Vulcan

Binary transformation in a distributed environment

Amitabh Srivastava
Andrew Edwards
Hoi Vo

April 20, 2001

Technical Report
MSR-TR-2001-50

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

Thisreport replaces M SR-TR-99-76, an earlier version of the same material.

Vulcan
Binary transformation in a distributed environment

Amitabh Srivastava
Microsoft Research
One Microsoft Way

Redmond, WA

amitabhs@microsoft.com

ABSTRACT

Distributed computing on the Internet presents new
challenges and opportunities for tools that inspect and
modify program binaries. The dynamic and
heterogeneous nature of the Internet environment extends
the traditional product development process by requiring
program development tools like these, which were once
used only internally, to work in live environments too.
The concept of compilation process must be expanded
along with the capabilities of the binary tools. This paper
presents Vulcan, a second-generation technology that
addresses many of these challenges. Vulcan provides
both static and dynamic code modification and provides a
framework for cross-component anaysis and
optimization. It provides system-level anaysis for
heterogeneous binaries across instruction sets. Vulcan
works in the Win32 environment and can process x86,
IA64, and MSIL binaries. Vulcan scales to large
commercia applications and has been used to improve
performance and reliability of Microsoft products in a
production environment.

1. INTRODUCTION

In recent years, binary instrumentation and optimization
tools (hereafter called “binary tools’) have been
effectively used to understand and improve the
performance of significant programg[23][24]. Because
they are new, binary tools are typically not well integrated
with the existing compiler framework. (They often rely
on slightly modified executable formats, so that relocation
information is retained, and code and data can be easily
distinguished in the executable.)

At the same time, the dynamic and heterogeneous nature
of Internet computing has challenged the traditional
compilation model, presenting great opportunities to

andred@microsoft.com

Andrew Edwards Hoi Vo
Microsoft Research
One Microsoft Way

Redmond, WA

Microsoft Research
One Microsoft Way
Redmond, WA

hoiv@microsoft.com

expand the role of binary tools in improving performance
and reliability of software. Vulcan is a second-generation
technology that addresses many of the challenges of this
new generation of computing. To understand the role of
Vulcan, we first describe how the traditional compilation
framework has changed.

In the past, the compilation process has focused simply on
turning source code into executables, balancing
compilation speed against code optimization. The static
compiler turns source file into object files, followed by
the linker that combines the object files to produce the
fina executable. Very little program information is
preserved after the link stage, mostly for debugging and
support.

The following binary modification stage was not designed
as part of the original compilation process. Binary tools
“hacked” their way into the compilation process by
intercepting and transforming executables that had
adready been compiled and linked. The binary
modification stage thereby provided language
independence and a natural environment for whole
program analysis and architecture specific
transformations without requiring recompilation.

The new distributed computing model of the Internet
presents new challenges for software development tools:
its heterogeneous nature forces applications to be built
with components in multiple instruction sets, and its
dynamic nature extends the traditonal product
development process to live environments.

The heterogeneous nature of the Internet requires certain
compilation phases like code generation and optimization
to be delayed until run time. Programs can be compiled
to architecture-independent languages like MSIL?
(Microsoft Intermediate Language[19]), with final
optimization and code generation performed at run time.
As shown in Figure 1, parts of a heterogeneous
application may still exist in MSIL while other parts may

1 MSIL is Microsoft's intermediate language for the managed
environment. A number of languages such as C#, VB, Cobol
etc. can be compiled to MSIL. MSIL is converted to native
code by JIT compilers.

Native
Libraries

(x86/I A@)

Application
components
(x86/1 A64)

Figurel: Heter ogenouapplication

already exist in the native instruction set. Architectures
like 1A-64 also let x86 binaries co-exist with |A-64
binaries. Finally, an application may be distributed over
multiple machines with different instruction sets. In this
case, each MSIL component will ultimately be trandlated
to the instruction set of the local machine.

The heterogeneous environment of the Internet poses new
challenges in understanding whole-system behavior: all
components of an application in different formats must
ultimately be analyzed within a single framework.
Systems that have been ported to multiple architectures
are not sufficient to analyze heterogeneous programs
because each port of the system analyzes parts of the
program independently on its architecture.

The Internet places strong demands for reliability,
performance, and continuous operations in the presence of
open-ended extensibility. As the complexity of the
deployment environment cannot be fully reproduced
inside our test labs, many development operations like
debugging, program verification, and the identification of
performance bottlenecks must occur on live systems.
Because of the severe memory and time constraints in the
deployment environment, binary tools will require both
static and dynamic modification capabilities. Moreover,
to operate in a live distributed environment, binary tools
will require modification capabilities triggered from
remote systems.

All our existing tools have been designed to operate at a
particular stage of the compilation process and cannot be
simply extended to operate elsewhere. For example, past
binary systems like ATOM operate statically at post-link
time and cannot operate under the stringent memory and
time constraints of run time. Conversaly, systems like
Dynamo have been engineered to perform specific
optimizations a run time with very low overhead, but
lack the general capabilities granted by the more general
infrastructures of static systems.

Vulcan is a second-generation infrastructure that is
designed for research and development in the new

Internet environment. Vulcan provides a single rich
infrastructure that addresses the needs of the new
environment without increasing the complexity of writing
transformations and building tools. The key features of
Vulcan include:

e Static and dynamic binary code modification
capabilities.

e System-level anaysis for heterogeneous
programs. Vulcan currently works with binaries
in x86, IA64, and MSIL in the Win32
environment.

e Uniform abstraction for different component
types in heterogeneous environments. Vulcan
provides a flexible API both for instrumentation
and modification. Vulcan's APl is similar in
philosophy to the ATOM’s API although ATOM
provides API only for instrumentation.

* Dynamic modification of an executing program,
triggered locally or from a remote machine in a
distributed environment.

e Abstraction across multiple components to
provide a single representation for cross-
component optimization.

e Operation on large commercia applications like
Microsoft Office, Windows 2000 and SQL 2000.
Vulcan has been used to improve the
performance and reliability of Microsoft
products.

e Opportunities for new classes of transformations
like partial compilation, mixed-instruction set
binaries, and cross-component optimization in
heterogeneous environments.

In this paper, we describe the design and implementation
of Vulcan. We discuss its programming abstractions, its
performance, and the new classes of transformations it
enables.

2. THE ARCHITECTURE OF VULCAN

The Vulcan infrastructure is designed to address the
development, testing, and operational requirements of
product development. It provides a rich infrastructure for
experimentation, rapid prototyping, and product
implementation. Vulcan includes:

« A uniform representation for heterogeneous
systems to simplify the definition of
transformations and to allow whole-system
analysis.

« Externalized program representations for use
by new tools, analyses, and transformations in
areas like optimization, correctness, testing,
support, and debugging.

* Infrastructure for Cross-component
optimizations across component boundaries.

2.1 Heterogeneous systems

The basic design of Vulcan is based on the observation
that athough there are many different formats for
encoding a program, conceptually each stores similar
information like code, data, read-only data, symbols, etc.
Vulcan builds high-level abstraction layers to uniformly
represent different input forms. This eliminates

X86 |A-64 MSIL

— 7
~—

Transformations Analyses
A Abstract A
P Representation P
| |
A
la Y
X86 |A-64 MSIL

Figure 2: The Vulcan infrastructure

differences due to various encoding formats and provides
auniform view of the program to the user.

Figure 2 shows the basic architecture of Vulcan. Vulcan
builds an abstract representation of the program from the
application binaries. In this abstract representation, all
addresses have been converted into logical pointers
making the representation very malleable. Vulcan
permits modification and analysis of the program
representation by externalizing the abstraction.

To represent different instruction sets in the abstract
representation, Vulcan uses a machine model consisting
of infinite registers and a stack, with instructions like add,
subtract, and push. This abstract representation can be
gueried for analysis and modified for instrumentation and
optimization. (The original representation is also available
for machine-specific analysis and modification.) Vulcan
writes the final binary from the abstract representation. In
the case of dynamic modification, Vulcan's input and
output are attached to an executing process.

2.2 Externalized program representations

Vulcan presents a simple program representation for
analysis and transformation. Opague types expose its six
basic abstractions: System, Program, Component,
Procedure, Basic Block, and Instruction. A System in
Vulcan is a collection of Programs. Each Program is a list

of Components. Each Component has a symbolic
representation consisting of symbols, data blocks and
code. The Component also contains abstractions unique to
different input formats, such as Win32's PE file format,
where it abstracts the header information with methods to
read, write, query and tranglate the contents.

Code in Components is represented as a linear list of
Procedures, Procedures as a list of Basic Blocks, and
Basic Blocks are a list of Instructions. Higher-level
abstractions like control flow graphs (CFG) and data flow
graphs (DFG) can be built using Vulcan's basic
abstractions. As shown in Figure 3, each of these
abstractions exports an APl for navigation, query and

API
Higher level Abstractions

AP AP

QUERY MODIFICATION NAVIGATION

Vulcan Opaque Types
V System VProg VComp VProc VBlock VInst

Vulcan Internal Types

Figure 3: Vulcan program representations

modification. Vulcan aso provides several additional
abstractions such as Data Blocks to represent data, and
Symbols to represent the elements of the symbol table
(including the names of functions, parameters, and
locals).

Appendix A shows the code of a peephole optimization
that performs branch chaining using the Vulcan API.
This code is architecture-independent and will work on a
Program that contains different types of Components.
Vulcan provides primitives for memory addresses,
branches, and register contents that lets users write
architecture independent code. For instance, Intel’s x86
architecture has many different addressing modes for
referencing memory while RISC architectures like
Compag's Alpha have a simple base register with a
displacement. However, Vulcan's Effective Address
primitive lets the user ignore the architecture specific
details. Vulcan also automatically provides the memory
addressthat is being referenced.

Vulcan can aso dynamically modify a running
application from a remote machine. To trigger branch
chaining from a remote machine, only a main routine
needs to be changed, as shown in Figure 4. The main
routine uses the Open () primitive to obtain all the running

Programs (processes) on that machine, then iterates over
all the Programs and invokes Peephole on each of them.

int main(int argc, char** argv) {

[/l argument is machine name

V System *pSystem = V System::Open(argv[1]);

for (VProg * pProg=pSystem->FirstProg();
pProg;
pProg->Next())

Peephole (pProg);
return O;

Figure 4: Branch chaining from aremote machine

Vulcan also exports an instrumentation interface for
building tools. This interface alows a specified
procedure call to be inserted before or after a Program,
Component, Procedure, Basic Block, or Instruction. The
user provides the code for this procedure in a separate
library that is loaded and called as the program executes.
This procedure can be passed standard arguments like int
and char, as well as additional types including the
contents of a register, an effective memory address, or
whether a branch will be taken.

Vulcan records the transformations specified by the user
and applies them only when the Commit () primitive is
invoked. The user has full control on when and how often
to invoke the Commit () primitive.

2.3 Cross-component optimization: merging
multiple components

Applications are divided into Components—(dynamic
linked libraries or dlls)— for several reasons. First, dlls
enable code sharing, since a number of applications can
share the same dll. Second, dlls enable small patch
releases, since only dlls whose code has changed must be
shipped as part of the patch release. Finally, dils provide
a unit to separate code shipped by different organizations.
These issues argue for dividing the applications into a
large number of dils.

Unfortunately, dividing a program into a large number of
dils may also hurt performance. If optimizations are
limited to a single dll, they are less effective when the dll
is small; we cannot pack code on a single page for
working set optimizations if the code is split between
different dlls. Poor packing also degrades application
startup time. Similarly, procedure calls that span dlls
cannot be inlined. However, by merging dils, these same

optimizations can operate more effectively across
component boundaries.

For program management reasons, the number of dlls that
congtitute an application is often decided early in the
development process, and this decision can be hard to
change. Vulcan provides the ability to merge multiple
components late in the process, separate from
management concerns, and provide a single program
representation for the merged components.
Transformations may now be applied to the merged
component and achieve cross component optimization
effects. The initial results are very promising and may be
subject of a separate paper.

Vulcan can be used for cross component optimization
without merging the components. This mechanism is
discussed in Section 6.

3. VULCAN IMPLEMENTATION

This section describes how Vulcan statically modifies
application binaries and dynamically transforms running
application. These details are internal to Vulcan and are
transparent to the user.

3.1 Static modification

In the static mode, Vulcan takes as input the components
that make up the program. Depending on the type of each
component, Vulcan invokes an appropriate reader to parse
the binary file, disassemble the instructions, and build the
abstract representation. Vulcan uses the available meta-
information (stored in program database file or PDB) to
construct the program representation. The PDB file
contains procedure names, symbol table information,
variable type information, etc. Vulcan can build the
representation lazily and at low cost, without incurring the
dynamic trandation overhead of other schemes that
transform executableg[26]. Vulcan discovers the basic
block boundaries within functions and aso determines
which parts of the binary are satically dead. The
representation of each basic block is just a pointer to the
raw bytes of the image. It aso converts physical
addresses to logical addresses to facilitate manipulation.
Vulcan also creates a link between each block and its
logical successor block, so that reordering the blocks will
not affect the logic of the program.

Vulcan maintains the correspondence between the
abstract instructions and the original bytesin the binary so
that applications can query for the origina bytes. It
initially keeps each instruction close to its origina form
as many program analysis tools and simulators require
access to ingtructions in their origina form. This also
alows efficient trandation of instructions in the fina
assembly phase. When optimizers do not require the
original architecture-specific instructions, they may
convert them into architecture-independent instructions.
By converting the instructions, the representation loses

the one-to-one mapping with the original form but allows
more architecture-neutral analyses and transformations.

Once the representation has been built, it can be queried
for analysis and modified for instrumentation and
optimization. Vulcan builds the abstraction lazily, so a
tool that just inserts probes at procedure level or reorders
basic blocks will not incur the cost of the full instruction
abstraction.

After al the transformations have been applied to the
program, Vulcan generates the updated binary from the
abstract representation in the appropriate instruction set.
Vulcan adds the necessary code to preserve the logical
control flow. Vulcan computes the addresses, assembles
instructions, writes the new binary file, and also creates
an updated PDB file so the updated program can be
debugged and even read back into Vulcan.

3.2 Dynamic modification

Vulcan can aso dynamicaly modify running
applications. As in the static mode, Vulcan builds the
abstract representation lazily. It reads the executing
image directly from the memory of the target process to
build its abstraction. Modifying executing programs in
the presence of multiple threads and variable-size
instructions requires special treatment. This section
describes how Vulcan addresses these cases in an efficient
manner.

Instructions and basic blocks cannot be safely moved
around in a running program because their addresses may
have already been stored in dynamic data structures. |If
the transformation does not increase the instruction size or
the basic block size, they do not have to be moved.
Vulcan detects such cases and appropriately modifies the
instructions in place. In presence of multiple threads, this
change must be done atomically; Vulcan suspends all the
threads in the process before making changes to the
instruction.

Old 0x401000: i New 0x401000:
55 push ebp i E9 jmp 0x780654
8B mov ebp, esp P AF
EC ! F6
83 subesp, 16 P 37
EC 00
16 i 116
: 0x780654:
CALL HitProc ‘
{ 55 push ebp
{ BB mov ebp, exp
! EC
i 83 subesp, 16
i EC
i 16

Figure5: Dynamically inserting a procedure call

Modified basic blocks may not fit in the origina space, and
modified variable-width instructions may not fit in the space
occupied by the origina instructions. In this case, Vulcan
creates a copy of the procedure or the block? and then links that
modified block into the target process. Vulcan also redirects
control flow to the copy of the procedure or block by replacing
its beginning with a jump to the modified copy, as shown in
Figure 5. This replacement is also done atomically while all of
the threads of the target process are stopped. If any of the
threads were executing inside the code being replaced, Vulcan
fixes the thread before restarting all of the stopped threads.

Vulcan supports iterative profiling by alowing
instrumentations probes to be added and removed at
different times. Vulcan alows probes to be inserted and
removed at Procedure, Basic Block, and Instruction
granularity. PARADYN [16] allows calls to be inserted
only at procedure granularity.

3.3 Remote dynamic modification

Vulcan can also dynamically modify applications running
on a remote machine. As described in the previous
section, Vulcan normally builds the abstract
representation directly from the executing image, but
Vulcan can also build the abstract representation from the
binary of the running application on disk. However, this
requires an additional step of relocating the program to
the address of the running program.

System A System B

Instrumented
Process

Vulcan
Infrastructure

Remote Vulcan
DCOM
Server

Remote Proxy

Figure 6: Modification from a remote machine

As shown in Figure 6, reading memory from the remote
process is handled through a distributed common object
model interface (DCOM). DCOM handles cross-machine
as well as cross-platform communication, and it also

Remote Proxy

2 On x86, the common technique is to use the one-byte int 3
instruction that generates an interrupt. As it is 1-byte it can
eliminate growing the basic block but it introduces large time
overheads and complexities in interrupt handling.

enforces security. The DCOM interface for remote
Vulcan is small (around a dozen methods) and alows
remote reading and writing of memory ranges, as well as
enumerating processes, threads, and components. It also
lets Vulcan create, suspend, and adjust threads. (This
interface is completely implemented using public and
documented Win32 APIs) This process requires a
Vulcan proxy library on the machine where the
application is executing.

4. VULCAN PERFORMANCE

To measure the performance of Vulcan, we tested Vulcan
against four large commercia applications. WinWord, a
word processing application, Excel, a spread sheet
application, Mso9, a shared code library, and SQL, a
database application. Figure 7 gives the details of each of
the programs. number of basic blocks, number of
instructions, size of the binary and its associated PDB file.

Program |Winword| Excel Mso09 SQL
Procs 24k 25k 35k 41K
Blocks 547K 563K 359K 438k
Insts 2,039k 2,023k 1,377k|] 1,767k
exe (MB) 8.1 6.5 5.2 6.6
pdb (MB) 22 17 22 20

Figure 7: Program details

For each application we measured the peak working set
and the time it took Vulcan to read and write the
application binary. These measurements do not include
the additional memory and time taken by the user's
transformation.

The peak working set of Vulcan, as shown in Figure 8, for
building a complete abstract representation of an
application, then writing it out, is about five to eight times
the size of the executable. As Vulcan normally operates
lazily, Vulcan's memory and time overhead will be lower
for many transformations. Figure 8 also shows the peak
working set is 10-30% lower if Vulcan does not build the
Instruction abstraction.

Vulcan Working Set (WS)

60
50 1
40 -
30 1
20
10 A
O,

MB

Winword Excel Mso9 SQL

B Peak WS - full IR OPeak WS - IR w/o instructions

Figure 8: Vulcan Working Set

Vulcan's Instruction abstraction can dominate its memory
requirements; having al occurrences of the same
instruction sharing the same representation, reduces this.
Figure 9 shows that only 17-21% as many instructions
need to be represented in these large applications,
containing 1.3 million to 2.0 million instructions®. Thisis
why we did not see a bigger reduction in working set in
Figure 9 when Vulcan did not build the Instruction
abstraction.

Instructions Represented

B Instructions
10% A Represented

Figure 9: Uniqueinstructionsin applications

3 All pc-relative instructions are assumed unique.

Vulcan processing Time

B Dynamic - full IR
O Static - full IR

N Dynamic - IR w/o
instructions

O Static - IR w/o
instructions

Figure 10: Vulcan processing time

Figure 10 shows the time taken by Vulcan to process an
application both in static and dynamic mode. In the static
case, it includes the time taken to read the binary, build
the abstract representation, link the binary and write the
binary to disk. The figure also shows the time if the
abstract representation was built without the Instruction
abstraction. For the dynamic modification, there is no
link stage since the modification can be made
incrementaly at very low cost, and an updated binary
does not have to be written to disk. Figure 10 shows the
time Vulcan takes in dynamic mode both with and
without the Instruction abstraction.

5. VULCAN STATUS

Vulcan currently works in Win32 environment and can
process x86, |IA64, and MSIL binaries. Vulcan can
process large Microsoft applications such as the Microsoft
Office suite, Windows NT system components, and SQL
Server.

Vulcan also provides alibrary of higher-level abstractions
that includes control-flow graphs, data-flow graphs, call
graphs, and inter-procedural flow graphs. A wide variety
of tools have been built usng Vulcan to improve
performance and reliability of Microsoft products. Some
uses of Vulcan are enumerated below.

Program analysis and measurement: Vulcan has been
used for building various profiling tools like basic block
counting, edge-count profiling and whole-program path
profilingError! Reference source not found.. Vulcan
has been used to profile parameters in procedure calls
[10]. Vulcan is also used for understanding other aspects
of programs, such as data reference profiling.

Program optimization: Various optimizations have been
implemented using Vulcan. These include optimizations
for code locality, data locality, procedure inlining, and
cross component optimizations. Vulcan has aso been

used for architecture specific optimizations [1] and for
building dynamic optimizations [4].

Software management: Vulcan has been used to build
binary matching algorithms. Binary matching [25]
identifies parts of a hinary that has changed from a
previous version. This information is useful in building
smaller patches, prioritizing test cases for test case
selection, and mapping stale profile datato new binaries.

Vulcan has also been used for code obfuscation and
software watermarking.

Reliability: Vulcan has been used to improve the
reliability of software. Vulcan-based tools can measure
code coverage and improve test effectiveness by injecting
faults. A tool for detecting instruction hazards in 1A64
binaries [6] has aso been built using Vulcan.

6. FUTURE WORK

Vulcan enables new classes of transformations to be built
because it alows transformations to analyze multiple
components in different forms, and programs to be
modified both statically and dynamically. We describe
some of these new transformations in this section. Thisis
work in progress and the results will be the subject of
future papers. These transformations will be important in
the new Internet environment.

6.1 Partial compilation and mixed-
instruction set binaries

In heterogeneous environments, programs are often
compiled into architecture-independent languages like
MSIL. This allows code generation to be delayed until
the characteristics of the machine have been determined at
runtime. Rather than compiling the entire binary to the
native instruction set, it can be beneficial to compile
performance-critical parts to native code while keeping
the rest in amore compressed representation.

Vulcan can aso be used to generate mixed-instruction set
binaries. For example, 1A-64 binaries are much larger
than x86 and MSIL binaries. Gwennap [8] therefore
suggests mixing 1A-64 code with x86 code. Gwennap’s
analysis suggests that by carefully choosing which
routines to code in IA-64 and which to leave in x86,
applications may achieve more than 90% of full native
performance while increasing code size by only about
20% over x86.

By using profile information from previous runs or from
the current run, Vulcan can choose to compile time-
critical routines to native code while keeping infrequently
used routines in MSIL. Vulcan can process the binaries
statically at install time or post-run time*, or dynamically

4 Post run time occurs between the different execution runs of
the application. It has lesser time and memory constraints
than run time.

at run time on the client machine. User-specific profile
information could also be collected dynamically using
Vulcan.

6.2 Cross component optimization: without
mer ging components

Merging dlls for cross-component optimization has
disadvantages if a particular dll is a candidate to merge
with in more than one set of dlls. The dIl would have to
be assigned to a particular set to break the tie. However,
Vulcan provides another mechanism for cross module
optimization that does not require merging components:
Vulcan can simultaneously read and represent multiple
components. Without merging, the transformation can
analyze al the components and build its own data
structures across component boundaries. The
transformation may update any of the representations as
needed. Vulcan will write the updated components. For
example, cross component inlining can be implemented®.

7. RELATED WORK

A large number of systems have been developed to
analyze and optimize homogeneous programs. Common
analysis techniques used are address tracing, binary code
modification, and simulation. Some related systems are
discussed in this section.

Pixie [17] started a class of basic block counting tools by
inserting a fixed sequence of instructions into basic blocks
to record their execution frequencies. Epoxie [26]
extended the technique by using relocations to eliminate
dynamic translation overheads. QPT [12] further extended
the technique by reducing the number of basic blocks that
need to be instrumented. Purify [9] instruments memory
references to detect out-of-bounds memory accesses and
memory leaks.

OM [23][24] alows general transformations to be applied
to a binary by converting the binary to an intermediate
representation that can be easily manipulated. It used a
Register Transfer Language (RTL) as a machine
independent representation and has been implemented on
MIPS[17], Alpha[21], and x86 architectures. EEL [13]
uses a similar technique and provides an editing library
for SPARC architectures. Spike [7] and Alto [5] are
optimizers for the Alpha architectures. Dynamo [3]
dynamically optimizes HP PA-RISC binaries at run time.

ATOM [22] extends OM by providing a flexible
instrumentation interface for Alphaand Intel x86 systems,
but does not support modification of binaries. Etch [20]
provides a similar instrumentation system for x86 as does
BIT [14] for Java byte codes. PARADYN [16] allows

® For cross moduleinlining, both the components will have to be
updated when either of the components is updated with newer
versions.

10

dynamic instrumentation of a running process and has
been ported to several architectures. It allows calls to be
inserted only at procedure granularity.

All of the above systems operate at a particular point in
the compilation process and cannot be easily extended to
other phases. Moreover, none of the previous systems
work in heterogeneous environments. Some of them have
been ported to multiple architectures, but each port
operates as an independent system.

8. CONCLUSION

Vulcan provides a rich infrastructure for the next
generation binary tools that address the requirements of
the new Internet programming paradigm. Vulcan alows
whole-system analysis in heterogeneous environments
where components are held in different forms. Vulcan
can perform both static and dynamic code modification.
Its resource usage scales with the complexity of the
transformation. Vulcan-based tools have been used for
rescarch and development on large commercia
applications.

Vulcan's general infrastructure also opens opportunities
for building new transformation like partial compilation,
iterative profiling, and cross-component optimization.
Some of these topics will be the subject of future papers.

ACKNOWLEDGEMENTS

Many people have helped bring Vulcan to its current
stage: the original Vulcan team included Bruce Kuramoto,
David Gillies, Greg Eigsti, Hon Keat Chan, John Lefor,
John Liu, Ken Pierce, Richard Shupak and Ronnie
Chaiken. Robert Bickford, Carlos Gomes, William Frank,
and Jay Finger later joined the effort. John Liu
implemented the MSIL input to Vulcan. Ronnie Chaiken,
David Gillies, and Robert Bickford implemented the 1A64
input and the library for higher-level abstractions. A large
number of early adopters patiently worked with us and
contributed to the richness of Vulcan. Our special thanks
to the summer interns who over the past two years
continuously found innovative ways to use Vulcan. John
DeTreville, Ben Zorn, and Scott McFarling provided
perceptive comments.

APPENDIX A: VULCAN API EXAMPLE

We illustrate the Vulcan APl by showing its use in
writing a peephole optimization. Figure 11 shows the
code for a peephole optimization that performs branch
chaining. The program to be optimized can be passed as
an argument to the main routine. As Vulcan can operate
both statically and dynamically, the argument to the main
routine can be a program or a process identifier of a
program that is already running.

After processing the arguments, main creates the Program
abstraction given the program name or process id.
Peephole is called to optimize the Program. Peephole has
four nested loops: one iterating over the Components in
the Program, one iterating over the Procedures of each
Component, one iterating over the Basic Blocks in each
Procedure, and the innermost iterating over the
Instructions in each Basic Block. To navigate an
abstraction, Vulcan provides the First(), Next(), and
Prev() methods. Peephole examines each Instruction, and
if it is an unconditional branch, BranchChain is called to
chain the branches. BranchChain finds the target Basic
Block of an unconditional branch using the BlockTarget()
method. If thefirst instruction of the target Basic Block is
also an unconditional branch, the branches are chained.
Finally, after all the transformations have been performed,
the Component is written out using the Write() primitive.

void BranchChain (VInst* pinst) {
for(;;plnst = plnstTarget) {
VBlock *pBlkTarget = plnst-> Block Tar get();
Vinst *plnstTarget = pBLKTarget-> Fir stInst();

if (COp::IsUnCondBranch(plnstTarget-
>Opcode()))

plnst->SetBlock Tar get(
BlockTarget());

else
break;

plnst->

11

void Peephole(V Prog* pProg) {
for(VComp *pComp = pProg->FirstComp();

pComp; pComp = pComp->Next()) {
for(VProc *pProc = pComp->Fir stProc();
pProc; pProc = pProc->Next()) {
for(VBlock *pBlk = pProc->FirstBlock();
pBIk; pBlk = pBIk->Next()) {
for(VInst *plnst = pBIk->Fir stI nst();
plnst; plnst = plnst->Next()) {
(COp::l sUnléondBr anch(plnst.Opcode()))
BranchChain(plnst);
}
}

}
pComp->Write();

int main(int argc, char** argv) {

VProg *pProg;

if (IsProcessld(argv[1])) // Is argument alive process
pProg = VProg::Open(GetProcessid(argv[1]));

else // or the name of a program?
pProg = VProg::Open(argv[1]);

Peephole(pProg);

return O;

Figure 11: Branch Chaining

9. REFERENCES

[1] Ronad Barnes, R. Chaiken and D. M. Gillies,
Feedback-Directed Data Cache Optimizations for the
x86, 2nd ACM Workshop on Feedback Directed
Optimization (FDO), November 1999.

[2] B. Buck and J. K. Hollingsworth, An APl for
Runtime Code Patching, Journal of Supercomputing
Applications (to appear), 2000.

[3] V. Bda, E. Duesterwald, S. Banerjia, Dynamo: A
Transparent Runtime Optimization System,
Proceedings of S GPLAN' 97 Conference on
Programming Language Design and Implementation,
June 2000.

[4] Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, David
M. Gillies. Mojo: A Dynamic Optimization System.
Submitted for publication, October 2000.

[5] K. De Bosschere and S. Debray. Alto: a Link-Time
Optimizer for the DEC Alpha. Technical Report TR-
96-16, Computer Science Department, University of
Arizona, 1996.

[6] David M. Gillies. Halo: A Hazard Location Tool for
IA64. MSR-TR-2000-37, April 2000.

[7] David W. Goodwin. Interprocedura Dataflow
Analysis in an Executable Optimizer. Proceedings of
SGPLAN' 97 Conference on Programming
Language Design and Implementation, June 1997.

[8] Linley Gwennap. Intel’'s Merced and |A-64:
Technology and Market Forecast. MDR Technical
Library Special Report, 1998.

[9] Reed Hastings and Bob Joyce. Purify: Fast Detection
of Memory Leaks and Access Errors. Proceedings of
Winter Usenix Conference, January 1992.

[10] John Kaamatianos, David Kaeli, and Ronnie
Chaiken. Parameter Value Locality of Window NT-
based Applications. 1st ACM Workshop on Feedback
Directed Optimization (FDO), November 1998.

[11] James Larus. Whole program paths, Proceedings of
SGPLAN' 99 Conference on Programming
Language Design and Implementation, 1999.

[12] James Larus and Thomas Ball. Rewriting executable
files to measure program behavior. Software,
Practice and Experience, vol 24, no 2, pp 197-218,
February 1994.

[13] James Larus and Eric Schnarr. EEL: Machine-
Independent Executable Editing. Proceedings of
SGPLAN' 95 Conference on Programming
Language Design and Implementation, June 1995.

[14]Han Lee and Benjamin Zorn. BIT: A Tool for
instrumenting Java bytecodes. Proceedings of the
1997 USENIX Symposium on Internet Technologies
and Systems, Monterey, CA, 1997.

12

[15] James Larus. Whole Program Paths. Proceedings of
SGPLAN' 95 Conference on Programming
Language Design and |mplementation, May 1999.

[16] Barton P. Miller, Mark D. Callaghan, Jonathan M.
Cargille, Jeffrey K. Hollingsworth, R. Bruce Irvin,
Karen L. Karavanic, Krishna Kunchithapadam and
Tia Newhall. The Paradyn Paralel Performance
Measurement Tools. IEEE Computer 28, 11, pp.37-
46, November 1995.

[17] MIPS Computer Systems, Inc. Assembly Language
Programmer’s Guide, 1986.

[18] Andy Padawer, Microsoft P-code technology. 1992.
In Microsoft Developer Network,
http://premium.microsoft.com/msdn/library/backgrou
nd /html/msdn_c7pcode2.htm

[19] Jeffery Richter. Microsoft .NET Framework
Delivers the Platform for an Integrated, Service-
Oriented Web.
http://www.microsoft.com/DirectAccess/products/mi
crosoft.net/framework.asp

[20] T. Romer, G. Voelker, D. Lee, A. Wolman, W.
Wong, H. Levy, B. Chen, and B. Bershad.
Instrumentation and Optimization of Win32/Intel
Executables Using Etch. Proceedings of the USENIX
Windows NT Workshop, August 1997.

[21] Richard L. Sites, ed. Alpha Architecture Reference
Manual, Digital Press, 1992.

[22] Amitabh Srivastava and Alan Eustace. ATOM: A
System for Building Customized Program Analysis
Tools. Proceedings of SGPLAN’ 94 Conference on
Programming Language Design and Implementation,
June 1994. Also available as WRL Research Report
94/2, March 1994.

[23] Amitabh Srivastava and David Wall. A Practical
System for Intermodule Code Optimization at Link
Time. Journal of Programming Language, 1(1):1-18,
March 93.

[24] Amitabh Srivastava and David Wall. Link-Time
Optimization of Address Calculation on a 64-bit
Architecture. Proceedings of SGPLAN' 94
Conference on Programming Language Design and
Implementation, June 1994. Also available as WRL
Research Report 94/1, March 1994,

[25] Zheng Wang, Ken Pierce, Scott McFarling. BMAT —
A Binay Matching Tools for Stale Profile
Propagation. The Journal of Instruction-Level
Parallelism, vol. 2, March 2000. Also available as
MSR-TR-99-83, November 1999.

[26] David W. Wall. Systems for late code modification.
In Robert Giegrich and Susan L. Graham, eds, Code
Generation — Concept, Tools Techniques, pp. 275-
293, Springer-Verlag, 1992.

