set the
field rnp->qsmask to 0 instead of rnp->qsmaskinit (line
1889 in tree.c). Then when rcu process callbacks()

is called, rcu check quiescent state() will invoke
note gp changes() that sets rdp->qs pending to 0.

Thus, rcu check quiescent state() will return with-
out calling rcu report qs rdp(), preventing grace peri-
ods from completing. This liveness violation should fail to
trigger a violation of the end-of-execution assert(0).

Bug 3 This bug-injection scenario is a variation of Bug 2,
in which each CPU remains aware that quiescent states are
required, but incorrectly believes that it has already reported
a quiescent state for the current grace period. To accomplish
this, in note gp changes(), we clear rnp->qsmask by
adding a statement rnp->qsmask &= ~rdp->grpmask; in
the last if code block (line 1739 in tree.c). Then function
rcu report qs rnp() never walks up the rcu node tree,
resulting in a liveness violation as in Bug 2.

Bug 4 This bug-injection scenario is an alternative code
change that gets the same effect as does Bug 2. For this
alternative, in note gp changes(), we set the rdp->qs
pending field to 0 directly (line 1749 in tree.c). This is a
variant of Bug 2 and thus also a liveness violation.

Bug 5 In this bug-injection scenario, CPUs remain aware
of the need for quiescent states. However, CPUs are pre-
vented from recording their quiescent states, thus preventing
grace periods from ever completing. To accomplish this,
we modify function rcu sched qs() to return immedi-
ately (line 246 in tree.c), so that quiescent states are not
recorded. Grace periods therefore never complete, which
constitutes a liveness violation similar to Bug 2.

Bug 6 In this bug-injection scenario, CPUs are aware of
the need for quiescent states, and they also record them lo-
cally. However, they are prevented from reporting them up

4 Source code is available: http://lxr.free-electrons.com/

source/kernel/rcu/?v=4.3
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the rcu node tree, which again prevents grace periods from
ever completing. This bug modifies function rcu report

qs rnp() to return immediately (line 2227 in tree.c). This
prevents RCU from walking up the rcu node tree, thus pre-
venting grace periods from ending. This is again a liveness
violation similar to Bug 2.

Bug 7 Where Bug 6 prevents quiescent states from be-
ing reported up the rcu node tree, this bug-injection sce-
nario causes quiescent states to be reported up the tree
prematurely, before all the CPUs covered by a given sub-
tree have all reported quiescent states. To this end, in
rcu report qs rnp(), we remove the if-block check-
ing for rnp->qsmask != 0 || rcu preempt blocked

readers cgp(rnp) (line 2251 in tree.c). Then the tree-
walking process will not stop until it reaches the root, re-
sulting in too-short grace periods. This is therefore a safety
violation similar to Bug 1.
Bugs 2 and 3 would result in a too-short grace period given
quiescent-state forcing, but such forcing falls outside the
scope of this paper.

6.2 Validating the RCU Model in User-Space
To validate our RCU model before performing verification
using CBMC, we executed it in user space. We performed
1000 runs for each scenario in Section 6.1 using a 60 s
timeout to wait for the end of a grace period and a random
delay between 0 to 1 s in the RCU reader task.

The results are reported in Table 1. Column 1 gives
the verification scenarios. Scenario Prove tests our RCU
model without bug injection. Scenario Prove-GP tests a
weak form of liveness by replacing Figure 2’s assertion
with assert(0) as described in Section 6.1. The next three
columns present the number and the percentage of success-
ful, failing, and timeout runs, respectively. The following
two columns give the maximum memory consumption and
the total runtime. The last column explains the results.

As expected, for scenario Prove, the user program ran to
completion successfully in all runs. For Prove-GP, it was
able to detect the end of a grace period by triggering an
assertion violation in all the runs. For Bug 1, an assertion
violation was triggered in 559 out of 1000 runs. For Bugs
2–6, the user program timed out in all the runs, thus a grace
period did not complete. For Bug 7 with one reader thread,
the testing harness failed to trigger an assertion violation.
However, we were able to observe a failure in 242 out of
1000 runs with two reader threads.

6.3 Getting CBMC to work on Tree RCU
We have found that getting CBMC to work on our RCU
model is non-trivial due to Tree RCU’s complexity com-
bined with CBMC’s bit-precise verification. In fact, early
attempts resulted in SAT formulas that were so large that
CBMC ran out of memory. After the optimizations described
in the remainder of this section, the largest formula con-

tained around 90 million variables and 450 million clauses,
which enabled CBMC to run to completion.

First, instead of placing the scheduling-clock interrupt in
its own thread, we invoke functions rcu note context

switch() and rcu process callbacks() directly, as de-
scribed in Section 5. Also, we invoke note gp changes()

from rcu gp init() to notify each CPU of a new grace pe-
riod, instead of invoking rcu process callbacks().

Second, the support for linked lists in CBMC version 5.4
is limited, resulting in unreachable code in CBMC’s sym-
bolic execution. Thus, we stubbed all the list-related code in
our RCU model, including those for callback handling.

Third, CBMC’s structure-pointer and array encodings re-
sult in large formulas and long formula-generation times.
Our focus on the RCU-sched flavor allowed us to eliminate
RCU-BH’s data structures and trivialize the for each rcu

flavor() flavor-traversal loops. Our focus on small num-
bers of CPUs meant that RCU-sched’s rcu node tree con-
tained only a root node, so we also trivialized the rcu for

each node breadth first() loops traversing this tree.
Fourth, CBMC unwinds each loop to the depth specified

in its command line option --unwind, even when the actual
loop depth is smaller. This unnecessarily increases formula
size, especially for loops containing intricate RCU code.
Since loops in our model can be decided at compile time,
we therefore used the command line option --unwindset

to specify unwinding depths for each individual loop.
Finally, since our test harness only requires one rcu

node structure and two rcu data structures, we can use 32-
bit encodings for int, long, and pointers by using the com-
mand line option --ILP32. This reduces CBMC’s formula
size by half compared to the 64-bit default.

6.4 Results and Discussion
Table 2 presents the results of our experiments applying
CBMC version 5.4 to verify our RCU model. Scenario Prove
verifies our RCU model without bug injection over Sequen-
tial Consistency (SC). We also exercise the model over the
weak memory models TSO and PSO in scenarios Prove-
TSO and Prove-PSO, respectively. Scenario Prove-GP per-
forms the same reachability check as in Section 6.2 over
SC. We perform the same reachability verification over TSO
and PSO in scenarios Prove-GP-TSO and Prove-GP-PSO,
respectively. Scenarios Bug 1–7 are the bug-injection scenar-
ios discussed in Section 6.1, and are verified over SC, TSO
and PSO. Columns 2–4 give the number of constraints (sym-
bolic program expressions and partial orders), variables, and
clauses of the generated formula. The next three columns
give the maximum (virtual) memory consumption, solver
runtime, and total runtime of our experiments. The final col-
umn gives the verification result.

Since Tree RCU’s implementation in the Linux kernel
is sophisticated, its test suite is non-trivial [15], comprising
several thousand lines of code. Therefore, it comes as little
surprise that its verification is challenging.
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Scenario #Successful Runs #Failing Runs #Timeouts Max VM Runtime Result
Prove 1,000 (100.0%) 0 (0.0%) 0 (0.0%) 361.5 MB 3mins 51s Safe
Prove-GP 0 (0.0%) 1,000 (100.0%) 0 (0.0%) 361.5 MB 5mins 9s End of GP Reachable
Bug 1 461 (46.1%) 539 (53.9%) 0 (0.0%) 361.5 MB 5mins 26s Assertion Violated
Bug 2 0 (0.0%) 0 (0.0%) 1,000 (100.0%) 361.5 MB 16h 40mins End of GP Unreachable
Bug 3 0 (0.0%) 0 (0.0%) 1,000 (100.0%) 361.5 MB 16h 40mins End of GP Unreachable
Bug 4 0 (0.0%) 0 (0.0%) 1,000 (100.0%) 361.5 MB 16h 40mins End of GP Unreachable
Bug 5 0 (0.0%) 0 (0.0%) 1,000 (100.0%) 361.5 MB 16h 40mins End of GP Unreachable
Bug 6 0 (0.0%) 0 (0.0%) 1,000 (100.0%) 361.5 MB 16h 40mins End of GP Unreachable
Bug 7 0 (0.0%) 0 (0.0%) 1,000 (100.0%) 361.5 MB 16h 40mins Safe (Bug Missed)
Bug 7 (2 readers) 758 (75.8%) 242 (24.2%) 0 (0.0%) 369.7 MB 4mins 40s Assertion Violated

Table 1: Experimental Results of Testing the RCU Model in User-Space

Scenario #Constraints #Variables #Clauses Max VM Solver Time Total Time Result
Prove 5,279,600 30,085,337 149,758,548 23.27 GB 9h 24mins 9h 36mins Safe
Prove-TSO 5,646,959 42,042,386 210,708,442 34.00 GB 10h 51mins 11h 4mins Safe
Prove-PSO 5,617,154 41,327,066 207,042,629 33.76 GB 11h 23mins 11h 36mins Safe
Prove-GP 5,476,540 30,655,428 152,743,545 23.90 GB 3h 52mins 4h 5mins End of GP Reachable
Prove-GP-TSO 5,646,940 42,041,740 210,705,615 34.00 GB 13h 1mins 13h 14mins End of GP Reachable
Prove-GP-PSO 5,617,135 41,326,420 207,039,802 33.76 GB 8h 24mins 8h 37mins End of GP Reachable
Bug 1 1,343,449 11,719,966 56,027,980 8.24 GB 31mins 33mins Assertion Violated
Bug 1-TSO 1,540,645 17,120,555 83,392,397 12.60 GB 53mins 56mins Assertion Violated
Bug 1-PSO 1,514,657 16,548,819 80,481,851 12.42 GB 46mins 48mins Assertion Violated
Bug 2 5,279,584 30,056,615 149,643,492 23.26 GB 4h 25mins 4h 37mins End of GP Unreachable
Bug 2-TSO 5,646,940 42,013,372 210,592,015 34.01 GB 9h 57mins 10h 10mins End of GP Unreachable
Bug 2-PSO 5,617,135 41,298,052 206,926,202 33.75 GB 8h 51mins 9h 4mins End of GP Unreachable
Bug 3 6,374,373 34,856,577 174,131,331 28.04 GB 7h 11mins 7h 25mins End of GP Unreachable
Bug 3-TSO 6,805,631 48,788,433 245,157,184 41.18 GB 19h 40mins 19h 55mins End of GP Unreachable
Bug 3-PSO 6,773,763 48,023,601 241,237,629 40.95 GB 19h 19mins 19h 35mins End of GP Unreachable
Bug 4 4,847,980 27,804,363 138,197,043 22.18 GB 4h 3mins 4h 14mins End of GP Unreachable
Bug 4-TSO 5,170,928 38,480,891 192,605,939 31.49 GB 8h 18mins 8h 30mins End of GP Unreachable
Bug 4-PSO 5,141,123 37,765,571 188,940,126 31.27 GB 8h 14mins 8h 26mins End of GP Unreachable
Bug 5 5,161,874 29,510,828 146,787,005 23.02 GB 4h 6mins 4h 18mins End of GP Unreachable
Bug 5-TSO 5,522,168 41,239,083 206,569,643 33.65 GB 5h 46mins 5h 59mins End of GP Unreachable
Bug 5-PSO 5,492,607 40,529,619 202,933,839 33.04 GB 5h 42mins 5h 55mins End of GP Unreachable
Bug 6 1,410,495 13,165,176 63,302,559 9.03 GB 19mins 21mins End of GP Unreachable
Bug 6-TSO 1,541,937 17,286,058 84,131,818 12.59 GB 1h 32mins 1h 33mins End of GP Unreachable
Bug 6-PSO 1,518,307 16,766,198 81,485,361 12.44 GB 1h 22mins 1h 24mins End of GP Unreachable
Bug 7 5,022,249 29,242,760 145,389,516 22.87 GB 8h 48mins 9h Safe (Bug Missed)
Bug 7-TSO 5,201,744 40,139,251 200,857,404 31.93 GB 11h 6mins 11h 18mins Assertion Violated
Bug 7-PSO 5,172,720 39,442,675 197,287,644 31.71 GB 11h 32mins 11h 44mins Assertion Violated
Bug 7 (2 readers) ∗ 15,165,557 71,205,400 359,021,922 59.07 GB 19h 2mins 19h 40mins Assertion Violated
Bug 7-TSO (2 readers) ∗ 15,691,102 90,444,903 456,973,933 74.80 GB 78h 12mins 78h 53mins Assertion Violated
Bug 7-PSO (2 readers) ∗ 15,647,504 89,398,551 451,611,664 74.51 GB 84h 21mins 85h 2mins Solver Out of Memory

* This experiment was performed on a 64-bit machine running Linux 3.19.8 with twelve Intel Xeon 2.40 GHz cores and 96 GB of main memory

Table 2: Experimental Results of CBMC

In our experiments, CBMC returned all the expected re-
sults except for Bug 7, for which it failed to report a viola-
tion of the assertion assert(r2 == 0 || r1 == 1) with
one RCU reader thread running over SC. This failure was
due to the approximation of the scheduling-clock interrupt
by a direct function call, as described in Section 5. How-
ever, CBMC did report a violation of the assertion either
when two RCU reader threads were present or when run over
TSO or PSO. All of these cases decrease determinism, which

in turn more faithfully model non-deterministic scheduling-
clock interrupts, allowing the assertion to be violated.

CBMC took more than 9 hours to verify our model over
SC (scenario Prove). The resulting SAT formulas have more
than 5m constraints, 30m variables and 149m clauses, and
occupy 23 GB of memory. The formulas for scenarios Prove-
TSO and Prove-PSO are about 40% larger than the sce-
nario Prove. They have more than 40m variables and 200m
clauses, and took more than 11 hours and 33 GB memory
to solve. Although this verification consumed considerable

11 2016/10/11



Prov
e

Prov
e-G

P
Bug

1
Bug

2
Bug

3
Bug

4
Bug

5
Bug

6
Bug

7

Bug
7-2

R
106

107

SC TSO PSO

Figure 7: Number of Constraints in the SAT Formulas
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Figure 8: Number of Variables in the SAT Formulas

memory and CPU, it verified all possible executions and re-
orderings permitted by TSO and PSO, a tiny subset of which
are reached by the rcutorture test suite.

CBMC proved that grace periods can end (i.e., assert(0)
is violated), over SC (Prove-GP), TSO (Prove-GP-TSO), and
PSO (Prove-GP-PSO). The sizes of resulting formulas and
memory consumption are similar to those of the three Prove
scenarios. However, it took CBMC only about 4, 13, and
8.5 hours to find an violation of assert(0) in Prove-GP,
Prove-GP-TSO, and Prove-GP-PSO, respectively.

For the bug-injection scenarios described in Section 6.1,
CBMC was able to return the expected results in all scenar-
ios over SC except for Bug 7, as noted earlier. The formula
size varies from scenarios to scenarios, with 27m–35m vari-
ables and 138m–174m clauses. The runtime was 4–9 hours
and memory consumption exceeded 22 GB. The exceptions
are Bugs 1 and 6, which have fewer than 14m variables and
64m clauses, and took less than 35 mins and about 9 GB of
memory to solve. This reduction was due to the large amount
of code removed by the bug injections in these scenarios.

Figures 7–8 compare the formula size between SC, TSO
and TSO. Comparison of runtime and memory can be found
in Figures 10 and 11. As we can see, the runtime and mem-
ory overhead for the TSO and PSO variants of a given exper-
iment are quite similar. The overheads of TSO are slightly
higher than those of PSO in all bug-injection scenarios ex-
cept for Bug 7 on which PSO had longer runtime. How-
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Figure 9: Number of Clauses in the SAT Formulas
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Figure 11: Maximum Memory Consumption in Gigabytes

ever, the overhead of TSO and PSO is significantly larger
than that of SC, with up to 340% (Bug 6 runtime) and 50%
(Bug 1 memory) increases. The runtime was 5–19 hours and
memory consumption exceeded 31 GB in all scenarios ex-
cept Bug 1 and 6. The numbers of variables and clauses
are 37m–49m and 188m–245m, respectively, around 130%
greater than SC.

The two-reader variant of Bug 7 has by far the longest
runtime, consuming more than 19 hours and 78 hours
over SC and TSO, respectively, comparing to 9 hours and
11 hours with one reader. It also consumed about 75 GB
memory, more than double the one-reader variant. For PSO,
with two reader threads CBMC’s solver ran out of memory
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after 85 hours whereas with one reader it completed in less
than 12 hours. The increased overhead is due to the addi-
tional RCU reader’s call to rcu process callbacks().
This in turn results in more than a 125% increase in the
number of constraints, variables, and clauses. For example,
the two-reader TSO formula has triple the constraints and
double the variables and clauses of the one-reader case.

7. Related Work
McKenney applied the SPIN model checker to verify RCU’s
NO HZ FULL SYSIDLE functionality [17], and interactions
between dyntick-idle and non-maskable interrupts [16].
Desnoyers et al. [10] propose a virtual architecture to model
out-of-order memory accesses and instruction scheduling.
User-level RCU [9] is modeled and verified in the proposed
architecture using the SPIN model checker.

These efforts require an error-prone translation from C to
SPIN’s modeling language, and therefore are not appropriate
for regression testing. By contrast, our work constructs an
RCU model directly from its source code from the Linux
kernel, and verifies it using automated verification tool.

Alglave et al. [3] introduce a symbolic encoding for ver-
ifying concurrent software over a range of memory models
including SC, TSO and PSO. They implement the encoding
in the CBMC bounded model checker and use the tool to
verify rcu assign pointer() and rcu dereference().

McKenney used CBMC to verify Tiny RCU [17], a trivial
Linux-kernel RCU implementation for uni-core systems.

Groce et al. [12] introduce a falsification-driven verifica-
tion methodology that is based on a variation of mutation
testing. By using CBMC, they were able to find two holes in
rcutorture–RCU’s stress testing suite, one of which was
hiding a real bug in Tiny RCU. Further work on real hard-
ware identified two more rcutorture holes, one of which
was hiding a real bug in Tasks RCU [8] and the other of
which was hiding a minor performance bug in Tree RCU.

In this work, we use CBMC to verify the implementation
of Linux-kernel Tree RCU for multi-core systems, which is
more complex and sophisticated, over SC, TSO, and PSO.

Gotsman et al. [11] use a extended concurrent separation
logic to formalise the concept of grace period and prove
an abstract implementation of RCU over SC. Tassarotti et
al. [21] use GPS, a recently developed program logic for
the C/C++11 memory model, to carry out a formal proof
of a simple implementation of user-level RCU for a singly-
linked list assuming “release-acquire” semantics, which is
weaker than SC but stronger than memory models used by
real-world RCU implementations. These formal proofs were
performed manually on simple implementations of RCU.
By contrast, our work applies an automated verification tool
with a test harness to verify the grace-period property of a
real-world implementation of RCU over SC, TSO, and PSO.

Formal verification has started to make its way into real-
world practice of verifying large non-trivial code bases. Cal-

cagno et al. [5] describe integrating a static-analysis tool into
Facebook’s software development cycle. We believe that our
work is an important step towards integration of verification
into Linux-kernel RCU’s regression test suite.

8. Conclusion
This paper overviews the implementation of Tree RCU in
the Linux Kernel, and describes how to construct a model
directly from its source code. It then shows how to use the
CBMC model checker to verify a significant part of the Tree
RCU implementation automatically, which to the best of our
knowledge is unprecedented. This work demonstrates that
RCU is a rich example to drive research: it is small enough
to provide models that can just barely be verified by existing
tools, but it also has sufficient concurrency and complexity
to drive significant advances in techniques and tooling.

For future work, we plan to add quiescent-state forcing
and grace-period expediting into our model and verify their
safety and liveness properties, using more sophisticated test
harnesses that pass through multiple grace periods and op-
erate on a larger tree structure. We also plan to model and
verify the preemptible version of Tree RCU, which we ex-
pect to be quite challenging. Moreover, there is much fertile
ground verifying uses of RCU in the Linux kernel, for ex-
ample, the Virtual File System (VFS).

There are also potential improvements for CBMC to bet-
ter support future RCU verification efforts. For instance, bet-
ter support of lists is required to verify RCU’s callback han-
dling mechanism. A field-sensitive SSA encoding for struc-
tures and a thread-aware slicer will help reduce encoding
size, and therefore improve scalability.

This work demonstrates the nascent ability of SAT-based
formal-verification tools to handle real-world production-
quality synchronization primitives, as exemplified by Linux-
kernel Tree RCU on weakly ordered TSO and PSO systems.
Although modeling weak ordering incurs a significant per-
formance penalty, this penalty is not excessive. We there-
fore hypothesize that use of these tools for highly concur-
rent multithreaded software will reach mainstream within 3-
5 years, especially given recent rates of improvement.
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