
WarpCore: A Library for fast Hash Tables on GPUs
Daniel Jünger∗, Robin Kobus∗, André Müller∗, Christian Hundt†, Kai Xu‡, Weiguo Liu‡, Bertil Schmidt∗

∗ Institute of Computer Science, Johannes Gutenberg University, Mainz, Germany
Email: {juenger, kobus, muellan, bertil.schmidt}@uni-mainz.de

† NVIDIA AI Technology Center, Luxembourg, Luxembourg, Email: chundt@nvidia.com
‡ School of Software, Shandong University, Jinan, China, Email: {xukai16@mail., weiguo.liu@}sdu.edu.cn

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract—Hash tables are ubiquitous. Properties
such as an amortized constant time complexity for
insertion and querying as well as a compact mem-
ory layout make them versatile associative data struc-
tures with manifold applications. The rapidly growing
amount of data emerging in many fields motivated the
need for accelerated hash tables designed for mod-
ern parallel architectures. In this work, we exploit
the fast memory interface of modern GPUs together
with a parallel hashing scheme tailored to improve
global memory access patterns, to design WarpCore
– a versatile library of hash table data structures.
Unique device-sided operations allow for building high
performance data processing pipelines entirely on the
GPU. Our implementation achieves up to 1.6 billion
inserts and up to 4.3 billion retrievals per second on a
single GV100 GPU thereby outperforming the state-
of-the-art solutions cuDPP, SlabHash, and NVIDIA
RAPIDS cuDF. This performance advantage becomes
even more pronounced for high load factors of over
90%. To overcome the memory limitation of a single
GPU, we scale our approach over a dense NVLink
topology which gives us close-to-optimal weak scaling
on DGX servers. We further show how WarpCore can
be used for accelerating a real world bioinformatics
application (metagenomic classification) with speedups
of over two orders-of-magnitude against state-of-the-
art CPU-based solutions. We plan to make our library
publicly available upon acceptance of the paper.

Index Terms—GPUs, hash tables, bioinformatics

I. Introduction
Hash tables are frequently used for storing key-value

pairs in-memory because of their compact data layout and
expected constant time complexity for insertion and re-
trieval. They are key data structures for bioinformatics [1],
computational geometry [2], and deep learning [3]. This
motivates the need for developing optimized implementa-
tions to support hash tables on modern architectures.

Common CPU-based hash table implementations such
as tbb::concurrent_hash_map from the Thread Build-
ing Blocks (TBB) library or std::unordered_map from
the C++ standard library suffer from poor throughput
induced by highly irregular memory access patterns during
probing. State-of-the-art accelerators may overcome this
limitation by virtue of their fast high bandwidth memory
(HBM2) and massive parallelism.

Consequently, a number of approaches have been de-
signed for GPU-accelerated hashing using various probing
schemes and memory access techniques. cuDPP [4], [5],

Garcia et al. [6], and StadiumHash [7] were among the first
to investigate hash map construction on GPUs proposing
static implementations (i.e., no pairs can be added/deleted
to an already constructed table) using one thread per key-
value pair. More recent approaches including cuDF [8]
(part of NVIDIA’s RAPIDS framework), SlabHash [9], and
HashGraph [10] are more flexible but are often limited in
terms of performance or memory overhead.
We propose WarpCore (WC), a highly efficient yet

flexible library of hash data structures and algorithms
that can achieve high performance for a variety of use
cases. Our approach can achieve robust and often superior
runtime performance even for very high load factors and
storage densities. The probing scheme is based on our
previous WarpDrive method [11] but eliminates its limita-
tion to 32-bit single-value hash-tables. This is achieved by
introducing a number of novel GPU-based data structures
and associated algorithms within a versatile framework.
Our detailed contributions are:
1) The design of 32-bit and 64-bit massively-parallel

single-value and multi-value hash table implementa-
tions with associated insertion/retrieval/deletion al-
gorithms that allow for the flexible exchange of un-
derlying data layouts.

2) Host-sided and device-sided interfaces which enable
high-throughput batch operations as well as concur-
rent processing of individual elements inside CUDA
kernels.

3) We propose a novel memory-compact bucket list hash
table with an associated dynamic growth scheme.

4) We present techniques for concurrent execution of
hash table operations and for the efficient usage of
multiple GPUs.

5) We show how WC can be used for bioinformatics
(metagenomic classification).

The rest of this paper is organized as follows. Section II
provides some necessary background information. Related
work is reviewed in Section III. The design of WC is
presented in Section IV. Performance is evaluated in Sec-
tion V. Section VI concludes the paper.

II. Background
Hash maps are a class of data structures, that given

a key k from a sparse domain K, enable constant-time
lookup of value v ∈ V associated with that key thereby

ar
X

iv
:2

00
9.

07
91

4v
2

 [
cs

.D
C

]
 1

1
N

ov
 2

02
0

modelling functional dependencies f : K → V , k 7→
f(k) := v. They avoid the memory overhead associated
with dense look-up tables which hold memory for values
associated with every possible key k ∈ K by using a hash
function h : K → I , k 7→ h(k) := i, mapping each key to
a distinct memory index i ∈ I.
The complete set of keys K is usually not known in

advance which precludes the construction of a bijective
mapping between K and I, e.g., by using minimal perfect
hash functions. For that reason and also due to perfor-
mance considerations, a hash function h is usually chosen
to be non-injective thereby introducing potential index
collisions h(k) = h(k′) for two distinct keys k, k′ ∈ K. The
most prevalent strategies for resolving such hash collisions
are Separate Chaining (SC) and Open Addressing (OA).

SC stores keys that map to the same hash h(k) = i
in a data structure tied to index i. This can either be a
fixed array, a dynamic array, a linked list of contiguous
chunks or a linked list of single elements. However, chain-
ing shows several characteristics that are undesirable in
the context of parallelization. Linked lists usually involve
cache-inefficient random access and require extra memory
for pointers while using fixed-size arrays may lead to
substantial memory over-subscription due to unused slots.
Furthermore, lock-free insertion and deletion of nodes in
linked lists can be error-prone due to pitfalls like the ABA
problem and priority inversion.

With OA colliding keys are stored in select locations
taken from a sequence of candidate positions which are
computed by a deterministic probing scheme. This ap-
proach is in general better suited for realizing efficient,
lock-free updates and also for reasoning about their cor-
rectness. It is therefore often preferred for implementing
concurrent hash tables. We also opted for OA as hash
conflict resolution technique for the same reasons.

A deterministic probing scheme generates a sequence
s(k, l) of candidate positions for storing a key k, where l
denotes the number of probing attempts. Probing starts
at the initial position s(k, 0) = h(k) and continues as long
as the candidate position is already occupied by another
key or some abort criterion is met (e.g., all slots of the
table have been visited). The probing sequences of three
prevalent schemes can be given as follows (c = |I| denotes
the capacity of the hash table):
• Linear Probing (LP): s(k, l) =

(
h(k) + l

)
mod c

• Quadratic Probing (QP): s(k, l) =
(
h(k) + l2

)
mod c

• Double Hashing (DH): s(k, l) =
(
h(k)+ l ·g(k)

)
mod c

While LP is cache-efficient, it tends to produce densely
occupied regions that lead to a high variance in re-
quired probing length per key. This becomes especially
pronounced when the number of inserted elements n
approaches the hash map capacity, i.e., its load factor
α = n

c is high. QP and DH avoid this so-called primary
clustering using larger step sizes at the cost of more cache
misses. Extensions of these probing schemes have been

proposed, among others Cuckoo Hashing [4] and Robin
Hood Hashing [12].
Fully featured CPU-based hash map implementations

such as std::unordered_map from the C++11 standard
library support on-demand resizing in case the number
of inserted elements n exceeds the capacity c. A common
strategy is to reinsert all data into a new hash map
instance if the load factor reaches a critical threshold, e.g.
α > 90%. These implementations typically also allow for
the insertion of keys and values of arbitrary sizes. In case of
concurrent table updates, modifications of each individual
slot have to be serialized either by locking them with slow
global mutexes or more efficient compare-and-swap (CAS)
operations. We focus on the latter. While this allows to
issue concurrent inserts and queries without violating the
integrity of the hash map, the outcome may depend on
the actual execution order of the operations.
While x86_64 CPUs support CAS instructions for up

to 128 consecutively stored bits, CUDA-enabled devices
are limited to 64-bit words. Thus, packing key-value pairs
(k, v) into 64 bits enables the efficient use of CAS op-
erations on an Array of Structs (AOS) memory layout.
For larger keys and values, one can limit the CAS to
the key slot of the struct or alternatively store keys
K and values V separately as Struct of Arrays (SOA).
These variants use relaxed reads and writes to the value
slots which might introduce priority inversion in case of
simultaneously inserting distinct values for the same key.
Whereas an AOS layout provides relatively high cache
locality if both key and value of a slot are accessed, the
effect reverses if we only access the key of each slot. In this
case the values stored next to each key reduce the effective
cache line size. This is especially critical if the value type
is large compared to the key type.

III. Related Work

Several data-parallel GPU hash table implementations
have been proposed which aim to leverage the fast memory
bandwidth provided by modern GPUs. Lessley et al. [13]
provide a comprehensive survey of these approaches and
highlight the respective concepts and techniques used.
Alcantara et al. [4] were among the first GPU hash

table implementations as part of the cuDPP library. Their
initial approach employs a two-stage table construction
where keys are initially hashed into buckets of equal size
residing in global memory. Collisions are resolved with
a third degree cuckoo hashing scheme. Subsequently, the
same authors proposed a single-pass variant [5] based on
fourth degree cuckoo hashing which supports load factors
of roughly 80% achieving an insertion performance of up
to 250 million inserts per seconds on a GTX 470. cuDPP
is limited to 32-bit wide types for both key and value.
Also, tables are static, i.e., adding new key-value pairs to
an already constructed table requires rebuilding the whole
data structure.

CoherentHash [6] introduces a data-parallel implemen-
tation of an OA single-value hash table using Robin Hood
hashing by augmenting each key with an additional 4-bit
age indicator which trades the additional memory over-
head with a lower on-average probing length. It uses one
thread for the lock-free insertion of a key-value pair using
atomic CAS intrinsics and achieves comparable speed to
cuDPP.

StadiumHash [7] employs an OA strategy where the
hash table itself may either reside in the GPU’s global
memory or inside host memory. A so-called ticket board
residing in video memory is used to track slot occupation.
It maintains a single bit indicating the slot’s availabil-
ity together with a small number of optional bits used
as a signature of the key stored inside the slot. If the
full hash map can be kept in GPU global memory the
performance of StadiumHash is between 1.04x to 1.19x
faster than cuDPP on a GTX780 GPU at an average load
factor of 80%. In the case that the hash table is stored
in host memory, i.e., out-of-core, the performance drops
to around 100 million inserts per second restricted by
the PCIe interconnect. In order to better fit the GPU’s
SIMT execution model, StadiumHash employs a warp-
cooperative work-sharing strategy, utilizing idling threads
to cooperate in queued table operations. Since only the
ticket board has to be updated atomically, StadiumHash
technically imposes no restrictions on the respective data
types for keys and values. However, the auxiliary ticket
board implies additional memory overhead as well as
additional random memory accesses per operation. Phase-
concurrent operations are guarded via exceptionally slow
global device- or even system-wide barriers.

cuDF [8] is part of NVIDIA’s RAPIDS framework [14]
for manipulating columnar data frames on CUDA-enabled
accelerators and also provides a data-parallel hash table
implementations. Similar to cuDPP, table construction
is static and does not allow for subsequent or phase-
concurrent insertions of new key-value pairs. To the best
of our knowledge, cuDF employs the only available multi-
value GPU hash table. However, their chosen linear prob-
ing scheme suffers from primary and secondary clustering
effects for input distributions featuring many values per
key, degrading performance significantly for these cases.

SlabHash [9] introduces a dynamic GPU hash table
which follows the concept of SC as its collision resolution
strategy. The table consists of an array of linked lists, each
of which represents a chain of equally sized memory units,
called slabs, that store collided keys during insertion. Each
slab has a size roughly corresponding to that of a single
cache line (128 bytes) and consists of multiple consecutive
key-value slots and a single pointer to its successor slab.
SlabHash provides bulk operations which are executed us-
ing a warp-cooperative work-sharing strategy, where each
CUDA thread inside a warp is assigned a distinct table
operation such as insertion, retrieval, or deletion, which
are then, one-by-one, executed cooperatively by all lanes

inside the warp, ensuring memory coalescing. Dynamic
slab allocation during execution is realized through a
specialized memory pool. For bulk operations, they report
512 (937) million operations per second for insertion (re-
trieval) on a Tesla K40c GPU, respectively. Compared to
cuDPP, SlabHash consistently achieves a lower throughput
of insertions per second. SlabHash achieves higher query
throughput only when the average number of slabs per list
is less than one. Over all configurations, cuDPP attains the
better query throughput. However, on a newer Tesla V100
GPU, they consistently outperform cuDPP. As stated in
the corresponding manuscript, SlabHash supports single-
value, as well as multi-value scenarios. However, we found
that the building blocks provided by the corresponding
code repository [15], were not sufficient to implement a
multi-value retrieve operation.
HashGraph [10] handles hash-collisions with neither OA

nor SC, but proposes a table construction method that is
highly similar to a compressed sparse row matrix layout.
HashGraph currently only supports static table builds,
which again implies a lack of support for phase-concurrent
workflows. Furthermore, the approach has high memory
overhead since it requires 3n auxiliary memory during
table construction with n input key-value pairs.
Note that none of the above mentioned implementations

feature out-of-the-box multi-GPU support. With WC we
introduce a framework for constructing GPU hash tables
that can overcome the aforementioned shortcomings of
existing solutions while outperforming the state-of-the-art.

IV. Implementation
Our aim is the design of a versatile library for creating

accelerated hash table data structures on CUDA-enabled
GPUs. WC provides optimized GPU implementations for
the following data structures:
• HashSet: stores set of keys; each key occurs only once
• SingleValueHashTable: stores key-value pairs; each
key occurs only once

• MultiValueHashTable: stores key-value pairs; same
key may occur multiple times (with different values)

• BucketListHashTable: stores all values associated
with the same key in a linked list of buckets

• CountingHashTable: counts distinct key occurrences
• BloomFilter: answers set membership queries
In this paper, we focus on the three highlighted types.

The remaining types are built based on the same underly-
ing principles. We now discuss some general library design
features (IV-A), single-value and multi-value hash table
layout, parallel probing scheme, and associated operations
(IV-B), our memory-compact bucket list (IV-C), concur-
rent execution (IV-D), and multi-GPU support (IV-E),

A. General Library Design Features
1) Modularity: We provide building blocks that can be

used to customize the basic data structures mentioned
above and to create completely new one. Interchangeable

k1 k2 kckeys

values

SoA

… : atomic write
(≤ 8 bytes)

pairsAoS

…v1 v2 vc

…

pairs
packed

AoS
…k1 v1

memory adressing

k1 v1 k2 v2 kc vc

k2 v2 kc vc

: relaxed write

Fig. 1: SOA, AOS, and packed AOS memory layout of a
key-value store with c slots.

parts include memory layout abstractions for switching
between AOS and SOA, different hash functions and
probing schemes.

2) Host-sided and Device-sided Interfaces: The data
structures in our library provide host-callable table op-
erations which take input batches, enabling billions of
independent table operations per second. We complement
them with device-sided counterparts that work on single
table elements. This enables the building of pipelines
where emitting key-value pairs, inserting them into a
hash table and/or querying can be fused into monolithic
CUDA kernels, avoiding costly global memory operations
for intermediate results.

B. Open Addressing Hash Table
1) Memory Layout: Our basic OA hash table consists of

contiguous arrays residing in global GPU memory in either
AOS or SOA layout, i.e., one array for holding aggregates
composed of a key and a value member, or alternatively
two arrays of the same length where the first holds the
keys and the second holds the corresponding values. The
array size determines the maximum number of key-value
pairs (capacity) the hash table can hold. We initialize each
key slot with an empty-indicator ke in order to distinguish
empty slots from occupied ones during probing. For the
case that both key and value data types do not exceed a
width of 32 bits, we provide a packed AOS layout, where
a key-value pair is bit-packed into a single 64-bit unsigned
integer. This allows for storing both key and value by using
a single atomic CAS operation instead of an initial atomic
swap of the key into its target slot followed by a relaxed
store of the value. Figure 1 illustrates the three supported
memory layouts.

2) Parallel Probing Scheme: A naïve approach assigns
each key to its own CUDA thread. However, since each
key typically follows a different probing sequence this
would lead to non-coalesced global memory accesses. An
alternative approach could use an entire warp of 32 threads
per input key k, such that each thread with lane ID t
probes a different hash table position h(k, t) mod c. If any

thread finds a matching slot it can signal the other threads
in the warp to terminate probing via fast register vote
intrinsics. However, this approach is only beneficial if the
hash table positions {h(k, 0) mod c, . . . , h(k, 31) mod c}
fall within the same memory region, enabling threads in a
warp to share the same cache line. The only known probing
scheme that meets this constraint is LP which suffers from
primary clustering.
Thus, we rely on a hybrid approach, called Cooperative

Probing Scheme (COPS) consisting of an inner intra-
warp probing scheme combined with outer probing based
on DH. The inner scheme is based on LP and ensures
data locality between threads inside a warp. The outer
probing scheme determines the starting index offset for
the inner scheme. The resulting local probing sequence of a
warp for the ith probing attempt is {

(
h(k, b i

32c) + 0
)

mod
c, . . . ,

(
h(k, b i

32c) + 31
)

mod c}. DH features both low
probing lengths and fairly uniform slot occupation pat-
terns within the table. Additionally, we maintain DH’s
property of cycle-freeness by selecting c = p · 32, where
p is prime whilst ensuring that the second hash function
generates step sizes as multiples of 32.
Assuming a uniform distribution of populated slots and

a load factor of 90%, every tenth slot would be empty on
average. Thus, it would be likely that an empty slot can
be found by a group of less than 32 threads at the first
probing attempt. This motivates the usage of sub-warp
tiling based on CUDA’s Cooperative Group (CG) feature
which enables us to use thread groups of sizes 1, 2, 4, 8,
16, or 32.
Figure 2 depicts the insertion of a key-value pair (k, v)

into a hash table with a CG size of 4 based on seven steps:
(1) The outer probing scheme is used to determine the

initial probing index.
(2) Each thread in a CG loads one key slot from global

memory in coalesced fashion.
(3) Each thread checks whether its assigned slot is a

potential candidate for inserting (k, v) and commu-
nicates its result via a fast in-register group vote.

(4) The thread associated with the lowest candidate slot
index is selected.

(5) If there are no candidate slots (left column in Fig-
ure 2) steps 1 to 4 are repeated until a suitable one
is found.

(6) We try an atomic CAS of the key into the selected
candidate slot. If it fails (due to a collision with a
successful insertion by another thread), we repeat
steps 4 and 6 until the CG has no candidate slots
left. In this case we start from Step 5.

(7) If the key was inserted successfully in Step 6, a relaxed
store operation is issued to write the value.

Probing with variable CG sizes inside the same table
can be accomplished by setting the inner probing window
to a fixed size, e.g. 32. Smaller groups iterate over said
window in a linear fashion before continuing with the outer

kkeys

values

cooperative group

h(k,[0-3]) mod c h(k,[4-7]) mod c

hit

coalesced
load

0 0 0 0

group
voting

0 0 0 0

determine
leader

0 0 1 1

0 0 1 0

0 0 1 1

0 0 0 1

atomicCAS k atomicCAS k
fail fail

success!no hit!

hit

1

2

5

7

6

store v

3

4

success!

store v

Fig. 2: Insertion of a key-value pair (k, v) into a hash table
with capacity c using COPS with an outer probing scheme
h, an inner probing window size of 4 and a CG size of 4.

probing scheme, which ensures probing consistency for all
group sizes.

3) Insertion: Inserting a new key-value pair is accom-
plished by using COPS for both single-value and multi-
value context. For a single-value hash table, an additional
warning is issued if the key currently being probed for is
already present. While the device-sided function inserts
a single key-value pair into the table and is executed
inside a CG, the host-callable batch operation consists
of a data-parallel CUDA kernel. For a batch insertion
of n key-value pairs we start a kernel consisting of n · g
many threads, where g denotes the CG size each query is
executed in. Each CG in the grid is assigned to a single pair
and calls the corresponding device-sided insert function,
implementing a data-parallel scheme over the input batch.

4) Retrieval: Retrieval relies on the same scheme but
instead of probing for an empty slot, we look for slots
that hold the queried key. Search can terminate when we
encounter an empty slot before finding the queried key,
since COPS guarantees that any key is inserted at its
lowest possible index in the probing sequence.

The device-sided retrieval function takes a query along
with a CG in which the operation should be executed.
The host-sided function reads a batch of keys from global
memory and writes the retrieved values to a user-allocated
output array on the device. In the single-value case, the
number of returned values cannot exceed the number of
queried keys and probing can stop after the first value of
a query is found. In the multi-value case the number of
values associated with a query is not known in advance.
Thus, if all retrieved values should be written to memory,
the size of the output array has to be determined in a
separate counting pass beforehand. The retrieval of all
values associated with a batch of n queries requires an
additional temporary array of size n+1 storing the offsets

of the per-key value segments in the output array. The
offset array is computed using a prefix sum over the
number of values per query.
In some cases it is sufficient to process the val-

ues associated with each key one-at-a-time on the de-
vice instead of copying the retrieved values of a host-
sided batch query into a distinct new location in global
device memory. WC’s data structures provide higher-
order member functions for_each(keys,callback) and
for_all(callback) which take a device-sided callback
function (object), e.g., a device-sided lambda function.
The callback is invoked in parallel for each query found in
the table during probing and receives the corresponding
key-value pair and the key’s index.

5) Deletion: Deleting keys is accomplished by overwrit-
ing the table slot with a tombstone kt 6= ke. During
insertion, a slot with a tombstone is treated as a regular
empty slot which can be re-populated with a new key-value
pair. During retrieval, it is interpreted as a populated slot.

C. Bucket List Hash Table
Due to the relatively small amount of available video

memory, effective memory utilization often plays a cru-
cial role. We define the storage density ρ of a container
data structure holding data elements, as the amount of
stored information bits over the total amount of memory
allocated by the container. For single-value OA hash table
designs ρ is equivalent to the table’s load factor α, i.e.
the number of occupied key-value slots over the number
of allocated slots. However, if the same key occurs more
than once it is stored multiple times, thereby degrading
storage density. For use cases where this is undesirable,
like in Section V-C, we provide an alternative multi-value
hash table which links all values to a single instance of the
corresponding key.
Our bucket list hash table uses a single-value hash

table with a primary list handle as value. Actual values
are stored in linked lists of contiguous memory chunks
called buckets. The list handle is a 64-bit packed, atom-
ically updatable data structure consisting of three fields:
a pointer to the last list node associated with a key, the
total number of values per key and 2 bits indicating one
of four possible states (uninitialized, blocked, ready, full).
Transitions between states are guarded by atomic CAS
operations on the primary list handle ensuring that list
operations are linearizable.
The leading slot of each but the first bucket consists

of a reference that points to the previous bucket in the
list, followed by the actual value slots. Since the exact
distribution of values per key is usually unknown in ad-
vance, we propose the following growth strategy. When
a key is inserted into the hash table for the first time,
its initial value bucket of size s0 is allocated. Subsequent
bucket sizes are set to si = dλ · si−1e where λ ≥ 1 denotes
the bucket growth factor. Figure 3 shows an example using
growth parameters s0 = 1 and λ = 2. If the input data

keys

handles

hash
table

v1 v2 v3values
bucket
lists

v4 v5 v6

6

k …

…

…

…

Fig. 3: Example of a bucket list storing six values asso-
ciated with key k. Keys are stored in a single-value hash
table together with a handle to the associated bucket list
that holds a reference to the last bucket and the total
number of values inside the list.

distribution is known both parameters can be used to
adapt the growth strategy for improved memory efficiency.
Since global memory allocations would act as a device-
wide barrier, memory for buckets is pre-allocated as a
single contiguous array which serves as a memory pool.

Inserting a key-value pair starts with probing for the key
in the single-value hash table. If the key is not already
present, we insert it into the hash table and allocate
its first value bucket. One thread atomically marks the
associated list handle as blocked, thereby ensuring that
is has exclusive access to the value list, and subsequently
requests a new bucket from the memory pool. If successful,
the value is appended to the list and the list’s handle is
unblocked. Other threads that encounter a blocked handle
implement a busy waiting strategy with exponential back-
off until the handle has been unblocked. In case the key
is already present in the table, we check if the current
tail bucket has any empty value slots available. If true,
we try to reserve a slot inside the bucket by an atomic
increment of the list handle’s value counter. If the atomic
CAS operation is successful, we write the value to the
reserved slot and terminate. However, if this operation fails
due to another thread successfully inserting a new value
concurrently, we reload the altered handle from memory
and repeat until insertion has succeeded. If the current tail
bucket is full, we attempt to block the handle and request
a new bucket from the memory pool.

As shown in Figure 4 retrieval of a batch of keys is
done by probing for each key in parallel. If a key is found,
threads in the current CG begin following the bucket list
references until reaching the initial bucket. Values are
read from the buckets using as many threads from the
current CG as possible, thereby enabling coalesced access
for sufficiently large buckets. In case the CG size exceeds
the current bucket size, remaining threads diverge and
proceed to the next bucket.

D. Concurrency
All device-sided table operations can be overlapped

and only synchronize with the CG they are executed
in. The majority of hash table operations in WC can

4 2

kkeys

handles

hash
table

g p i n e e k n
value
lists

2 o h a s h1 7 4

k1:[k,e,e,p]

free slots

k e e p

k2:[o,n]

o n

k3:[h,a,s,h,i,n,g]

h a s h i n g

coalesced
access

0

15

7

k2k1 k3

retrieve(k1):

retrieve(k2):

retrieve(k3):in
parallel

hit!hit!hit!
COPS →

19

7
total value count

bucket list handle

4

bucket header

index of previous bucket

10 16 19

index of
last bucket

Fig. 4: Example of retrieving all associated values for a
batch of keys {k1, k2, k3} from the bucket list hash table.

be executed asynchronously (with respect to both host
CPU and GPU). Only operations that use function return
values to return data back to the host block until the
return parameter is available. By default, all operations
are executed in the default stream of the GPU making
them blocking function calls. However, when called with a
non-default stream, operations are issued asynchronously
with respect to other streams, CUDA-devices, as well as
the host system. This is a crucial feature for employing
multiple hash tables residing on different devices in a
multi-GPU environment.
Note that not all operations on the same hash table

can be safely executed concurrently. We distinguish two
categories of operations based on whether they modify the
internal state of a table. Overlapping the same operation
and all read operations is always valid. However, overlap-
ping write operations with another operation of a different
kind is not supported due to two concerns:
(1) If the combined key-value pair type exceeds the size

constraint of 64 bits for CUDA atomic operations, in-
sertion of a new key-value pair consists of two memory
operations, an atomic swap of the key followed by a
relaxed write of the value. If insertion and retrieval of
the same key were to occur simultaneously, reading
the value might yield incorrect results.

(2) Overlapping insertions and deletions is prone to a
variant of the ABA problem. If we simultaneously is-
sue a deletion combined with two insertion operations,
all working on the same key k which is not yet present
in the table, there exists a possible execution order in
which a race condition may occur, leaving the table

TBB 0.0125
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

b
ill

io
n

 o
p

er
at

io
n

s
p

er
 s

ec
o

n
d

storage density
WarpCore SlabHash CUDPP CUDF TBB

(a) Bulk insertion performance.

TBB 0.1413
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

b
ill

io
n

 o
p

er
at

io
n

s
p

er
 s

ec
o

n
d

storage density
WarpCore SlabHash CUDPP CUDF TBB

(b) Bulk retrieval performance.

Fig. 5: Performance comparison of different single-value hash table implementations during bulk operations for 228

(2 GB) unique key-value pairs.

in an invalid state.
If the hash table is configured to use 64-bit packed

key-value pairs that can be stored using a single atomic
operation, all possible combinations of operations leave the
table in a valid state and return valid results. Nevertheless,
combining insertion with deletion or any write operation
with any other read operation might still be undesirable
if these operations work with the same keys concurrently.
The final result may thus depend on their execution order
and leave the table in an unpredictable, albeit valid, state.
E. Multi-GPU Support

The limited amount of main memory available on a
single GPU can be insufficient for many data-intensive
applications. Thus, WC allows for building and querying
data structures on multiple GPUs. There are two modes
of operation: distributed and independent.
The distributed mode assigns each key (and its asso-

ciated values) to exactly one distinct GPU. This is done
by first partitioning keys of an input batch according to
their corresponding GPU ID by means of a device-sided
multi-split [16] followed by scattering these segments to
the GPUs where they belong. In case each participating
GPU holds a separate input batch, we use an all-to-all
communication primitive on NVLink connected systems
[17] to simultaneously exchange segments between all
GPUs. This approach has the advantage that (multi-value)
retrieval does not require merging the results of individual
GPUs, since each key may only reside on one GPU.

The second mode simply constructs and stores one
independent hash table per GPU. This can be desirable
in cases where result merging is acceptable or can be done
without communicating all values. Data to be inserted is
simply scattered and queries are broadcast to all GPUs.

V. Experimental Evaluation
Experiments were conducted on the following systems:

System 1: Dual-socket Intel Xeon GOLD 6238 CPU
(2x22 cores at 2.10 GHz) with 192 GB DDR4 RAM

and 2 Quadro GV100 GPUs connected via NVLink
each with 32 GB HBM2 memory running Ubuntu
18.04 LTS, CUDA 10.2, GCC 8.3.0.

System 2 (DGX-1): Dual-socket Xeon E5-2698 v4
CPU (2x20 cores at 2.20 GHz) with 512 GB DDR4
RAM and 8 Tesla V100 GPUs connected by NVLink
each with 32 GB HBM2 memory running Ubuntu
18.04, CUDA 10.1, GCC 8.3.0.

Time measurements are accomplished with CUDA event
system timers. In all experiments, we assume that the data
to be inserted or retrieved resides either in host RAM
for operations executed on the CPU or in video RAM for
device-sided benchmarks.

A. Single-Value Performance
We evaluated our single-value hash table against the

publicly available state-of-the-art GPU implementations
cuDPP [5], SlabHash [9], and cuDF [8]. Additionally, we
included a widely-used multi-threaded CPU implementa-
tion, namely tbb::unordered_hash_map from TBB. Our
benchmark scenario consists of an initial bulk build op-
eration which inserts a set of 228 unique 4-byte keys
along with 4-byte arbitrary values into each hash table.
Subsequently, we query the same set of keys against the
table and retrieve their corresponding values. For both
phases, we measure the number of executed operations
per second averaged over ten consecutive runs in reference
to the target density of the data structure, i.e., after
all pairs have been inserted (see Figure 5). Benchmarks
were conducted on a single GV100 GPU on System 1,
while TBB utilizes all 44 CPU cores. Note that the target
storage density of TBB’s hash table cannot be set by the
user. Regarding insertion performance, WC outperforms
cuDPP and cuDF by a factor of 3.95 and 1.6 for ρ = 0.97
and ρ = 0.8, respectively. For relatively low densities,
SlabHash’s performance is on par with WC. However, if
ρ increases (> 70%), WC’s cooperative probing scheme is
superior. Note that some implementations did not finish

0%

20%

40%

60%

80%

100%

0

20

40

60

80

100

120

140

160

180

1 2 4 8

w
ea

k
sc

al
in

g
ef

fi
ci

en
cy

ru
n

ti
m

e
[m

s]

#GPUs

insert multisplit all-to-all efficiency

Fig. 6: Weak scalability analysis of hash table insertion on
System 2 (DGX-1) with 2 GB of input data per GPU.

their execution for densities above a certain threshold.
For retrieval, WC is faster than all competitors by a
factor of 8.76 (ρ = 0.8), 1.64 (ρ = 0.9), 2.39 (ρ = 0.9)
compared to cuDF, cuDPP, and SlabHash, respectively.
Our results show, that WC outperforms all other tested
GPU implementations at high storage densities and is also
over two orders-of-magnitude faster than TBB.

To evaluate multi-GPU scalability, we tested the dis-
tributed mode discussed in Section IV-E on System 2 with
227 unique 8-byte keys along with 8-byte values as input.
Figure 6 shows a weak scalability analysis with runtime
breakdowns for data partitioning, communication, and
insertion together with the achieved efficiency. Note, that
it would be possible to further apply common optimization
strategies like batching and overlapping CUDA streams
to hide the runtime of data transfers behind the kernel
execution for multi-split and insertion, but we decided
to report the full runtime of each primitive to show the
relative cost.

B. Multi-Value Performance
To conduct the multi-value benchmark, we control the

average number of identical keys r in the input batch
by drawing n elements uniformly random from the range
(1, . . . , n

r). Figure 7a shows the results for inserting such a
distribution of keys into different hash tables for varying
values of r and a fixed target load factor for WC and cuDF
(cuDPP and SlabHash are only designed for single values).
In case of our bucket list hash table, this load factor is
solely enforced on the key store, i.e., the OA hash table
holding the keys along with bucket list handles. During
retrieval we probe for the complete range of n unique keys
(1, . . . , n). With r increasing, this results in some of the
queried keys to not being present in the table, whilst other
keys are associated to multiple values. Using this setup,
the total number of retrieved values is always equal to
the number of input queries, i.e. n, which eliminates any
effects of I/O skew from our measurements.

For insertion, our MultiValueHashTable (WC OA)
shows comparable performance to its single-value counter-
part in the case that input keys are close-to unique. When

the value multiplicity increases, throughput degrades due
to longer probing sequences. cuDF shows the same be-
haviour but handles high key multiplicities worse due to
its LP scheme, which is prone to primary clustering. This
effect is amplified in a multi-value setup, where multiple
identical keys collide in the same cluster of initial probing
position. WC OA consistently outperforms cuDF during
insertion. For value multiplicities≤ 16 a CG size of 8 shows
optimal performance. However, for higher multiplicities
larger CG sizes are more beneficial. Both tested variants
of warpcore::BucketListHashTable (WC BL) are slower
than WC OA if the average number of values per key is less
than 32 but show nearly constant performance for higher
multiplicity, while WC OA gradually degrades. We suspect
that this is a trade-off between WC BL’s additional steps
required after probing, i.e., appending the value to the
key’s bucket list and WC OA’s probing chain length. The
same effect may apply if we compare WC BL against
cuDF but is visible at even lower multiplicities due to
cuDF’s lower throughput. BL (1) (default) suffers from
more bucket allocations compared to BL (2). However,
this effect mitigates with growing key multiplicity. Our
experiments showed that a CG size of 16 is optimal for
WC BL insertion.
As for retrieval (Figure 7b), cuDF shows similar be-

haviour as during insertion. With higher key multiplicities,
performance decreases gradually. In contrast, WC OA
shows a nearly constant throughput between 0.66-0.72
billion operations per second, which highlights the two
benefits of our proposed COPS compared to cuDF’s LP
approach. (1) DH ensures an overall shorter required chain
of probings compared to LP. (2) Probing with a CG
allows for parallel retrieval of multiple values associated
to the same key inside the same inner probing window.
cuDF uses a single thread per query which iterates over
its probing sequence sequentially. Furthermore, both WC
BL variants show nearly identical performance and consis-
tently outperform WC OA. Note that the overall retrieval
throughput of our multi-value scenario is considerably
lower compared to the retrieval step in the single-value
benchmark due to two reasons. (1) With increasing key
multiplicity, the number of unsuccessful queries in the
input set also increases, implying that more CGs are
executed than needed. (2) Before the actual retrieval step,
we have to calculate the value offsets for each key in the
output array. For both WC OA and WC BL a CG size
of 4 shows optimal performance throughout all retrieval
experiments.

C. Use Case: Metagenomics
The cost of DNA sequencing has decreased exponen-

tially over the last years, making genomic data more acces-
sible. A common paradigm in bioinformatics is to store and
index sequence data as sets of k-length substrings (called
k-mers). We have thus explored the efficiency of WC
for indexing large amounts of genomes for metagenomic

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 2 4 8 16 32 64 128 256

b
ill

io
n

 o
p

er
at

io
n

s
p

er
 s

ec
o

n
d

average values per key

cuDF (1) cuDF (2)

WC BL (1) WC BL (2)

WC OA (1) WC OA (2)

WC OA (3)

(a) Bulk insertion performance.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 4 8 16 32 64 128 256

b
ill

io
n

 o
p

er
at

io
n

s
p

er
 s

ec
o

n
d

average values per key

cuDF (1)

cuDF (2)

WC BL (1)

WC BL (2)

WC OA

(b) Bulk retrieval performance.

Fig. 7: Performance of multi-value hash table implementations in billion operations per second for bulk operations on
228 (2 GB) key-value pairs with a varying number of values per key. We compare our WC OA variant with a target
load factor of 0.8 for relevant CG sizes of 8 (1), 16 (2), and 32 (3), cuDF with two target load factors 0.5 (1) and 0.8
(2), as well as our bucket list variant (BL) with default (λ = 1.1, s0 = 1) (1) and optimal growth strategy (λ = 1.0,
s0 = average number of values per key) (2).

classification tasks in comparison to the popular CPU-
based tools Kraken2 [18] and MetaCache [19] – both using
hash tables as their primary index data structure – as a
case study. Note that such hash tables can be used for a
variety of other bioinformatics applications, too.

We store k-mers as keys along with their correspond-
ing genomic meta-information as values. Metagenomic se-
quencing reads are classified by querying their own set of k-
mers against the constructed hash table and subsequently
evaluating the returned values. k-mer reference database
construction is typically the most time consuming part and
can take several hours. In this work, we focus on the Meta-
Cache approach, which employs an efficient subsampling
technique based on minhashing [20] in order to reduce the
overall amount of to-be-stored k-mers, with minimal loss
in terms of classification accuracy. In order to alleviate
the mentioned bottleneck during the construction of the
reference database, we chose to port parts of MetaCache’s
purely CPU-based construction phase to the GPU by
utilizing GPU hash table building blocks provided by WC.
To increase overall throughput, we also ported the k-mer
generation and minhashing step to CUDA. Using a single
CUDA kernel, we process the sample sequences on the
GPU in a data-parallel fashion and insert the resulting
k-mers into a multi-value hash table provided by our
proposed WC library by using its device-sided interface.

First, we tested which of WC’s multi-value implementa-
tions was best suited for metagenomic database construc-
tion by building a single-GPU hash table. We therefore
limited the overall hash table size to 28 GB and used a sin-
gle GV100 GPU of System 1 to build a database for 18 GB
of bacterial reference genomes. The remaining 4 GB (of the
32 GB device memory) could then be used for batched
input processing and retrieval. Our implementation uses
one CPU thread for extracting sequences from input files

101 102 103 104 105

runtime in seconds

Kraken2
MetaCache
WC OA AoS
WC OA SoA

WC BL
Kraken2

MetaCache
WC BL

 16 min
 12 min

 29 s
 20 s

 12 s
 355 min

 190 min
 36 s

Fig. 8: Comparison of metagenomic database construction
times for small (solid bars) and large (hatched bars)
datasets. Small-scale construction on a single GPU com-
pares different WC multi-value hash table variants. Large-
scale construction uses WC’s bucket list on 8 GPUs.

and another thread managing a double buffer for batched
data transfer to GPU and insertion. The results for WC’s
variants compared to Kraken2’s and MetaCache’s default
CPU construction are shown in Figure 8. Note that the key
distribution for this data set is highly skewed. Although
the average number of values per key is near 11, about a
third of the keys has only one associated value and a small
amount of keys occurs hundreds of times, which benefits
the dynamic growth strategy of WC’s bucket list (BL)
hash table. Overall, WC BL achieves a speedup of 80.7 and
62.5 compared to Kraken2 and MetaCache, respectively.
Because the memory of a single GPU is too small to hold

large-scale reference genome databases, we also explored
the usage of multiple GPUs. For this test we used a ref-
erence genome dataset intended for food sequencing [21],
which consists of bacterial, viral, and archaeal as well as
animal and plant genomes. About 120 GB of genomes were

used to build a distributed database using the 8 GPUs of
System 2 in parallel. Figure 8 also shows the large-scale
runtimes for Kraken2 and MetaCache compared to WC’s
bucket list (BL) hash table, which turned out fastest in the
single-GPU benchmark. Building the multi-GPU database
took 36 seconds resulting in a speedup of 592 and 317
compared to Kraken2 and MetaCache, respectively.

VI. Conclusion
Rapidly growing data volumes in many fields such

as bioinformatics have led to an increasing demand for
fast associative data structures on modern parallel archi-
tectures. State-of-the-art GPU-based solutions are either
only applicable to a small range of practical use cases
or show unsatisfactory performance characteristics and
storage densities. A prominent example of the latter is
that many hash map implementations require trading off
runtime performance for memory efficiency because their
throughput decreases significantly for high load factors.
Throughput of the few existing GPU multi-value hash
maps decreases dramatically for key distributions with
many associated values per key.

We have presented massively parallel hashing data
structures and associated algorithms for single-value and
multi-value hash maps that can be adapted to a variety
of use cases. Their customization within a library (WC)
is achieved through a set of fundamental building blocks
for data layout abstractions. We exploit the fast memory
interface of modern GPUs by means of a parallel probing
scheme based on CUDA cooperative groups where threads
communicate using fast collective operations such as group
votes.

We have demonstrated that WC outperforms other
state-of-the-art solutions by achieving billions of table
operations per second on a single GPU even under very
high load factors. Both our multi-value hash maps (pure
OA and bucket list hash maps) provide robust throughput
over a wide range of possible key multiplicities significantly
outperforming NVIDIA RAPIDS cuDF, especially for bulk
retrieval operations. We have further shown how to scale
hash tables to multiple GPUs with fast NVLink intercon-
nect in order to overcome the memory limitations of a
single GPU. Using our library, we were able to acceler-
ate a real-world bioinformatics application - metagenomic
classification - on both single GPUs as well as on a multi-
GPU DGX server.

Scaling to even bigger datasets could be achieved by
extending our library to GPU clusters. While WC is
specifically designed for GPUs, the introduced concepts
could serve as a basis for efficient implementations on other
accelerators such as modern FPGAs.

WC is written in C++/CUDA-C and will be made
publicly available upon the acceptance of the paper.

Acknowledgment
Parts of this research were conducted using the super-

computer Mogon II and/or advisory services offered by

Johannes Gutenberg University Mainz (hpc.uni-mainz.de)
which is a member of the AHRP and the Gauss Alliance
e.V.

References
[1] T. C. Pan, S. Misra, and S. Aluru, “Optimizing high perfor-

mance distributed memory parallel hash tables for DNA k-mer
counting,” in SC18. IEEE, 2018, pp. 135–147.

[2] M. Bisson and M. Fatica, “High Performance Exact Triangle
Counting on GPUs,” IEEE TPDS, vol. 28, no. 12, pp. 3501–
3510, 2017.

[3] B. Chen, T. Medini, J. Farwell, S. Gobriel, C. Tai, and A. Shri-
vastava, “SLIDE: In Defense of Smart Algorithms over Hard-
ware Acceleration for Large-Scale Deep Learning Systems,”
arXiv:1903.03129, 2019.

[4] D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta,
M. Mitzenmacher, J. D. Owens, and N. Amenta, “Real-time
Parallel Hashing on the GPU,” in ACM SIGGRAPH Asia 2009.
New York, NY, USA: ACM, 2009, pp. 154:1–154:9.

[5] D. A. F. Alcantara, “Efficient Hash Tables on the GPU,” Ph.D.
dissertation, University of California at Davis, Davis, CA, USA,
2011, aAI3482095.

[6] I. García, S. Lefebvre, S. Hornus, and A. Lasram, “Coherent
Parallel Hashing,” in ACM SIGGRAPH Asia 2011, ser. SA ’11.
New York, NY, USA: ACM, 2011, pp. 161:1–161:8.

[7] F. Khorasani, M. E. Belviranli, R. Gupta, and L. N. Bhuyan,
“Stadium Hashing: Scalable and Flexible Hashing on GPUs,”
in 2015 International Conference on Parallel Architecture and
Compilation (PACT). IEEE, 2015, pp. 63–74.

[8] RAPIDS Development Team, cuDF - GPU DataFrame Library,
2020. [Online]. Available: https://github.com/rapidsai/cudf

[9] S. Ashkiani, M. Farach-Colton, and J. D. Owens, “A Dynamic
Hash Table for the GPU,” in IPDPS 2018. IEEE, 2018, pp.
419–429.

[10] O. Green, “HashGraph – Scalable Hash Tables Using A Sparse
Graph Data Structure,” ArXiv, vol. abs/1907.02900, 2019.

[11] D. Jünger, C. Hundt, and B. Schmidt, “WarpDrive: Massively
Parallel Hashing on Multi-GPU Nodes,” in IPDPS 2018. IEEE,
2018, pp. 441–450.

[12] P. Celis, P. A. Larson, and J. I. Munro, “Robin Hood Hashing,”
in 26th Annual Symposium on Foundations of Computer Science
(sfcs 1985), Oct 1985, pp. 281–288.

[13] B. Lessley and H. Childs, “Data-Parallel Hashing Techniques
for GPU Architectures,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 1, pp. 237–250, 2019.

[14] RAPIDS Development Team, RAPIDS: Collection of Libraries
for End to End GPU Data Science, 2020. [Online]. Available:
https://rapids.ai

[15] S. Ashkiani. SlabHash code repository. [Online]. Available:
https://github.com/owensgroup/SlabHash

[16] S. Ashkiani, A. Davidson, U. Meyer, and J. D. Owens, “GPU
Multisplit,” in 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP ’16). New York,
NY, USA: ACM, 2016, pp. 12:1–12:13.

[17] R. Kobus, D. Jünger, C. Hundt, and B. Schmidt, “Gossip:
Efficient Communication Primitives for Multi-GPU Systems,”
in 48th International Conference on Parallel Processing (ICPP
’19), 2019, pp. 1–10.

[18] D. E. Wood, J. Lu, and B. Langmead, “Improved metagenomic
analysis with Kraken 2,” Genome Biology, vol. 20, no. 1, p. 257,
11 2019.

[19] A. Müller, C. Hundt, A. Hildebrandt, T. Hankeln, and
B. Schmidt, “MetaCache: context-aware classification of
metagenomic reads using minhashing,” Bioinformatics, vol. 33,
no. 23, pp. 3740–3748, 2017.

[20] A. Z. Broder, “Identifying and Filtering Near-Duplicate Doc-
uments,” in Annual Symposium on Combinatorial Pattern
Matching. Springer, 2000, pp. 1–10.

[21] R. Kobus, J. M. Abuín, A. Müller, S. L. Hellmann, J. C. Pichel,
T. F. Pena, A. Hildebrandt, T. Hankeln, and B. Schmidt, “A big
data approach to metagenomics for all-food-sequencing,” BMC
Bioinformatics, vol. 21, no. 1, pp. 1471–2105, 2020.

https://github.com/rapidsai/cudf
https://rapids.ai
https://github.com/owensgroup/SlabHash

	I Introduction
	II Background
	III Related Work
	IV Implementation
	IV-A General Library Design Features
	IV-A1 Modularity
	IV-A2 Host-sided and Device-sided Interfaces

	IV-B Open Addressing Hash Table
	IV-B1 Memory Layout
	IV-B2 Parallel Probing Scheme
	IV-B3 Insertion
	IV-B4 Retrieval
	IV-B5 Deletion

	IV-C Bucket List Hash Table
	IV-D Concurrency
	IV-E Multi-GPU Support

	V Experimental Evaluation
	V-A Single-Value Performance
	V-B Multi-Value Performance
	V-C Use Case: Metagenomics

	VI Conclusion
	References

