

Virtual Threads
Elaine Cheong and Fred Reiss

CS262A and CS263
Fall 2000

Abstract

Multithreaded servers, while relatively simple to design and to implement, tend not to scale well
for large numbers of concurrent users. Event-driven servers, which do scale well, are generally
more difficult to design, write, and debug than multithreaded servers. Virtual Threads is a new
server programming model in which the programmer writes a multithreaded server and a
preprocessor automatically converts the server to a sophisticated event-driven server. We
describe our current implementation of Virtual Threads and present benchmarks showing that a
multithreaded Web server that uses Virtual Threads scales as well as an event-driven server.

 1

1 Introduction
Virtual Threads is a new programming model and
runtime environment for servers. With Virtual Threads,
a programmer writes her program in C as a
multithreaded server. The Virtual Threads preprocessor,
vtify, converts this code to an event-driven model by
changing functions to use continuation-passing style.
The Virtual Threads runtime environment then executes
the converted program as many concurrent state
machines.

In Section 1 of this paper, we define terminology that
we use in the rest of the paper and explain the
motivation behind Virtual Threads. In Section 2, we
discuss the design of the Virtual Threads preprocessor
and runtime environment. In Section 3, we discuss our
current implementation of continuations, the
preprocessor, and the runtime environment. We also
describe a sample application and preliminary
benchmarks of that application. In Section 4, we
describes work related to Virtual Threads, and in
Section 5, we discuss possible future extensions of
Virtual Threads.

1.1 Background and
Terminology

In this section, we introduce concurrent server
architectures, including multithreaded/multiprocess
servers and event-driven servers. Then, we introduce
the concept of continuations and continuation-passing
style.

1.1.1 Concurrent Server
Architectures

A concurrent server is a server that does work for
multiple clients simultaneously. We briefly summarize
the dominant design strategies for concurrent servers
here. For a more detailed discussion of server design
alternatives, we refer the reader to [Stevens1998] and
[Pai1999].

1.1.1.1 Multithreaded/Multiprocess
Servers

To write a multiprocess server, a programmer first
writes a program that handles a single connection. Then
she writes a second program that runs a copy of the first
program to handle each connection that the server
receives.

The multithreaded server architecture is an
optimization of the multiprocess architecture. A

multithreaded server spawns a lightweight process, or
thread, to handle each connection.
We will use the terms multithreaded and multiprocess
interchangeably in this paper.

1.1.1.2 Event-driven Servers
To write an event-driven server, a programmer
decomposes each transaction between client and server
into a series of events. Examples of these events include
a server receiving a request from a client and a server’s
disk controller completing a write operation. Having
defined a set of events, the programmer then writes a
separate module to handle each event.

In a single-process event-driven server [Pai1999], a
process known as an event loop handles all events that
occur for all the server’s open connections. In such a
server, the module that handles an event is a function.

The asymmetric multiprocess event-driven server
architecture [Pai1999] handles most events with an
event loop but uses separate processes when events
require blocking operations or heavy computation.

A pipelined server is an event-driven server in which
the module for each event operates in one or more
separate threads of control.

1.1.2 Continuations
A continuation is an object that stores all the
information necessary to perform a future computation.
Such an object generally consists of a function and
arguments for that function.

The most common definition of continuations defines
two operations on them. The callcc operation creates
a continuation for the current state of the program,
while the throw operation performs the computation
that a continuation represents.

In the continuation-passing style of programming, the
operations callcc and throw perform some or all of
the program’s control flow.

For a more detailed discussion of continuations from
the point of view of imperative languages, we refer the
interested reader to [Thielecke1999].

1.2 Motivation
Programmers tend to see multiprocess and
multithreaded servers as easier to write than event-
driven ones. Undergraduate textbooks, such as
[Butenhof1997], [Gay2000] and [Stevens1998], teach
the multiprocess or multithreaded model first and
mention the event-driven model as a specialized
approach that is relatively difficult to implement. For
example, Butenhof writes, “In most cases
[programmers] will find it much easier to write

 2

complex asynchronous code using threads than using
traditional asynchronous programming techniques”
[Butenhof1997]. Because of its perceived ease of
programming, the multithreaded architecture is a
popular strategy for implementing servers.

Several researchers have found that multithreaded (and
multiprocess) servers do not scale well for the large
numbers of concurrent users that today’s Internet
applications require [Pai1999] [Welsh2000]
[Kegel2000]. As the number of concurrent connections
to a multithreaded server increases, the overhead of
switching between threads and locking shared resources
consumes a greater proportion of the server’s time. In
addition, multithreaded servers have very coarse-
grained admission control. Different parts of the server
may perform best with different levels of
multiprogramming, but, since there is one thread or
process per connection, the programming model forces
the same level of multiprogramming on all parts of the
server.

Event-driven servers largely avoid these performance
limitations. Since they operate with a small, fixed
number of threads, event-driven servers can avoid most
of the task switching and resource locking overhead
that plagues multithreaded servers. Additionally, since
they handle each portion of a transaction with a
separate module, event-driven servers can use the
optimal level of multiprogramming for each portion of
the server.

However, designing, implementing, and debugging an
event-driven server is relatively difficult. The designer
of such a server must carefully decompose the server’s
tasks into a set of events and must assign each of these
events to the appropriate functional unit of the server.
The implementer must manage the state of each
connection separately by hand. Whoever tests and
debugs an event-driven server needs to reconstruct the
state of each connection by hand, since stack traces
only provide information about the server’s event loop.

1.3 Virtual Threads
Virtual Threads combine the performance advantages
of event-driven server architecture with the simplicity
of the multithreaded server architecture. The
programmer writes a multithreaded server, and a
preprocessor converts this code to an event-driven
server. Our preprocessor, called vtify, converts parts
of each “Virtual Thread” in the original program to
continuation-passing style and generates the appropriate
continuation objects. These continuations are smaller
than the stacks that normal threads would require. Our
runtime environment consists of a generic asymmetric
multiprocess event-driven server that uses continuations
to handle events.

2 Design
In this section, we discuss the design of the
preprocessor and steps needed to convert a
multithreaded program to use Virtual Threads. Then,
we describe the design of the runtime environment that
executes the Virtual Threads.

2.1 Preprocessor
To convert a multithreaded program to one that uses
Virtual Threads, one must convert each thread in the
original program to a state machine that stores its state
in a continuation. This state machine enters a new state
at every point where the original program performed a
blocking I/O or called VT_yield(). The Virtual
Threads preprocessor automatically performs the
conversion from a multithreaded C program to a state
machine and also generates the appropriate
continuations.

In the following sections, we first introduce the concept
of multistate functions and the structure of a Virtual
Thread continuation. Then, we describe the stages of
preprocessing that our preprocessor uses to convert a
multithreaded program to a Virtual Threads program.

2.1.1 Multistate Functions
To make preprocessing more efficient, we divide the
functions in a multithreaded program into two classes:
single-state functions and multistate functions. As its
name suggests, a multistate function is a function that
corresponds to more than one state of the state machine
for a Virtual Thread, whereas a single-state function
executes entirely inside one state. More precisely, we
define multistate functions by the following two rules:

1. The functions VT_yield(), VT_read(),
and VT_write() are multistate functions.

2. Any function that calls a multistate function is
also a multistate function.

2.1.2 Virtual Threads Continuations
A Virtual Thread continuation contains all of the
information that a Virtual Thread will need for any
future computation. Figure 1 shows the continuation for

function1 Local Data
function2 Local Data
function3 Local Data

Header info

Figure 1: Structure of a Virtual Thread continuation.

 3

a Virtual Thread that uses three multistate functions:
function1, function2, and function3. The
continuation contains local variables for each multistate
function that the Virtual Thread calls, along with a
header, which stores tracking information for the
Virtual Thread.

The Virtual Threads preprocessor rewrites multistate
functions so that the functions store some or all of their
variables inside a continuation instead of on the stack.
These preprocessor conversions guarantee that a
complete continuation is always present when the state
machine for a Virtual Thread reaches a state boundary.
In effect, the preprocessor blends the callcc operation
into the execution of each multistate function. The
preprocessor generates a single “outer” function for
each state machine, and the runtime environment places
a pointer to this function into the header for each
continuation. Throwing to a Virtual Threads
continuation consists of calling this function pointer
and passing the function a pointer to the continuation.

In order to prevent continuations from being of
unbounded size, we do not allow recursion among
multistate functions. Also, we only allow the Virtual
Threads runtime environment to throw to a continuation
once. This second constraint means that the
preprocessor is free to generate code that reuses old
continuations with updated local data, instead of
constructing new ones when state transitions occur.

It is highly probable that, when the Virtual Threads
runtime environment invokes a continuation, the
continuation will not be in the computer’s data cache.
In order to minimize the cost of bringing continuations
into the cache, it is important to make the continuations
as small as possible. The preprocessor minimizes
continuation size by applying two principles:
1. If the value of a local variable does not need to be

saved across a state boundary, then that variable
does not need to occupy space in the continuation.
Instead, the variable can reside on the event loop’s
stack, which is generally already in the processor’s
cache. In particular, if a function is not multistate,
then none of its variables need to be stored in the
continuation.

2. If two local variables (not necessarily in the same
function) do not contain live data at the same time,
then those variables may occupy the same space in
the continuation.

In general, the properly-optimized continuation for a
Virtual Thread will require less space than the stack for
the equivalent conventional thread.

2.1.3 Stages of Preprocessing
The preprocessor makes three passes through the code
for each thread in a multithreaded program. During the

first pass, the preprocessor identifies which functions
are multistate. The second pass generates a continuation
for each multistate function and rewrites the multistate
functions so that they store variables in the
continuations. During the third pass, the preprocessor
merges the individual continuations for the multistate
functions into a single continuation and merges all of
the multistate functions into a single function.

2.1.3.1 Identifying multistate
functions

In its first stage, the preprocessor identifies which
functions contain multiple states. The preprocessor
makes this judgment in one pass using the following
algorithm:

1. Construct a call graph for all functions in the
original program.

2. Reverse the direction of each edge in the call
graph such that each edge points from callee to
caller.

3. Starting from the multistate functions
VT_read(), VT_write(), and
VT_yield(), perform a breadth-first search
of the reversed call graph, marking as
multistate each function that calls a multistate
function.

If the preprocessor encounters a cycle among multistate
functions while performing step 3 of the above
algorithm, then the original program contains recursive
multistate functions and is not valid input for the
preprocessor.

2.1.3.2 Converting multistate
functions

In the second stage, the Virtual Threads preprocessor
makes all of the necessary conversions on the multistate
functions: (1) generating preliminary continuations, (2)
converting multistate functions to use these preliminary
continuations, and (3) inserting state boundary labels.

2.1.3.2.1 Generating preliminary
continuations

In the first step of the conversion stage, the
preprocessor generates a preliminary continuation for
each multistate function. A preliminary continuation
contains only local data for its associated function.
Figure 2 shows a sample multistate function
(function1) called by a thread in an imaginary
multithreaded program. In order to generate a
continuation for this function, the preprocessor must
first locate all of the local data that the function uses.
This data includes function parameters (arg1) and

 4

local variables (local1 and local2). The
preprocessor then creates a preliminary continuation,
allocating space for the each local variable the value of
which needs to remain in memory across a state
boundary. Figure 3 shows a preliminary continuation
for function1. Note that the variable local2 does
not need to reside in the continuation, because
function1 only accesses local2 in a single state.

2.1.3.2.2 Converting functions to use
preliminary continuations

In the second step of the conversion stage, the
preprocessor rewrites all of the multistate functions so
that they use the generated preliminary continuations.
To do this conversion, the preprocessor first replaces
the function parameter list with a pointer to the
preliminary continuation object. Then, in the body of
the function, the preprocessor replaces references to
local data with references to data now stored as
members of the preliminary continuation object.

2.1.3.2.3 Inserting state boundaries
In the third step of the conversion stage, the
preprocessor inserts labels that mark state boundaries in
the multistate functions. Recall that state boundaries
occur at places where a Virtual Thread performs
blocking I/O or calls VT_yield().

2.1.3.3 Merging multistate functions
During its final stage, the preprocessor merges the
multistate functions and their continuations to form a
Virtual Thread. The preprocessor performs this merging
in three steps: (1) generating a Virtual Thread
continuation as described in Section 2.1.2, (2)
converting the multistate functions to continuation
passing style, and (3) merging the multistate functions
into a single function.

2.1.3.3.1 Generating the Virtual Thread
continuation

In the first step of the merge stage, the preprocessor
generates a Virtual Thread continuation by merging all
of the preliminary continuations that it created in the
previous stage. The preprocessor minimizes the size of
the merged continuation by following the principles
outlined in Section 2.1.2. The preprocessor adds a

header to the beginning of the merged continuation.
The header includes a function pointer, which points to
the Virtual Thread function generated in Section
2.1.3.3.3, and a state ID, which records the next state to
be executed.

2.1.3.3.2 Converting multistate functions
to continuation passing style

In the second step of the merge stage, the preprocessor
converts all of the multistate functions to use the
merged continuation instead of the preliminary
continuations used in the previous stage. The
preprocessor performs this conversion by changing
calls to multistate functions to continuation-passing
style, in which the functions use the Virtual Thread
continuation and a single shared stack frame in place of
multiple frames on the C runtime stack. The
preprocessor generates temporary variables to hold
function arguments and return values and rewrites the
multistate functions to use these temporary variables.

2.1.3.3.3 Creating the Virtual Thread
In the last step of the merge stage, the preprocessor
takes the bodies of the multistate functions and merges
these subfunctions into one Virtual Thread function.

In order for the Virtual Thread function to jump to the
appropriate state when the runtime environment passes
it a continuation, the preprocessor inserts a jump table
at the beginning of the function. This jump table
contains entries for each state boundary that the
preprocessor inserted in the previous stage of
preprocessing, in addition to a special “start” state.

Since all of the subfunctions use the continuation to
store their local data, a Virtual Thread can stop at any
state boundary and have a continuation already
prepared. The runtime environment can then throw to
another Virtual Thread’s continuation, until the other
Virtual Thread reaches a state boundary. Once this
second thread is done executing, the runtime
environment can then restore the first Virtual Thread by
throwing to its continuation.

In the next section, we describe the design of the
runtime environment that controls the execution of a
Virtual Thread.

2.2 Runtime Environment
The runtime environment for Virtual Threads is
modeled after the asymmetric multiprocess event-

Figure 2: Sample multistate function.

 int function1(int arg1) {
 int local1, local2;
 local1 = function2(arg1);
 /* function2 is multistate. */
 local2 = function2(arg1 + local1);
 return local1 + local2;
}

Figure 3: Preliminary continuation.

 struct _VT_cont_function1 {
 int arg1;
 int local1;
}

 5

driven architecture described in [Pai1999]. We extend
this architecture to include multiple event loops, and we
replace the architecture’s external processes with kernel
threads so that the entire server runs inside a single
address space. Figure 4 illustrates the architecture of the
Virtual Threads runtime environment.

2.2.1 Event Loops
The Virtual Threads runtime environment creates an
event loop for each processor of the computer. Each
event loop runs in a separate kernel thread and
maintains a separate mapping from events to
continuations. When an event occurs, the event loop
throws to the appropriate continuation. A continuation
belongs to no more than one event loop at a time.

Each event loop maintains a pair of throwable queues,
which contain continuations for runnable Virtual
Threads. A throwable queue is similar to the runnable
queue of a conventional thread scheduler. At any given
time, one of these queues is the active queue and the
other is the yield queue. When a Virtual Thread calls
VT_yield(), the Virtual Thread inserts its own
continuation into the yield queue. The algorithm for the
event loop is shown in Figure 5.

2.2.1.1 Metathreads
Each event loop has a pipe (See pipe(2).) that it uses
as a communication mechanism. A Virtual Thread may
“migrate” to another event loop by placing a pointer to
its continuation in the other event loop’s pipe. Each
event loop has a special Virtual Thread, called the

Metathread, which reads continuations from this pipe
and places them on the yield queue.

2.2.2 Thread Pools
Some operations do not lend themselves to running in a
single-threaded event loop. For example, the
programmer may need to use APIs that block the
calling kernel thread, or she may need to write CPU-
intensive functions that are difficult to schedule both
nonpreemptively and fairly. To deal with these
situations, each Virtual Threads event loop maintains a
pool of “worker” kernel threads. The worker threads in
each pool read continuations from a queue and throw to
them. The Virtual Threads library provides functions
that allow the programmer to specify that sections of
her code run on a worker thread. While running on a
worker thread, a Virtual Thread can perform blocking
operations, use POSIX thread locks, create new kernel
threads, and perform computations of arbitrary length.
When a Virtual Thread finishes executing on a worker
kernel thread, the worker thread reinserts the Virtual
Thread into the event loop by writing a pointer to its
continuation into the event loop’s pipe.

2.2.3 Clues
Having multiple event loops creates a need to distribute
Virtual Threads among the event loops. One approach
to allocating Virtual Threads to event loops is to use a
centralized scheduler, placing each new Virtual Thread
in the event loop with the lowest load. Unfortunately,
this centralized approach would lead to resource
contention and poor cache locality. Since each Virtual
Thread would execute entirely in a given event loop,
event loops would contend for global resources.
Furthermore, since each event loop would execute
every line of a given Virtual Thread, the working set
size of an event loop could easily exceed the size of the
processor cache by a large margin [Larus2000].

Figure 5: Algorithm for a Virtual Threads event loop. Queue

Event
Loop

Event
Loop

Pipe

Pool of
Kernel

Threads

Pipe

1 event loop per processor

continuations

...

Queue

Pool of
Kernel

Threads

...

Repeat forever:
For Each event e that has occurred

Add the continuation associated with event e
to the active queue.

End For Each

For Each continuation c in the active queue
Throw to c.

End For Each

Swap the active and yield queues.
End Repeat

Figure 4: Virtual Threads runtime environment.

 6

To avoid these potential bottlenecks, the Virtual
Threads runtime environment uses a distributed
scheduler based on clues. A clue1 (See Figure 6) is an
object that belongs to exactly one event loop. A Virtual
Thread may follow a clue by migrating to the event loop
that owns the clue. If the Virtual Thread is already at
the appropriate event loop, it does nothing. Clues
provide a mechanism for creating self-organizing
pipelined servers. The programmer divides her code
into pipeline stages by following a clue at the beginning
of each section of code that corresponds to a stage. At
runtime, each stage of the programmer’s original code
runs in exactly one event loop. If there are more stages
than processors, multiple stages run in the same event
loop.

2.2.3.1 The Cluethread
When the Virtual Threads runtime environment starts, it
arbitrarily assigns clues among event loops. To balance
the load between event loops, a special Virtual Thread
called the Cluethread periodically moves clues from
one event loop to another to ensure that each event
loop, and hence each processor, does the same amount
of work.

The Cluethread spends most of its time sleeping inside
a kernel thread pool. Periodically, the Cluethread wakes
up, reads the load of each event loop, and reallocates
clues if necessary. Each event loop in the Virtual
Threads runtime environment keeps track of its own
processor usage2. To avoid race conditions, the
Cluethread migrates to a given event loop before
checking the event loop’s processor usage or moving
any of the event loop’s clues.

The Cluethread uses a simple heuristic to decrease the
communication between event loops. The runtime

1 According to the Merriam-Webster Collegiate
Dictionary, a clue is “something that guides through an
intricate procedure or maze of difficulties.”
2 Under Linux, the clock(2) system call returns the
amount of processor time that the calling kernel thread
has used.

environment keeps track of clues that Virtual Threads
always follow in sequence3. When the Cluethread needs
to move a clue to balance the load, it attempts to move
the clue that has the minimal number of following or
preceding clues on the same event loop.

3 Current Implementation
This section describes our current implementation of
Virtual Threads. First, we describe how we have
implemented continuations in C using structs and how
our current implementation optimizes the size of these
structs. Second, we describe the current status of the
preprocessor and the actual steps that are needed to
convert a multithreaded program to use Virtual
Threads. Finally, we describe our current
implementation of the Virtual Threads runtime
environment and present a sample application and some
benchmarks of that application.

3.1 Continuations
As described in Section 2.1.2, a Virtual Thread
continuation contains local data for each multistate
function that a thread calls in a multithreaded program.

We will use an example to explain our current
implementation of Virtual Thread continuations. In this
example, a main server thread listens for connections
and spawns a child thread to handle each connection.
Each child thread runs the function echo_thread to
handle its connection. Figure 7 shows the C code for
this function and the Virtual Threads continuation for
the thread. Let us examine the structure of the
continuation from bottom to top.

The bottom of the continuation contains the local data
for echo_thread, including local variables, function
arguments, return value, and return state. We wrap the
function arguments with an alternate generic name for
each variable inside of a union so that we can refer to
the arguments with generic macros later.

3 To help the Cluethread keep track of clues that Virtual
Threads follow in sequence, each clue has three fields:
previous_clue, different_count, and
same_count (See Figure 6). previous_clue is a
pointer to another clue object, while the other two fields
are integers. When a Virtual Thread follows a clue, the
Thread compares the clue’s previous_clue field to
the last clue that the Thread followed. If the two clues
are the same, then the Virtual Thread increments the
same_count field. Otherwise, the Virtual Thread sets
previous_clue to point to the last clue that the
Thread followed and increments different_count.

Event
Loopowner pointer

previous_clue

different_count
same_count

Clue

Figure 6: Clues create self-organizing pipelined servers.

 7

The continuation for each multistate function called by
echo_thread appears above the local data. In this
example, conn_thread calls two multistate
functions: _VT_ioWriteSock, and
_VT_ioReadSock. These functions are built-in
Virtual Threads wrappers for blocking I/O system calls.
The continuation for each of these functions contains
their corresponding local data.

A header, which appears at the top of the continuation,
contains tracking information for the Virtual Thread.
Note how, because of a union, the header appears at the
beginning of every multistate function’s continuation.
Our current implementation of Virtual Threads
continuations makes merging preliminary continuations
very simple.

Our current implementation of continuations optimizes
for space at the level of granularity of individual
functions. Since echo_thread calls its two
functions sequentially, it does not need to save the
states for both functions at the same time. We use a
union to share the local data space for all of the
functions that echo_thread calls. The next few

paragraphs will help to explain these optimizations in
further detail.

Figure 8 illustrates the structure of the echo_thread
continuation

�
 at a state boundary where the Virtual

Thread is inside the
_VT_ioReadSock function. At this point, the Virtual
Thread stores the local data for _VT_ioReadSock
within a continuation � inside of the echo_thread
continuation.

Figure 9 illustrates the structure of the echo_thread
continuation

�
 at a state boundary where the Virtual

Thread is inside the _VT_ioWriteSock function.
Note that the Virtual Thread has stored the
_VT_ioWriteSock continuation � inside of the
echo_thread continuation.

3.2 Preprocessor
Our preprocessor, vtify, uses David Gay’s C parser
to generate an abstract syntax tree (AST) from arbitrary
Gnu C code. First, vtify searches through the top
level of the AST for function declarations and generates
preliminary continuations (as described in Section
2.1.3.2.1). Next, vtify replaces the arguments in the
function parameter list with a pointer to the Virtual
Thread continuation. Then, it removes all local variable
declarations from the function body. If the function
declares and initializes any of the local variables in the
same statement, vtify replaces this statement with an

Figure 9: echo_thread continuation during call to
_VT_ioWriteSock.

int echo_thread(int sock) {
 char c;
 while(_VT_ioReadSock(sock, &c, 1)
 == 1) {
 _VT_ioWriteSock(sock, &c, 1);
 }
 return 0;
}

/* Continuation for echo_thread */
struct _VT_cont_echo_thread {
 union {
 /* The header. */
 _VT_gdataConthdr_t _VT_header;

 /* Continuations for
 multistate functions that
 echo_thread calls */
 struct _VT_cont__VT_ioReadSock
 _VT_child__VT_ioReadSock;
 struct _VT_cont__VT_ioWriteSock
 _VT_child__VT_ioWriteSock;
 };

 /* Where echo_thread returns to. */
 _VT_state_t _VT_retstate;

 /* What is returned. */
 int _VT_retvalue;

 /* Function arguments */
 union {
 int _VT_arg1; /* AKA sock. */
 int sock;
 };

 /* Local variables in function body. */
 char c;

};

1

2

3

Figure 7: Sample thread with Virtual Threads continuation.

Figure 8: echo_thread continuation during call to
_VT_ioReadSock.

Header info

Return State
Return Value

Function Arguments
Local Variables echo_thread continuation

_VT_ioReadSock continuation
2

1

Header info

Return State
Return Value

Function Arguments
Local Variables echo_thread continuation

_VT_ioWriteSock continuation 3

1

 8

assignment to the local variable. Finally, vtify
replaces all references to the original local variables
with references to members of the preliminary
continuation.

Currently, the programmer must merge the preliminary
continuations together by hand. Due to the structure of
our current implementation of continuations, this
operation is quite mechanical. The programmer only
needs to insert lines for the function’s header, return
state, and return value into the continuation; and to
place at the top of the continuation instances of the
continuations for the other multistate functions that the
function calls.

The current implementation of Virtual Threads supplies
a library of C preprocessor macros to convert calls to
multistate functions to continuation-passing style. The
programmer needs to replace these types of function
calls with the Virtual Threads macros. This replacement
is a simple cut-and-paste operation.

Finally, the programmer copies and pastes the bodies of
the multistate functions into a single function and
inserts a label at the beginning of each function. Using
another C preprocessor macro that our library provides,
the programmer creates a switch statement at the
beginning of the top-level function to act as a dispatch
table.

To summarize, our current implementation requires that
the programmer perform some operations by hand.
However, these operations are mechanical and could
easily be automated by extending the vtify
preprocessor.

3.3 Runtime Environment
We have implemented most of the multiprocessor
version of the Virtual Threads runtime environment,
including clues, Metathreads, worker thread pools,
multiple event loops in separate kernel threads, thread-
safe queues, and thread-safe memory pools for
allocating continuations efficiently. However, since we
do not have easy access to a multiprocessor, we have
only tested and debugged our runtime environment in a
single-processor configuration, with a single event loop
and one pool of worker threads.

3.4 Sample Application and
Preliminary Benchmarks

As a test of our implementation of Virtual Threads, we
converted Peter Sandvik’s Simple Web Server
[Sandvik2000] from a multiprocess architecture to a
multithreaded architecture using POSIX threads. We
then converted this multithreaded server to Virtual
Threads. With our current preprocessor and libraries,
the conversion from POSIX threads to Virtual Threads

required approximately two and a half hours, whereas
the conversion from forked processes to POSIX threads
required approximately eight hours.

To test the performance of our current implementation,
we ran the WebStone benchmark [Mindcraft2000] on
the Simple Web Server, converted to POSIX threads
and to Virtual Threads. We also ran the benchmark on
the Apache Web server for comparison purposes.

3.4.1 Benchmark Setup
The server that we used for benchmarking was a
personal computer running Redhat Linux 7.0 on a 400
MHz Pentium II processor with 128 MB of memory.
The client was an IBM Thinkpad T20, also running
Redhat Linux 7.0 on a 700 MHz Pentium III processor
with 128 MB of memory. We connected both
computers to a 100base-TX Ethernet hub. There were
no other computers attached to the hub.

Both machines ran in multiuser mode, but we disabled
their X servers and quiesced the machines before
running benchmarks. Before each run of the
benchmark, we restarted the server process on the
server machine and ran a 2-minute “dry run” of the
benchmark to put the server in a consistent state. Each
run of the benchmark lasted five minutes.

WebStone’s default workload consists of ten files of
varying sizes. Since all ten files fit easily into the server
machine’s file system buffer cache, the default
workload produced very uninteresting results. In
particular, all the servers ran so quickly that the server’s
network card was the only factor limiting throughput,
and HTTP transactions finished so quickly that the
WebStone clients had difficulty keeping more than 70
connections to the server open at a time.

To remedy these problems, we created an alternative
workload consisting of 250 1-megabyte files. This
workload did not fit in the server’s buffer cache. The
architecture of the WebStone clients prevented us from
using a larger number of smaller files.

We tested each server with numbers of client
connections ranging from 1 to 500.

3.4.2 Benchmark Results
The results of our benchmarks are shown in Figure 10.
The Virtual Threads Web server produced no errors,
even when serving 500 clients simultaneously. When
serving more than 2 clients, the Virtual Threads Web
server outperformed both the other servers by as much
as 250%. These results are similar to those reported in
[Welsh2000] and [Pai1999], in which event-driven
servers scaled better than multithreaded servers on I/O-
intensive workloads.

 9

4 Relation to Previous Work
Thread libraries are a very well-studied research area,
and a full discussion of past research on threads is
beyond the scope of this paper. [Kavi1998] provides a
survey of existing implementations of multithreading.

Two recent user-level thread libraries that are similar to
Virtual Threads are Gnu Portable Threads
[Engelschall2000] and Silicon Graphics State Threads
[SGI2000]. Like Virtual Threads, these libraries
schedule their threads using an event loop. However,
the libraries keep a separate stack and register file for
each thread and must bring the entire stack and register
file into the cache on a context switch. The thread
libraries do not have any support for multiple
processors, and their internal implementations would
require a complete rewrite to use multiple event loops
or clues. Furthermore, these libraries force the
programmer to use only nonpreemptive thread
scheduling, whereas Virtual Threads allow the
programmer to use thread pools when nonpreemptive
scheduling is inconvenient.

The literature on continuations is almost as large as the
literature on threads. We refer the systems-minded
reader to [Thielecke1999] for an accessible introduction
to the concept of a continuation.

Functional languages have used continuations to
implement threads for the past twenty years
[Wand1980]. Safe functional languages make
continuations easier to implement than context
switches.

Some researchers have used continuations to implement
threads in imperative languages. For example, Python
Microthreads [Tismer2000] is a thread package that
uses the continuation support of Stackless Python
[Tismer1999]. In unsafe imperative languages such as
C, however, continuations are considerably more
difficult to implement, and there has been little work on
thread libraries that use them. The user-level threads
package for the Mach operating system [Dean1993]
used continuations in a limited context inside the library

functions. Virtual Threads are different from other
implementations of threads in C in that our
preprocessor rewrites programs to use continuations
explicitly.

5 Future Work
The work we have performed this semester has
produced promising early results but leaves room for
additional innovation.

5.1 Preprocessor
Our current implementation of the Virtual Threads
preprocessor requires that the programmer perform
some parts of the conversion to a state machine by
hand. The steps that currently require human
intervention are very mechanical in nature, and the
preprocessor could easily perform those steps
automatically. Future versions of the preprocessor
should be entirely automatic, taking C source code as
their input and calling the C compiler to generate object
files as their output.

Future generations of the Virtual Threads preprocessor
should also perform more aggressive optimizations to
reduce continuation size. The preprocessor should use a
dataflow analysis to determine which variables a
Virtual Thread needs to save across each state boundary
and should rewrite multistate functions to store only
those variables in continuations, and only at those
points in the Virtual Thread where the next time that the
Thread reads from the variables could be during a
different state. All other variables can reside in registers
or on the event loop’s stack, which is more likely to be
in the processor’s cache than is the continuation.

Due to the difficulty of performing alias analysis, it
may be difficult for the preprocessor to determine
whether a buffer that is a local variable in a Virtual
Thread is “live” at a given point in the program.
However, the Virtual Threads runtime environment
already uses memory pools to allocate Virtual Threads
continuations. A simple work-around for the alias
analysis problem would be to allow the programmer to
use these memory pools to allocate buffers
dynamically.

To make optimal use of the current implementation of
Virtual Threads, the programmer needs to know where
in her code to insert calls to VT_yield(). Future
implementations of the Virtual Threads preprocessor
should free the programmer of this requirement by
inserting these yield calls automatically. The fact that it
is sometimes impossible to predict statically how long a
given section of code will take to execute would make
it difficult for the preprocessor to insert yields into parts
of some programs. To deal with those cases, the

Throughput

0

10

20

30

40

50

60

70

80

1 10 100 1000

Concurrent Connections

T
h

ro
u

g
h

p
u

t
(M

b
it

/s
ec

.)

Virtual Threads

Apache

POSIX Threads

Figure 10: Benchmark results.

 10

preprocessor could direct sections of the program to use
a thread pool instead of running in an event loop.

The current implementation of Virtual Threads has only
limited support for dynamic libraries. In particular, a
dynamic library function must execute within a single
state of a Virtual Thread, so a dynamic library function
that blocks or performs complex computations needs to
run inside a worker thread pool. A simple mechanism
for allowing multistate functions inside dynamically-
loaded libraries is to suspend the calling Virtual Thread,
spawn a second Virtual Thread inside the library to run
the function, and return control to the first Virtual
Thread when the second Virtual Thread completes.
Future versions of the Virtual Threads preprocessor
should automate the process of converting multistate
functions in dynamic libraries.

5.2 Runtime Environment
We have not yet used Virtual Threads on a machine
with more than one processor. An important piece of
future work is to obtain a multiprocessor machine in
order to test and to debug the Virtual Threads runtime
environment with multiple event loops running in
parallel. Such an environment would allow us to
determine the effectiveness of clues for creating self-
tuning pipelined servers.

The current implementation of Virtual Threads uses
worker thread pools of a fixed size. However, past
research has demonstrated that different tasks perform
better at different levels of multiprogramming. It would
be beneficial, therefore, for Virtual Threads to have a
mechanism of dynamically adjusting the size of the
worker thread pools to obtain the highest possible level
of throughput.

The concept of clues offers several intriguing future
directions. On computers with a large number of
processors, the programmer may wish for two or more
event loops to share a clue for increased parallelism.
One mechanism to provide this sharing is a hashed n-
clue. A hashed n-clue consists of n “subclues”,
numbered 1 to n, and a hash function. To follow a
hashed n-clue, a Virtual Thread applies the hash
function to its continuation pointer to obtain an index
from 1 to n and follows the appropriate subclue.
Multiple hashed n-clues could create pipelined servers
with superscalar pipelines.

6 Conclusion
We have successfully implemented an early version of
Virtual Threads, a system for converting simple
multithreaded servers to scalable event-driven servers.
Our implementation consists of a preprocessor that
converts threads written in C into state machines that

store information in continuations and a generic
asymmetric multiprocess event-driven server to run
those state machines. Preliminary benchmarks of our
implementation applied to a simple Web server show
that Virtual Threads provide the performance benefits
of an event-driven server while allowing the
programmer to use the intuitive multithreaded server
programming model.

7 References
[Butenhof1997] Butenhof, David R. Programming

with POSIX Threads. Addison Wesley, 1997.
[Dean1993] Dean, Randall. “Using Continuations to

Build a User-Level Threads Library.” Third
USENIX Mach Conference, April 1993.

[Engelschall2000] Engelschall, Ralf. Gnu Portable
Threads. Software Library. First released February
2000. http://www.gnu.org/software/pth/.

[Gay2000] Gay, Warren W. Linux Socket
Programming by Example. Que, 2000.

[Kavi1998] Kavil, Krishna. “Multithreading
Implementations.” Microcomputer Applications,
vol. 17, no. 3, 1998.

[Kegel2000] Kegel, Dan. “The C10K Problem.”
http://www.kegel.com/c10k.html.

[Larus2000] Larus, James and Michael Parkes.
“Enhanced Server Performance with
StagedServer.” Lecture. U.C. Berkeley, October
2000.

[Mindcraft2000] Mindcraft Inc. WebStone 2.5b3.
Computer program.
http://www.mindcraft.com/webstone.

[Pai1999] Pai, V. S. et al. “Flash: An Efficient and
Portable Web Server.” USENIX 1999.

[Sandvik2000] Sandvik, Peter. Simple Web Server.
Computer program. http://linuxstuffs.cjb.net.

[SGI2000] Silicon Graphics, Inc. State Threads.
Software library. First released June 2000.
http://oss.sgi.com/projects/state-threads/.

[Stevens1998] Stevens, W. Richard. UNIX Networking
Programming Volume 1—Networking APIs:
Sockets and XTI. Second ed. Prentice Hall PTR,
1998.

[Thielecke1999] Thielecke, Hayo. “Continuations,
Functions and Jumps.” SIGACT News, vol. 30, no.
2, June 1999.

[Tismer1999] Tismer, Christian. Stackless Python.
Software library. First released 1999.
http://www.stackless.com/.

[Tismer2000] Tismer, Christian et al. Python
Microthreads. Software library.
http://world.std.com/~wware/uthread.html.

[Welsh2000] Welsh, Matt et al. “A Design Framework
for Highly Concurrent Systems.” Submitted for
publication, April 2000.

