What happens during a Join?
Dissecting CPU and Memory Optimization Effects

Stefan Manegold!

Peter Boncz?

Martin L. Kersten'

1 CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands; {S.Manegold,M.L.Kersten}@cwi.nl
2 Data Distilleries B.V., Kruislaan 402, 1098 SM Amsterdam, The Netherlands; P.Boncz@ddi.nl

Abstract

Performance of modern hardware increasingly
depends on proper utilization of both the
memory cache hierarchy and parallel execu-
tion possibilities in todays super-scalar CPUs.
Recent database research has demonstrated
that database system performance severely
suffers from poor utilization of these resources.
In previous work, we presented join algorithms
that strongly accelerate large equi-join by tun-
ing the memory access pattern to match the
characteristics of the memory cache subsys-
tem in the benchmark hardware.

In order to make such algorithms applicable
in database systems that run on a wide va-
riety of platforms, we now present a calibra-
tion tool that automatically extracts the rele-
vant parameters about the memory subsystem
from any hardware. Exhaustive experiments
with join-queries demonstrate how a database
system equipped with this calibrator can au-
tomatically tune memory-conscious database
algorithms to their optimal settings.

Once memory access is optimized, CPU re-
source usage becomes crucial for database per-
formance. We demonstrate how CPU resource
usage can be improved by using appropriate
implementation techniques. Join experiments
with the Monet database system on various
hardware platforms confirm that combining
memory and CPU optimization can lead to
almost an order of magnitude of performance
improvement on modern processors.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000.

339

1 Introduction

As database technology becomes more pervasive,
DBMS software is being deployed on an ever wider
variety of hardware, that ranges from high-end servers
to workstations, PCs, notebooks, and in the near fu-
ture, portable devices like web pads, palm pilots and
even mobile phones. In the previous VLDB confer-
ence, we described experiments on an SGI Origin2000
server platform that showed how severely DBMS per-
formance can be impacted by hardware-specific fac-
tors. We established through cost modeling and ex-
perimentation that a commonly used DBMS algorithm
like hash-join runs factors slower than algorithms that
are optimally tuned for the specific cache memory sub-
system of the benchmark hardware [5]. Several other
studies into the behavior of modern hardware on a
variety of DBMS query loads corroborate this result,
as all report utilization levels on modern super-scalar
CPUs that are just a small fraction of their true poten-
tial. The sobering truth is that a modern CPU serving
a DBMS is typically “stalled” for most of its time (i.e.,
non-working, waiting for something) [1, 2, 8, 12]. This
percentage of CPU under-utilization in DBMS perfor-
mance is still rising, due to continuing developments
in commodity computer hardware. The left table in
Figure 1 shows hardware characteristics of a number of
popular workstations and PCs of the past decade. The
right-hand plot in exponential scale reveals the trend
that CPU performance and memory bandwidth! have
increased with 50% each year (a.k.a. Moore’s law),
while memory latency has stayed roughly equal. This
lack of progress in memory latency means that from
the perspective of the CPU, memory access gets more
expensive each year at an exponential rate. Therefore,
optimal use of the memory caches has become crucial
for obtaining good performance, and that is exactly
the goal of the cache-conscious DBMS join algorithms
we described.

Memory access, however, is not the only cause of
under-utilization of modern CPUs. Other factors that
are increasingly important have to do with the interac-
tion between CPU and detailed characteristics of ap-

1We use the STREAM /copy benchmark [10] for characteriz-
ing memory bandwidth.

processor memor:
year | computer model f#par. | STREAM/copy| |atency
type MHz |units | (bandwidth) (ns)
1989 |Sun 3/60 68020 20 1 6.5
1990 |Sun 3/80 68030 20 1 49
1991 |Sun 4/280 Sparc 17 1 9.6 160
1992 |Sun ss10/31 superSparc | 33 3 429
1993 |Sun ss10/41 superSparc | 40 3 48.0
1994 |Sun ss20/71 superSparc Il 75 3 62.5 870
1995 |Sun Ultral 170 ultraSparc | 167 5 225.2 225
1996 |Sun Ultra2 2200 | ultraSparc |l 200 5 228.5 225
1996 |SGI Power Chall. |R10000 195 5 172.7 610
1997 |SGI Origin2000 |R10000 250 5 3320 424
1998 |SGI Origin 2000 | R12000 300 5 336.0 404
1992 | Intel PC 80486 66 1 333
1993 | Intel PC Pentium 60 2 4741 161
1994 | Intel PC Pentium 90 2 46.4 161
1995 | Intel PC Pentium 100 2 85.1 161
1996 |Intel PC Pentium 133 2 84.4 161
1996 | Intel PC PentiumPro 200 5 140.0 203
1997 |Intel PC Pentiumll 300 5 188.2 145
1998 |Intel PC Pentiumll 350 5 2793 145
1998 | Intel PC Pentiumll 400 5 304.0 145
1999 |Intel PC Pentiumlll 600 5 3792 135
2000 | Intel PC Pentiumlil 733 5 4419 135
1999 |AMD PC Athlon 500 9 3735 217
2000 |AMD PC Athlon 800 9 387.9 217

1e+06 zal

L o ©
100000 |- © 306\‘\1)

L o o \OGV\SQ

: \cﬂ"“‘
r < < %
10000 - 7
L 50 percent
improvement

per year

1000 — ¥ A
| memory latency (ns) . M
[% * + o+ o+ *
100 -

[1 percent
| improvement
per year

o

0F

[N

Il Il Il Il Il Il Il Il
1986 1988 1990 1992 1994 1996 1998 2000
year

Figure 1: Trends in DRAM and CPU speed

plication program code, like the degree of dependence
between instructions. This is explained by another
trend in modern CPUs, which is that CPUs get more
powerful not only through ever higher clock speeds,
but also due to increasing parallelism inside the pro-
cessor. Figure 1 shows that whereas the 80486 and
SPARC based systems from the early 1990s still could
execute at maximum 1 CPU instruction per clock cy-
cle, an AMD Athlon from 1999 can (in theory) reach a
maximum of 9 instructions per clock cycle. For this to
happen in practice, aggressive compilers are needed,
as well as application code whose inner program loops
contain a sufficient substance of independent state-
ments. Only then, the compiler is able to produce
code that keeps the parallel units of the CPU busy.
Currently, this tends to be the case only in certain sci-
entific computation programs, not in DBMS software.
These issues may seem to drive a DBMS architect
into contradictory directions. On the one hand, DBMS
technology should be hardware-optimized in order to
exploit the cache hierarchy and CPU resources, which
could be tackled with all kinds of system-specific op-
timizations, but on the other hand, that same DBMS
technology should be able to run on a very broad spec-
trum of hardware platforms that each have widely dif-
ferent characteristics. This paper presents important
contributions that help to solve this problem.

Road-Map In Section 2, we first briefly explain the
basic concepts of modern hardware that determine
memory and CPU performance. Then, we recapitulate
our partitioned hash-join algorithm [5] that improves
join performance by trading extra partitioning CPU
work for a strong reduction in memory cache misses.
Finally, we summarize the relevant characteristics of
our Monet system [4], which we use as experimenta-
tion platform.

In Section 3, we present our calibration tool, which
extracts the most important hardware characteristics

340

like cache line size, number of cache lines, and cache
latency from any computer system. This generic tool
can be used by any DBMS system that employs cache-
conscious algorithms in order to automatically derive
the right tuning parameters.?

We then describe large main-memory join exper-
iments performed on four different hardware plat-
forms (SGI, Sun, PentiumIII and Athlon) in Section 4.
Studying in isolation the two phases of our partitioned
hash-join algorithm (the radix-cluster phase and the
hash phase), we dissect our experimental results by
establishing a link between hot-spots in our DBMS im-
plementation code and detailed split-ups into several
CPU and memory cost components. Here, we show
how additional factors of improvement, on top of the
earlier described gains by memory cost reduction can
be gained on all platforms using certain DBMS imple-
mentation techniques.

In Section 5, we combine the isolated measurements
of the radix-cluster phase and the hash-join phase into
full join results. Here, we achieve successful cross-
platform validation of the cost models formulated in
our earlier work on the SGI architecture, by filling
in the hardware parameters derived by our calibrator
program for the other hardware platforms into our cost
formulas, and comparing the performance predicted by
the models with our actual measurements. Finally, we
conclude the paper by summarizing our main findings
in Section 6.

2 Background

We now describe the technical details of modern hard-
ware relevant for main-memory query performance, in-
troduce our memory-conscious partitioned hash-join
algorithm, and describe the Monet system used for
experimentation.

2The software is freely available for download from
http://www.cwi.nl/~monet and we encourage DBMS design-
ers to incorporate it into their products.

virtual memory Disk
(swapfile on disk)
Memory Page _
.. 4096 bytes) s ‘
% Main‘M‘en}or‘y
[
[] [[
. ? System Bus
L2 cache-line—
e g2 cacte
v Ll
L1 instruction
I cache 4"‘ ‘ ‘L1 data cache l ITLB l
L1 cache line
(e.g. 32 bytes)
fetch&
decode
units CPU

translation

+
L3
SR
2
S
@
E=h=]
@ ®
o

chip

instruction
queue

Figure 2: Modern CPU/Memory Computer Architec-
ture

2.1 A Short Hardware Primer

While CPU clock frequency has been following
Moore’s law (doubling every three years), CPUs have
additionally become faster through parallelism within
the processor. Scalar CPUs separate different exe-
cution stages for instructions, e.g., allowing a com-
putation stage of one instruction to be overlapped
with the decoding stage of the next instruction. Such
a pipelined design allows for inter-stage parallelism.
Modern superscalar CPUs add intra-stage parallelism,
as they have multiple copies of certain (pipelined)
units that can be active simultaneously. Although
CPUs are commonly classified as either RISC or CISC,
modern CPUs combine successful features of both.
Figure 2 shows a simplified schema that character-
izes how modern CPUs work: instructions that need
to be executed are loaded from memory by a fetch-
and-decode unit. In order to speed up this process,
multiple fetch-and-decode units may be present (e.g.,
the PentiumlIII has three, the R10000 two). Decoded
instructions are placed in an instruction queue, from
which they are executed by one of various functional
units, which are sometimes specialized in integer-,
floating-point, and load/store pipelines. The Pen-
tiumlII, for instance, has two such functional units,
whereas the R10000 has even five. To exploit this
parallel potential, modern CPUs rely on techniques
like branch prediction to predict which instruction will
be next before the previous has finished. Also, the
modern cache memories are non-blocking, which means
that a cache miss does not stall the CPU. Such a design
allows the pipelines to be filled with multiple instruc-
tions that will probably have to be executed (a.k.a.
speculative execution), betting on yet unknown out-
comes of previous instructions. All this goes accom-

341

panied by the necessary logic to restore order in case
of mispredicted branches. As this can cost a signif-
icant penalty, and as it is very important to fill all
pipelines to obtain the performance potential of the
CPU, much attention is paid in hardware design to ef-
ficient branch prediction. CPUs work with prediction
tables that record statistics about branches taken in
the past.

Modern computer architectures have a hierarchical
memory system as depicted in Figure 2. The main
memory on the system board consists of DRAM chips.
To narrow the exponentially growing performance gap
between CPU speed and memory latency (cf., Fig-
ure 1), cache memories have been introduced, consist-
ing of fast but expensive SRAM chips. Cache memo-
ries are organized in multiple cascading levels, where
the faster and smaller caches are closest to the CPU.
Caches consist of cache lines, typically 16 to 128 bytes
long, which represent the smallest unit of transfer be-
tween adjacent cache levels. We assume a typical sys-
tem with a small on-chip cache called L1, and a larger
off-chip cache on the system board called L2. Our
observations and results can be generalized to an arbi-
trary number of cache levels in a straightforward way.

We identify three aspects that determine memory
access costs:

latency Latency is the time span that passes after
issuing a data access until the requested data is
available in the CPU. In hierarchical memory sys-
tems, the latency increases with the distance from
the CPU. Accessing data that is already available
in the L1 cache causes LI latency (Ir1), which
is typically rather small (1 or 2 CPU cycles). In
case the requested data in not found in L1, an
L1 miss occurs, additionally delaying the data
access by L2 latency (Ir2) for accessing the L2
cache. Analogously, if the data is not yet avail-
able in L2, an L2 miss occurs, further delaying
the access by memory latency (Ipem) to finally
load the data from main memory. Hence, the to-
tal latency to access data that is in neither cache
is Iprem + loa + lp1. As L1 accesses cannot be
avoided, we assume in the remainder of this pa-
per, that L1 latency is included in the pure CPU
costs, and regard only memory latency and L2
latency as explicit memory access costs.

bandwidth Memory bandwidth is a metric for the
data volume (in megabytes) that can be trans-
fered between CPU and main memory per sec-
ond. Bandwidth is usually maximized on a se-
quential access pattern, as only then all memory
words in the cache lines are fully used. In conven-
tional hardware, the memory bandwidth used to
be simply the cache line size divided by the mem-
ory latency, but modern multiprocessor systems
typically provide excess bandwidth capacity.

address translation For data access, logical virtual
memory addresses used by application code have
to be translated to physical page addresses in the
main memory of the computer. In modern CPUs,
a Translation Lookaside Buffer (TLB) is used as
a cache for physical page addresses, holding the
translation for the most recently used pages (typ-
ically 64). If a logical address is found in the TLB,
the translation has no additional costs. Other-
wise, a TLB miss occurs. The more pages an
application uses (which also depends on the often
configurable size of the memory pages), the higher
the probability of TLB misses. The actual TLB
miss latency (IrrB) depends on whether a system
handles a TLB miss in hardware or in software.

2.2 Partitioned Hash-Join

The radiz-cluster algorithm presented in [5] forms a
basis for the experiments in this paper. In the follow-
ing, we briefly recall the principle ideas.

The radix-cluster algorithm divides a relation into
H clusters using multiple passes (Figure 3 shows rela-
tions R and L both being clustered into 8 clusters using
two passes). Radix-clustering on the lower B bits of
the integer hash-value of a column is achieved in P se-
quential passes, in which each pass clusters tuples on
B, bits, starting with the leftmost bits (Zf B, = B).
The number of clusters created by the radix-cluster is
H= Hf H,, where each pass subdivides each cluster
into H, = 28 new ones. When the algorithm starts,
the entire relation is considered one single cluster, and
is subdivided into H; = 2B clusters. The next pass
takes these clusters and subdivides each into Hy = 282
new ones, yielding H; x Hy clusters in total, etc. Note
that with P = 1, radix-cluster behaves like a straight-
forward clustering algorithm.

The interesting property of the radix-cluster is that
the number of randomly accessed regions H, can be
kept low; while still a high overall number of H clusters
can be achieved using multiple passes. More specifi-
cally, if we keep H, = 2P+ smaller than the number of
cache lines and the number of TLB entries, we totally
avoid both TLB and cache thrashing.

Note that a radix-clustered relation is in fact or-
dered on radix-bits (in Figure 3, after radix-clustering
relation L, 96 is the first value, as it has radix-bits 000,
then come 57,17,81,75, which all have radix-bits 001,
etc.). When using this algorithm in the partitioned
hash-join, we exploit this property, by performing a
merge step on the radix-bits of both radix-clustered
relations to get the pairs of clusters that should be
hash-joined with each other.

2.3 Monet

We implemented the algorithms described above in
Monet, a database kernel developed at CWI, targeted

342

partitioned
hash-join

2-pass radix-cluster

2-pass radix-cluster

[9

10 20

Figure 3: Partitioned Hash-join; black tuples hit (low-
est 3-bits of values between parenthesis)

at achieving high performance on query-intensive
workloads, such as created by OLAP or data mining
applications. It uses the Decomposed Storage Model
(DSM) [7], storing each column of a relational table
in a separate binary table, called a Binary Associa-
tion Table (BAT). A BAT is represented in memory
as an array of fixed-size two-field records [OID,value],
or Binary UNits (BUN). The OIDs in the left column
are unique per original relational tuple, i.e., they link
all BUNs that make up an original relational tuple.
The major advantage of the DSM is that it minimizes
I/0 and memory access costs for column-wise data ac-
cess, which occurs frequently in OLAP and data min-
ing workloads [6]. The BAT data structure is main-
tained as a dense memory array, without wasted space
for unused slots, both in order to speed up data access
(e.g., not having to check for free slots) and because
all data in the array is used, which optimizes memory
cache utilization on sequential access.

Most commercial relational DBMSs were designed
in a time when OLTP was the dominant DBMS ap-
plication, hence their storage structures, buffer man-
agement infrastructure, and core query processing al-
gorithms remain optimized towards OLTP. In the ar-
chitecture of Monet, we took great care that systems
facilities that are only needed by OLTP queries do not
slow down the performance of query-intensive applica-
tions. We shortly discuss two such facilities in more
detail: buffer management and lock management.

Buffer management in Monet is done on the coarse
level of a BAT (it is entirely loaded or not at all),
hence the query operators always have direct access to
the entire relation in memory. The first reason for this
strategy is to eliminate buffer management as a source
of overhead inside the query processing algorithms,
which would result if each operator must continuously
make calls to the buffer manager asking for more tu-
ples, typically followed by copying of tuple data into
the query operator. The second reason is that all-or-
nothing I/0 is much more efficient nowadays than ran-

dom I/O (similarly to memory, I/O bandwidth follows
Moore’s law, I/O latency does not).

In Monet, we chose to implement explicit transac-
tion facilities, which provide the building blocks for
ACID transaction systems, instead of implicitly build-
ing in transaction management into the buffer man-
agement. Monet applications use the explicit locking
primitives to implement a transaction protocol. In
OLAP and data mining, a simple transaction protocol
with a very coarse level of locking is typically sufficient
(a read/write lock on the database or table level). We
can safely assume that all applications adhere to this,
as Monet clients are front-end programs (e.g., an SQL
interpreter, or a data mining tool) rather than end-
users. The important distinction from other systems
is hence that Monet separates lock management from
its query services, eliminating all locking overhead in-
side the query operators.

As a result, a sequential scan over a BAT comes
down to a very simple loop over a memory array with
fixed-length records, which makes Monet’s query op-
erator implementations look very much like scientific
programs doing matrix computations. Such code is
highly suitable for optimization by aggressive compiler
techniques, and does not suffer from interference with
other parts of the system, making it feasible to under-
stand, e.g., what happens during a join? An in-depth
discussion of the design and implementation of Monet
can be found in [4].

3 Calibration Tool

To achieve their best performance, memory-conscious
database algorithms need to be tuned to the character-
istics of the very computer system they run on. Prefer-
ably, this task should be done by the database system
automatically at installation time. For this to be fea-
sible, two requirements have to be fulfilled. On the
one hand, the database system has to be provided
with appropriate analytical performance models for
the algorithms that are to be tuned. In [5], we demon-
strate how to create analytical performance models for
memory-conscious database algorithms like our radix-
cluster algorithm. On the other hand, characteristic
parameters of the memory system, including memory
sizes, cache sizes, cache line sizes, and access latencies
need to be known. In the following, we describe a pow-
erful calibration tool to measure the (cache) memory
characteristics of an arbitrary machine on the fly.

3.1 Calibrating the Memory System

The idea underlying our calibrator tool is to have a
micro benchmark whose performance only depends on
the frequency of cache misses that occur. Our calibra-
tor is a simple C program, mainly a small loop that
executes a million memory reads. By changing the
stride (i.e., the offset between two subsequent mem-
ory accesses) and the size of the memory area, we

343

force varying cache miss rates. In principle, the oc-
currence of cache misses is determined by the array
size. Array sizes that fit into the L1 cache do not gen-
erate any cache misses once the data is loaded into
the cache. Analogously, arrays that exceed the L1
cache size, but still fit into L2, will cause L1 misses
but no L2 misses. Finally, arrays larger than L2 cause
both L1 and L2 misses. The frequency of cache misses
depends on the access stride and the cache line size.
With strides equal to or larger than the cache line size,
a cache miss occurs with every iteration. With strides
smaller than the cache line size, a cache miss occurs
only every n iterations (on average), where n is the ra-
tio cache line_size/stride. Thus, we can calculate the
latency for a cache miss by comparing the execution
time without misses to the execution time with exactly
one miss per iteration. This approach only works, if
memory accesses are executed purely sequential, i.e.,
we have to ensure that neither two or more load in-
structions nor memory access and pure CPU work can
overlap. We use a simple pointer chasing mechanism
to achieve this: the memory area we access is initial-
ized such that each load returns the address for the
subsequent load in the next iteration. Thus, super-
scalar CPUs cannot benefit from their ability to hide
memory access latency by speculative execution. To
measure the cache characteristics, we run our exper-
iment several times, varying the stride and the array
size. We make sure that the stride varies at least be-
tween 4 bytes and twice the maximal expected cache
line size, and that the array size varies from half the
minimal expected cache size to at least ten times the
maximal expected cache size.

Figure 4 depicts the resulting execution time (in
nanoseconds) per iteration for different array sizes on
four different machines (see Table 1 for details). Each
curve represents a different stride. All curves show
two steps, indicating the existence of two cache levels
and their sizes. Matching curves mean, that the cache
miss frequency has reached its maximum (one miss per
iteration), i.e., that the respective stride is equal to (or
larger than) the cache line size.

3.2 Calibrating the TLB

We use a similar approach as above to measure TLB
miss costs. The idea here is to force one TLB miss per
iteration, but to avoid any cache misses. We force TLB
misses by using a stride that is equal to or larger than
the systems page size, and by choosing the array size
such that we access more distinct spots than there are
TLB entries. Cache misses will occur at least as soon
as the number of spots accessed exceeds the number of
cache lines. We cannot avoid that. But even with less
spots accessed, two or more spots might be mapped to
the same cache line, causing conflict misses. To avoid
this, we use strides that are not exactly powers of two,
but slightly bigger, shifted by L2 cache line size.

SGI Origin2000
ILL||=32k IIL2]|=4M
432 ! ' ¥

R
?fd@mﬂ‘:‘]{

100

32 8

nanosecs per iteration

1 1 1 1
16k 64k 256k 1M 4M 16M 64M
memory range [bytes]

stride [bytes]: 256 —+—

Figure 4: Cache sizes (vertical grid lines), line sizes,

SGI Origin2000

|TLB|=64 |L1=1024
T T T

236

PORBG
“wauo

nanosecs per iteration
*

108

cycles per iteration

cycles per iteration

nanosecs per iteration

nanosecs per iteration

N
@
a

-
1<)
=]

IS
S

-
1)

4k 16k 64k 256k 1M 4M

N
@
S

-
1<)
=]

-
o

Sun Ultra
JIL1]=16k |IL2]j=1M
47
;ZEEIEEEIEIEDEU
fin}

i OO0 s

@
Jee=To5eiccebelce il
000 000 000 0s 000 ®

memory range [bytes]

128 --x---

Sun Ultra

[TLB|=64 |L1|=1024

16M

64 ---x---

uﬁéﬁﬁﬁ*ﬂ

b

Intel PC
lL1=16k [|L2||=512k
—TT
c
- 5142 64
2 8100 | ﬁ‘ﬁ"'---!' 452
8 g %ﬁ' [
e b= h 2
z g 49 220
8 a F E—— & g
2 & { o9 omencmensy O
g 2 8
I oot 3
g
1) S adentantund Has
6.7 3
L

1 1
16k 64k 256k 1M 4M 16M
memory range [bytes]

4k

32 i 16 ——m-

AMD PC

IL1j=64k (|L2||=512k
T —

< ol
k=2 EzaScaEzai] c
5100 | j s {608
]
2 o —_ 3
3 50 P i 30T
y /e (ROEPOBOBD 2
bof ol i
2 | um 2
g ;Eu g esemseend ES
g 13 o

10 i 16

[TLBy|=32 |TLB,|=256 |L1/=1024
T T T

n |
16k 64k 256k 1M 4M 16M
memory range [bytes]

8 -—-o- 4 e

and miss latencies (horizontal grid lines)

AMD PC

]

=
o
S

nanosecs per iteration

60
o0o0oly’
oo

e
? 2 3

o

cycles per iteration

133
10 £

ow

ji ©C0OCDOCD0.® ¢

Intel PC
[TLBI=64 |L1[=512
. .
c S . =
2 © 100 | w458
54 g ?,%@ o
8 2]
- -
@ Q i @
g 2 o g
& g 18 o —— 83
g il
10 | ™ 445
6.7 3 3
.

1 1 1 1 1 1 1
16 64 256 1024 4096 16 64 256 1024 4096 16
spots accessed spots accessed

1 1
64 256 1024 4096
spots accessed

stride [KB]: 64 —+— 32 —-x-- 16 -~ 8 4 —-m—

Figure 5: TLB entries (vertical grid lines), page sizes, and TLB miss costs

[/ eesasee

! ! |
64 256 1024 4096
spots accessed

2 oo 1 e

(horizontal grid lines)

Figure 5 shows the results for four machines. The
X-axis now gives the number of spots accessed, i.e.,
array size divided by stride. Again, each curve rep-
resents a different stride. For the SGI and the Sun,
the curves depict a single distinctive step, indicating a
single TLB with 64 entries. The impact of L1 misses
when more than 1024 spots are accessed is hardly visi-
ble as L1 miss penalty is small compared to TLB miss
penalty. On the Intel PC, the first step relates to the
64-entry TLB and the second step relates to L1 misses,
which are more expensive than TLB misses on the In-
tel PC. On the AMD PC, there are two TLBs with
32 and 256 entries, respectively. The third step in the
curves again relates to L1 misses. The page sizes can
be derived just like the cache line sizes before.

Table 1 gathers the results for all four machines.
The PCs have the highest L2 access latencies, prob-
ably as their L2 caches are running at only half the
CPUs’ clock speed. Main-memory access, however,
is faster on the PCs than it is on the SGI and the
Sun. The TLB miss latency of the PentiumIIl and
the Athlon (TLB,;) are very low, as their TLB man-
agement is implemented in hardware. This avoids the
costs of trapping to the operating system on a TLB
miss, that is necessary in the software controlled TLBs
of the other systems. The TLB, miss latency on the
Athlon is comparable to that on the R10000 and the
UltraSPARC.

The calibration tool and results for a large number
of different hardware platforms are available on our
web site: http://www.cwi.nl/~monet/.

344

[[[SGI Origin2000] Sun Ultra [Intel PC_ [AMD PC |
[¢F} IRIX64 6.5 Solaris 2.5.1 | Linux 2.2.12 | Linux 2.2.12
CPU R10000 UltraSPARC | Pentiumlll Athlon
CPU speed 250 MHz 200 MHz 450 MHz 600 MHz
memory size 64 GB 512 MB 512 MB 384 MB
(local) (4 GB)

L1 size 32 KB 16 KB 16 KB 64 KB
L1 line size 32 bytes 16 bytes 32 bytes 64 bytes
L2 size 4 MB 1 MB 512 KB 512 KB
L2 line size 128 bytes 64 bytes 32 bytes 64 bytes
TLB entries 64 64 64 32
TLB» entries - - - 256
page size 32 KB 8 KB 4 KB 4 KB
L1 miss 24 ns 30 ns 42 ns 45 ns
latency 6 cycles 6 cycles 19 cycles 27 cycles
L2 miss 400 ns 195 ns 93 ns 172 ns
latency 100 cycles 39 cycles 42 cycles 103 cycles
TLB miss 228 ns 270 ns 11 ns 8 ns
latency 57 cycles 54 cycles 5 cycles 5 cycles
TLB2 miss - - - 87 ns
latency - - - 52 cycles

Table 1: Calibrated Performance Characteristics

4 Dissecting and Optimizing CPU Uti-
lization

Recent database research demonstrates, that current
commercial database systems are not able to exploit
the performance potentials of modern CPUs like par-
allel execution pipelines and speculative execution ad-
equately. Studies on several DBMS products on a va-
riety of workloads [1, 2, 8, 12] consistently show that
modern CPUs stall most of the execution time. Lack-
ing access to the source code and insight in imple-
mentation details, these studies could not satisfactory
answer the question, why the CPUs stall so severely
when performing database tasks, nor could they pro-
vide any solution for this problem.

In this section, we use the Monet DBMS to analyze
the main-memory performance behavior of hash-join
algorithms on several modern hardware platform in
detail. We demonstrate that once memory access is op-
timized, CPU utilization becomes crucial. While our
original implementations show a similarly poor behav-
ior as described in the previous studies, we present im-
plementation techniques to optimize the CPU utiliza-
tion significantly. Although we use a specific DBMS as
experimentation platform, the observations we make
and the improvements we suggest are relevant for any
DBMS on any architecture.

4.1 Surgical Instruments

To analyze the performance behavior of our algorithms
in detail, we break down the overall execution time into
the following major categories of costs:

e memory access. In addition to memory access
costs for data as described in Section 2.1, this cat-
egory also contains memory access costs caused by
instruction cache misses.

e CPU stalls. Beyond memory access, there are
other events that make the CPU stall, like branch
mispredictions or so-called resource-related stalls.

e divisions. We treat integer divisions separately,
as they play a significant role in our hash-join.

e regl CPU. This is the time the CPU is indeed busy
executing the algorithms.

We use the four architectures discussed in Section 3
for our investigation. The respective CPUs provide dif-
ferent hardware counters [3] that enable us to measure
each of these cost factors accurately. Table 2 gives an
overview of the counters used. Some counters yield the
actual CPU cycles spent during a certain event, others
just return the number of events that occurred. In the
latter case, we multiply the counters by the penalties
of the events (as calibrated in Section 3). Measuring
data TLB misses is not possible on the UltraSPARC
and the PentiumIII. We use our analytical models in-
stead [5]. None of the architectures provides a counter
for the pure CPU activity. Hence, we subtract the cy-
cles spent on memory access, CPU stalls, and integer
division from the overall number of cycles and assume
the rest to be pure CPU costs.

In current commercial DBMS, branch mispredic-
tions and instruction cache misses play a significant
role [1]. In our experiments, however, we found that
in our algorithms, branch mispredictions, instruction
TLB misses, and instruction cache misses do not play
a role on any tested architecture. The reason is that,
in contrast to most commercial DBMSs, Monet’s code
base is designed for efficient main-memory processing.
Monet uses a very large grain size for buffer man-
agement in its operators (an entire BAT), processing

345

[category [R10000

memory | L1_data_misses | DC_misses®
access |L2_data_misses | EC_misses®
TLB_misses MrirB

[UltraSPARC [Pentiumlll __[Athion |

DCU_miss_ DC_refills_(L2)
_outstanding | DC_refills_(sys)
MrLB L1_DTLB_misses
L2_DTLB_misses

stall_IC_miss |IFU_mem_stall |[IC_misses
ITLB_miss L1_ITLB_misses

L2_ITLB_misses
branch_mispred

L1 inst-misses
L2_inst_misses

CPU branch_mispred | stall_mispred |br_miss_pred
stalls stall_fpdep
ILD _stalled

resource_stalls
C x 2 % 60cy | cycles_div_busy [C * 2 x 40cy

divisions [C' x 2 * 35cy

Table 2: Hardware Counters used for Execution Time
Breakdown

therefore exhibits much code locality during execution,
and hence avoids instruction cache misses and branch
mispredictions. Thus, for simplicity of presentation,
we omit these events in our evaluation.

4.2 Operating Theatre

In our experiments, we use binary relations (BATS)
of 8 bytes wide tuples consisting of uniformly dis-
tributed random numbers. Each value occurs three
times. Hence, in the join-experiments, the join hit-
rate is three. The result of a join is a BAT that con-
tains the [OID,0ID] combinations of matching tuples
(i-e., a join-index [13]). Subsequent tuple reconstruc-
tion is cheap in Monet, and equal for all algorithms, so
just like in [11] we do not include it in our comparison.
The experiments were carried out on the machines pre-
sented in Section 3, an SGI Origin2000, a Sun Ultra,
an Intel PC, and an AMD PC (cf. Table 1).

We varied the cardinalities of the relations between
15,000 and 64M tuples, but due to space limits, we
only present the results for one cardinality (C' = 8M).
The effects we discuss occur with all relation sizes. For
the complete results, we refer the reader to [9].

4.3 Radix Cluster

Original Implementation Figure 6 shows an exe-
cution time breakdown for 1-pass radix-cluster on each
architecture. The pure CPU costs are nearly constant
across all numbers of radix-bits. Memory and TLB
costs are low with small numbers of radix-bits, but
grow significantly with rising numbers of radix-bits.
Only on the Intel PC, TLB thrashing is hardly visi-
ble due to its very low TLB miss penalty. The figures
clearly reflect the impact of TLB thrashing and cache
thrashing on the execution time on all architectures.
This confirms that the observations we made in [5] on
only one system also hold for other platforms.

Figure 7 depicts the breakdown for radix-cluster us-
ing the optimal number of passes. The idea of multi-
pass radix-cluster is to keep the number of clusters
generated per pass—and thus the memory costs—low,

3 = DC_read - DC_read_hit + DC_write - DC_write_hit.
4 = EC_ref - EC_hit.

seconds

seconds

seconds

seconds

SGI Origin2000 Sun Ultra Intel PC AMD PC
20 20 : : : — 90 20 : : : 12,0
TB L1 L2 TB L1 L2 TB L1 L2 TLT201 L2
[45 18 [18 1s0 18 o
1100
16 | 40 16 | 16 F 170 16 F
190
14 | 35 14 | 14 | 14
Py 30 2 12| 7 12} 12
s 5
£ 8 £ 8 1 8
10} 25 g § 10} = g 10} § 10
2 & 2 & &
o o
sl 20 8 sl 38 8| 8
3 3
of : llllllllll of ;
20 30
4t I 10 4 b 4t ! 4
' iill e -
2 F o5 2 10° 2] 10 2 Ill 110
0 0.0 0 0.0 0 00 0 00
0o 5 10 15 20 0o 5 10 15 20 0 5 10 15 20 5 10 15 20
number of radix-bits number of radix-bits number of radix-bits number of radix-bits
= TLB = TLB (model) = resource stalls = TLB, + TLB,
= |1 data |] data = TLB (model) — |
| 2 data — | 2 data == DCU misses — | 2
Figure 6: Execution Time Breakdown of Radix-Cluster using one pass
18 —— 1 45 18 — ; 18 ————r 380 18 ——
p=1 p=2 p=1 P=2 I35 P=1 p=2 p=1 p=2
1100
16 140 16 16 F 170 16 F
3.0 190
14 | 135 14 | 14 | 14 |
160 180
25
12| 130 12} 12| 12|
z z]
2 L d| 2 L L
10 + 25 5 ﬁ 10 20 5 § 10 § 10
c 5 c 5] 5
£ 8 £ 8 8
8l III 20 ¢ b 8l] s sl 8 sf
o 15 3
8 8
3 3
of s il ol ol
110 20
4t II 110 4 4 II g 4
- III
2 b Jos 2 b 108 2 [I" 110 2
o 0.0 o 0.0 0 00 0 00
o 5 10 15 20 0o 5 10 15 20 0 5 10 15 20 5 10 15 20
number of radix-bits number of radix-bits number of radix-bits number of radix-bits
Figure 7: Execution Time Breakdown of Radix-Cluster using multiple passes
16 4.0 16 T T T ™ 70 16 T T T T
TLB L1 L2 ' T1T201 L2 ET
14 35 1| 14 [
160 80
12 3.0 12| 12| 70
10 25 2 2 10} 10} !
s 5
3 4 H 8 . 8
8 20 8 e B osf £ 8 osf 50
2 o 2 o 30 ¥ o 4.0
6 15 8 3 6 E] 6
3 3 3
20 30
s 10 4l ! 4l
120
r 10 L
2 05 2 IIII 2 |III 110
il
0 0.0 0 00 0 00
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 5 10 15 20
number of radix-bits number of radix-bits number of radix-bits number of radix-bits
Figure 8: Execution Time Breakdown of optimized Radix-Cluster using one pass
8 T T T T 20 8 T T T T 15 8 T T T T 8 T T T T
p=1 p=2 pP=3 P=1 p=2 . p=1 p=2 20 p=1 p=2 P=3
6 J15 @ 6 7 6| ’ 6|
2 o 10 2 @ @ 3
s ° " ° °
4t 1.0 E s af g s af 20 § af
III R T 8 g
S 05 ©
T Lt O L s gl - di il
srerei sl ——
o 0.0 o 0.0 0 00 00
0o 5 10 15 20 0o 5 10 15 20 0 5 10 15 20 5 10 15 20

number of radix-bits

number of radix-bits

number of radix-bits

number of radix-bits

Figure 9: Execution Time Breakdown of optimized Radix-Cluster using multiple passes

346

£
9
2
S
°
S

at the expense of increased CPU costs. Obviously, the
CPU costs are too high to avoid the TLB costs by us-
ing two passes from 7 radix-bits onward. Only with
more than 15 radix-bits—i.e., when the memory costs
exceed the CPU costs—two passes win over one pass.
Due to the Athlon’s high clock speed, two passes out-
perform one pass already from 11 radix-bits onward.

Optimized Implementation The only way to im-
prove this situation is to reduce the CPU costs, i.e.,
to optimize the implementation of radix-cluster. Fig-
ure 10 shows the source code of our radix-cluster rou-
tine. It performs a single-pass clustering on the D
bits that start R bits from the right (multi-pass clus-
tering in P > 1 passes on B = P x D bits is done
by making subsequent calls to this function for pass
p = 1 through p = P with parameters D, = D and
R, = (p— 1) = D, starting with the input relation and
using the output of the previous pass as input for the
next). As the algorithm itself is already very simple,
improvement can only be achieved by means of imple-
mentation techniques. We replace the generic ADT-
like implementation by a specialized one for each data
type.> Thus, we can inline the hash function and re-
place the memcpy by a simple assignment, saving two
function calls per iteration.

Figure 8 shows the execution time breakdown for
the optimized single-pass radix-cluster. The pure CPU
costs have reduced significantly, by factor 4 on the Ori-
gin and the Intel PC, by factor 5 on the Sun, and by
factor 3.5 on the AMD PC. Replacing function calls
has two effects. First, CPU cycles, otherwise needed
to copy the parameters to/from the stack and to per-
form the call itself, are saved. Second, the CPUs can
benefit more from their internal parallel capabilities
using speculative execution, as the code has become
simpler and parallelization options more predictable.

5The Monet source code is kept small by generating both the
optimized and ADT code instantiations with a macro package
from one template algorithm. We refer to [4] for a detailed
discussion of this subject.

7#define HASH(v) ((v>>7) XOR (v>>13) XOR (v>>21) XOR v)
typedef struct {
int v1,v2; /* simplified binary tuple */
} bun;
radix_cluster(
bun *dst[2”], bun *dst_end[2P] /* output buffers (clusters) */
bun *rel, bun *rel_end, /* input relation */
){int R, int D /* radix and cluster bits */

int idx, M = (2P - 1) < R;
for(bun*cur=rel; cur<rel_end; cur+) {
idx = (*hashFcn)(cur—v2)&M; idx = HASH(cur—v2)&M;
memcpy (dst[idx],cur,sizeof(bun)); || *dst[idx] = *cur;
if (++dst[idx]>dst_end[idx])
REALLOC(dst[idx],dst_end[idx]);
}

}

With this optimization, multi-pass radix-cluster is
feasible already with smaller numbers of radix-bits
(cf. Figure 9). On the Origin, two passes win with
more than 6 radix-bits, and three passes win with
more than 13 radix-bits, thus avoiding TLB thrashing
nearly completely. Analogously, the algorithm creates
at most 512 clusters per pass on the AMD PC, avoid-
ing L1 thrashing, which is expensive due to the rather
high L1 miss penalty on the Athlon.

4.4 Isolated Join Performance

Original Implementation Partitioned hash-join
exhibits increased performance with increasing num-
ber of radix-bits. Figure 12 shows that this behavior
is mainly caused by the memory costs. While the CPU
costs are almost independent of the number of radix-
bits, the memory costs decrease with rising number of
radix-bits. The smaller the clusters are, the less TLB
and cache thrashing occurs. These results confirm that
our previous observations hold for all platforms. We
point out that division operations significantly con-
tribute to the pure CPU costs on all architectures.

Optimized Implementation Like with radix-
cluster, once the memory access is optimized, the ex-
ecution of partitioned hash-join is dominated by CPU
costs. Hence, we apply the same optimizations as
above. We inline the hash-function calls during hash
build and hash probe as well as the compare-function

hash_join(
bun *dst, bun *dst_end
bun *outer, bun *outer_end, /* outer relation */
bun *inner, bun* inner_end, /* inner relation */
int R /* radix bits */

/* result buffer */

/* build hash table on inner */

int pos=0, S=inner_end-inner, H=logs(S), N=2%;

int M=(N-1)<<R;

/* hash bucket array and chain-lists */

int next[S], bucket[N] = { -1 };

for(bun *cur=inner; cur<inner_end; cur-+){
int idx = ((*hashFcn)(cur—v2)>>R) % N;

/* int idx = HASH(cur—v2) & M; */

next[pos] = bucket[idx];
bucket[idx] = pos+t;

)
/* probe hash table with outer */

for(bun *cur=outer; cur<outer_end; curH) {

int idx = ((*hashFcn)(cur—v2)>>R) % N;
/* int idx = HASH(cur—v2) & M; */

for(int hit=bucket[idx]; hit>0; hit=next[hit]) {
if ((*compareFcn)(cur—v2, innerfhit].v2)==0) {

/* if ((cur—v2 == innerfhit].v2)) { */
memcpy(&dst—vl, &cur—vl, sizeof(int));

/* dst—v1l = cur—vl; */
memcpy(&dst—v2, &inner[hit].v1, sizeof(int));

/* dst—v2 = inner[hit].v1; */

if (+Hdst>dst_end) REALLOC(dst, dst_end);
}
}
}

i

Figure 10: C language radix-cluster with annotated
CPU optimizations (right)

347

Figure 11: C language hash-join with annotated CPU
optimizations (slanted)

SGI Or1g1n2000 Sun Ultra
60 T T T 15.0 60 T T T — 12.0
L2 TLB L1 3140 L2TLB L1
55 b - 55 | 4110
4130
50 F 50 | 4 100
1120
45 H 3110 45 490
40 H J100 & 40 I 180 &
2 2
9 3 90 2 g 3 470 2
js80 B 5
§ 30 7o E § 30 III“IIIIII 60 =
8 370 % 8 b
@ 25 J60 2 @ 25 150 £
S S
20 - {s0 © 20 | 440 ©
15 = 140 15 £ 130
330
10 | 10 | 120
J20
N E by - AR RN 1,
o EHNNNENENNNNNRURNNRNNNNN 1, 0 0.0
0 5 10 15 20 0 5 10 15 20
number of radix-bits number of radix-bits
= |] data |] data
— |2 data m— |2 data
= FPU (div) = FPU (div)
Figure 12:
40 . . 10.0 40 T T T 8.0
L2 TLB L1 390 L2TLB L1
35 | - 35 H 70
30 B 180 30 H 160
J70 T t 7
25 2 25 | 450 2
8 j60 Z 8 H
2 2
8 20 {50 g 8 20 I 140 g
J40 2 0
@ 15 a0 2 @ 15 II— 30 g
10 . ° 10 lz.o ©
20 I Illl“ll“
5 | T T S 110 5 H 110
0 0.0 0 0.0
0 5 10 15 20 0 5 10 15 20

number of radix-bits number of radix-bits

call during hash probe and replace two memcpy calls by
simple assignments, saving five function calls per iter-
ation. Further, we replace the modulo division (“%”)
for calculating the hash index by a bit operation (“&”).
Figure 11 depicts the original implementation of our
hash-join routine and the optimizations we apply.

Figure 13 shows the execution time breakdown for
the optimized partitioned hash-join. For the same rea-
sons as with radix-cluster, the CPU costs are reduced
by almost a factor 4 on the Origin and the Sun, and
by factor 3 on the PCs. The expensive divisions have
vanished completely. Additionally, the stalls on the
Intel PC have almost disappeared, as well.

It is interesting to note that the 450 MHz Pentiu-
mIII and the 600 MHz Athlon outperform the 250 MHz
R10000 on non-optimized code, but on CPU optimized
code, where the RISC chip executes without any over-
head, the R10000 becomes as fast as the PCs.

5 Cross-Platform Validation

Now we turn our attention to the overall join perfor-
mance, combining both phases. First, we will show
that our cost model presented in [5] applies on all ar-
chitectures. Then, we compare the gains due to CPU
and memory optimization on the different platforms.

5.1 Validating Cost Models

In [5], we present an accurate cost model to estimate
the performance of our partitioned hash-join algorithm
on the Origin2000. The question remaining is, whether

Intel PC AMD PC
60 T T T 60 [T T T — 36.0
s L2 TLB L1 26.0 s T2L2 34.0
3 24.0 3 TILL 32,0
50 f 220 50 f 30.0
45 200 45 280

26.0
40 F

35 F
30 F

25 |
[]
2 IIlIl
ll
]
1|||||IIIII“IIIIIII
0 5 10 15 20
number of radix-bits

18.0
16.0
14.0
12.0 25
10.0

2

8.0 1
6.0 !
40 0F | | S i
0
0 5

40 F
35
30

24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0

seconds
clocks (in billions)

seconds
clocks (in billions)

<]
<]

[
a
a

[
o o
o o

4.0
2.0
0.0

2.0

10 15 20
number of radix-bits

mm— resource stalls
— 1
mmmmm DCU misses — 2

= divider = FPU (div)

Execution Time Breakdown of Partitioned Hash-Join

40 o ; . ; 18.0 40 o . ; 24.0
L2 TLB L1 212 E
35 F <4 16.0 35 F 22.0
TiLl 4 200
30 f 1o 30 {180 &
E 2 E 2
oot 120 5 w25k 160 5
2 J100 3B 2 140 F
g2k so S § 20 120 g
¢ 15 . e & 15 100 g
_ 160 8 E 8
10 1 Ja0 © 10 E S
5 Illlllllllll“’ 2.0 5
0 0.0 0
0 5 10 15 20

number of radix-bits

number of radix-bits

Figure 13: Execution Time Breakdown of optimized Partitioned Hash-Join

this model can be used to estimate the partitioned
hash-join performance on other architectures as well.

The cost model mimics the memory access pattern
of the algorithm and estimates the number of cache
and TLB misses. To reflect platform specifics, we pa-
rameterize the model by the machine-specific memory
characteristics provided by our calibration tool. Fur-
ther, we calibrate the pure CPU costs using an in-cache
experiment. Due to space limits, we omit the detailed
cost formulae, here. The reader is referred to [9].

Figure 14 shows the overall performance for the
original and the CPU-optimized versions of our algo-
rithms, using 1-pass and multi-pass clustering on all
architectures. The points represent the measured re-
sults and the lines represent our model. The model
shows to be reasonably accurate on all platforms, cor-
rectly reflecting the impact of memory access and im-
plementation techniques on the execution time. We
point out that the model accurately predicts the op-
timal number of passes for clustering and the optimal
cluster sizes. Hence, it qualifies for being used to tune
memory-conscious algorithms automatically.

The results presented confirm, that the hardware
parameters extracted by our calibrator provide suffi-
cient information to capture platform specific memory
access behavior. This observation is relevant not only
for database cost modeling, but also for database simu-
lators. Further, the results show that calibrating pure
CPU costs with an in-cache setup is a reasonable way
to capture the impact of implementation techniques
and CPU characteristics in cost models.

348

Origin2000 Sun Ultra Intel PC AMD PC
cluster size [bytes] cluster size [bytes] cluster size [bytes] cluster size [bytes]
64M 2M 64k 2k 64 64M 2M 64k 2k 64 64M 2M 64k 2k 64 64M 2M 64k 2k 64
80 T T T T T T T T T T T T T T T T T T T 80
L2 TLB L1 L2 TLB L1 L2 TLB L1 ToL2TILL
N ¥
70 F 1 E - A F] F 170
+ /
v /
B F - B F B F 1 0
+ \ +/ 4
//' + + +
/ . b é,w—w i b] b 1
g ¥ < g
g e 4*] F] b Jo §
B ;] . oo]
1+ : # + 4
el Ao v
A] L \oagerare = - E it
4 e e
,,+’*’ n = "
10 [+>_‘dj'fs"*'*':.u,l—'y’j L 4 F S
L L L L L L L L L L L L L
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
number of radix-bits number of radix-bits number of radix-bits number of radix-bits
original optimized simple v mininum O 1 pass ---+-- 2 passes —&— 3 passes —=— 4 passes —&—
Figure 14: Measured (points) and Modeled (lines) Overall Join Performance
SGI Origin2000 Sun Ultra Intel PC AMD PC
def opt rel. def opt rel. def opt rel. def opt rel.
C shj phj shj phj || gain shj phj shj phj || gain shj phj shj phj || gain shj phj shj phj || gain
250k 0.8 0.6 04 021 3.97 1.7 15] 10 0.4] 350 06 04 03 02] 301 06 03| 04 011 3.9
500k 2.2 1.3 1.4 04| 5.02 36 30| 22 1.0 362 1.3 10| 08 04| 296 15 07| 11 03] 430
1M 5.2 27 3.7 09| 574 76 61| 48 21 | 359 27 20| 16 09| 281 33 15| 26 0.7 | 459
2M 11.4 5.5 8.6 1.8 6.13 || 157 12.8 | 10.1 4.5 3.44 57 42| 35 20| 277 75 32| 63 1.6 || 4.65
4M 250 116 | 195 4.1 6.02| 322 262|208 93| 345|117 88| 72 42| 279|161 70| 139 3.4]| 4.64
8M 538 252 | 433 88| 6.05| 655 513|439 198|329 |/ 243 180|151 8.6 || 2.80 | 342 153|299 6.9 || 4.94
16M || 119.6 53.4 | 951 18.1 || 6.60
32M || 265.4 113.3 | 216.7 38.1 || 6.96
64M || 614.2 2346 | 5114 795 | 7.71
C: cardinality def: default implementation shj: simple hash-join (non memory-optimized)
gain: overall gain (def_shj/opt_phj) opt: CPU-optimized implementation phj: phash TLB/L1 (memory-optimized)

Table 3: Overall Join Performance (in seconds) without and with CPU and/or Memory Optimization

5.2 Overall Join Performance

From Figure 14, we derive that cluster sizes just below
TLB size achieve the best performance on the RISC
architectures. The PCs require even smaller clusters,
fitting into the L1 cache. We refer to these settings as
phash TLB/L1. In all cases, multi-pass radix-cluster-
ing is essential to reach the optimal performance.

Table 3 lists the absolute performance of simple
hash-join and phash TLB/L1 both without and with
CPU optimization applied. The numbers show that
CPU and memory optimization support each other
and boost their effects. The gain of CPU optimiza-
tion for phash TLB/L1 is bigger than that for sim-
ple hash-join ((def_phj—opt_phj) > (def_shj—opt_shj)),
and the gain of memory optimization for the CPU-
optimized implementation is bigger than that for the
non-optimized implementation ((opt_shj—opt_phj) >
(def_shj—def_phj)). There are two reasons for the
boosting effect to occur. First, modern CPUs try to
overlap memory access with other useful CPU compu-
tations by allowing independent instructions to con-
tinue execution while other instructions wait for mem-
ory. In a memory-bound load, much CPU compu-
tation is overlapped with memory access time, hence
optimizing these computations has no overall perfor-

mance effect (while it does when the memory access
would be eliminated by memory optimizations). Sec-
ond, an algorithm that allows memory access to be
traded for more CPU processing (like radix-cluster),
can actually trade more CPU for memory when CPU-
costs are reduced, reducing the impact of memory ac-
cess costs even more.

Finally, the “gain”-column in Table 3 shows, that
the Origin2000 achieves the best overall performance
improvement: factor 6 for 8M tuples and up to almost
factor 8 for larger relations. Second is the AMD PC
with factor 5, followed by the Sun (factor 3.3) and the
Intel PC (factor 2.8).

6 Conclusion

The research presented here shows how the results ear-
lier obtained on one specific platform [5] can be gen-
eralized to other hardware, and how cache-conscious
query optimization can be generalized and incorpo-
rated into existing DBMS technology. A key element
for achieving this is the calibrator program we provide,
that automatically discovers what the memory subsys-
tem of a computer looks like and derives important
cost model parameters like cache line size, numbers
of cache lines, and latencies. Combining the param-

349

eters derived by the calibrator on a number of new
platforms (we additionally tested Sun, Intel and AMD
hardware) with the detailed main-memory cost mod-
els provided in [5], we were able to successfully predict
performance. Hence we conclude that generic opti-
mization of main-memory access costs is both feasible
and desirable, as correctly tuned cache-conscious algo-
rithms greatly enhance DBMS performance.

We performed exhaustive experiments on these
hardware platforms, in which we dissected the per-
formance of our partitioned hash-join by establishing
a clear link between the hot-spots in our code and de-
tailed performance results, split-up into various CPU
and memory cost components. This analysis showed
that performance can be significantly enhanced even
after all memory access has been eliminated. The
trend of increasing parallelism inside modern super-
scalar CPUs makes it ever more crucial for application
code that the inner loops of the query processing algo-
rithms contain sufficient (independent) work to keep
the parallel units of the CPU busy. We find that per-
formance can be increased by another factor three or
four by eliminating all function calls from the inner
loops of our algorithms. Interestingly, the memory-
and code-optimization seem to boost each other: code-
optimization without memory-optimization is much
less effective than combined and vice versa. The over-
all effect of combining both optimizations can yield a
performance increase of a factor eight.

Our experimentation platform is the Monet system,
developed by our group to support high- performance
OLAP and data mining. In previous experiments on
the DD Benchmark, we found that Monet was 36 times
faster on a data mining query load than a commer-
cial DBMS product that also ran fully memory/CPU
bound [6]. The insights gained in this research now
tell us that the near 100% CPU utilization achieved
by Monet on such tasks makes the crucial difference.
The requirements for achieving such high performance
lead straight to the core architectural decisions made
for a DBMS, hence it will not be easy to repeat these
results in already existing DBMS products. We there-
fore expect Monet to stay in a class of its own for some
time to come. Still, we hope that DBMS engineers will
pick up the lessons learned and incorporate techniques
described here in future DBMS software.

References

[1] A. G. Ailamaki, D. J. DeWitt, M. D. Hill, and
D. A. Wood. DBMSs on a Modern Processor:
Where does time go? In Proc. of the Int’l. Conf.
on Very Large Data Bases, pages 266277, Edin-
burgh, Scotland, UK, September 1999.

[2] L. A. Barroso, K. Gharachorloo, and E. D.
Bugnion. Memory System Characterization of
Commercial Workloads. In Proc. of the Int’l

350

[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

Symp. on Computer Architecture, Barcelona,

Spain, June 1998.

R. Berrendorf and H. Ziegler. PCL - The Perfor-
mance Counter Library. Technical Report FZJ-
ZAM-IB-9816, ZAM, Forschungzentrum Jiilich,
Germany, 1998.

P. Boncz and M. Kersten. MIL Primitives For
Querying a Fragmented World. The VLDB Jour-
nal, 8(2), October 1999.

P. Boncz, S. Manegold, and M. Kersten. Database
Architecture Optimized for the New Bottleneck:
Memory Access. In Proc. of the Int’l. Conf. on
Very Large Data Bases, pages 54—65, Edinburgh,
Scotland, UK, September 1999.

P. Boncz, T. Riihl, and F. Kwakkel. The Drill
Down Benchmark. In Proc. of the Int’l. Conf.

on Very Large Data Bases, pages 628—632, New
York, NY, USA, June 1998.

G. P. Copeland and S. Khoshafian. A Decompo-
sition Storage Model. In Proc. of the ACM SIG-
MOD Int’l. Conf. on Management of Data, pages
268-279, Austin, TX, USA, May 1985.

K. Keeton, D. A. Patterson, Y. Q. He, R. C.
Raphael, and W. E. Baker. Performance Char-
acterization of a quad Pentium Pro SMP using
OLTP workloads. In Proc. of the Int’l Symp. on
Computer Architecture, pages 15-26, Barcelona,
Spain, June 1998.

S. Manegold, P. Boncz, and M. Kersten. Opti-
mizing Main-Memory Join On Modern Hardware.
Technical Report INS-R9912, CWI, Amsterdam,
The Netherlands, October 1999.

J. D. McCalpin. Memory Bandwidth and Ma-
chine Balance in Current High Performance Com-
puters. IEEE Technical Committee on Computer
Architecture newsletter, December 1995.

A. Shatdal, C. Kant, and J. Naughton. Cache
Conscious Algorithms for Relational Query Pro-
cessing. In Proc. of the Int’l. Conf. on Very Large
Data Bases, pages 510-512, Santiago, Chile,
September 1994.

P. Trancoso, J. L. Larriba-Pey, Z. Zhang, and
J. Torellas. The Memory Performance of DSS
Commericial Workloads in Shared-Memory Mul-
tiprocessors. In Int’l. Symp. on High Performance
Computer Architecture, San Antonio, TX, USA,
January 1997.

P. Valduriez. Join Indices. ACM Trans. on
Database Systems, 12(2):218-246, June 1987.

