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Low-Level More Post-

Classifier —
Features Features Processor

@ The motivation for ConvNets and Deep Learning: end-to-end learning
» Integrating feature extractor, classifier, contextual post-processor

d A bit of archeology: ideas that have been around for a while

» Kernels with stride, non-shared local connections, metric learning...
» “fully convolutional” training

@ What's missing from deep learning?
» 1. Theory
» 2. Reasoning, structured prediction
» 3. Memory, short-term/working/episodic memory
» 4. Unsupervised learning that actually works
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& Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor
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#@l Deep Learning: Representations are hierarchical and trained
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Early HierarchicabFeature Models for V.isio§
b . Y LeCun

# [Hubel & Wiesel 1962]:
» simple cells detect local features

III

» complex cells “"pool” the outputs of simple
cells within a retinotopic neighborhood.
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Cognitron & Neocognitron [Fukushima 1974-1982]



The MammalianWisual Cortex is Hierarchigial
¥ < . Y LeCun

# The ventral (recognition) pathway in the visual cortex has multiple stages

# Retina - LGN - V1 - V2 - V4 - PIT - AIT ....
# Lots of intermediate representations

WHERE? {Motion,
Spatial Relationships) WHAT? {Farm, Color}

[Parietal stream] [Inferotempaoral stream] o
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Deep Learning =,Learning Hierarchical Representations
=d Y LeCun

@ It's deep if it has more than one stage of non-linear feature transformation

Low-Level Mid-Level| |[High-Level Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 201 3]



Early Networks’[LeCun 85 86] P

Binary threshold units

trained supervised

with “target prop”

Hidden units compute a

virtual target
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Trained with Backprop. 320 examples.
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Shared weights

Shared weights

- Convolutions with stride (subsampling)

- No separate pooling layers

training epochs

network architecture links | weights | performance
single layer network 2570 | 2570 80 %
two layer network 3240 | 3240 87 %
locally connected 1226 | 1226 88.5 %
constrained network 2266 | 1132 94 %
constrained network 2 5194 | 1060 98.4 %




First “Real” ConvNets at Bell Labs [Le_Cuﬁ et al 8- _.

e

L0332 - Y7 ®dc

Trained with Backprop.
USPS Zipcode digits: 7300 training, 2000 test.
Convolution with stride. No separate pooling.

10 gutput URlls B ——-—-
fully connected

~ 300 links
layer H3 pooooooo
30 hidden units fully connected
~ 6000 links
layer H2 = 1.
12 x 16=192
H2.1 H2.12 :
hidden units = ~ 40,000 links
41 from 12 Kkernels
5x5x8
layer H1 2K p. 3
12 x 64 = 768 | "z
hidden units 5
H1.1 H1.1

ke ”20,000 |inkS
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BX5

256 input units 2
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Y LeCun

ConvNet with se€parate pqol_ing layer [Len et alQO]
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Convélutional Network (vintage 1992)
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LeNet1 Demo from 1993
- : e | | "0 A : Y LeCun
# Running on a 486 PC with an AT&T DSP32C add-on board (20 Mflops!)







Y LeCun

Multiplé Character Recognition [Matan et %l 1992]__...--""5.._. |

# SDNN: Space Displacement Neural Net
# Also known as “replicated convolutional net”, or just ConvNet
— (are we going to call this “fully convolutional net” now?)
# There is no such thing as a “fully connected layer”
# they are actually convolutional layers with 1x1 convolution kernels.

Single
. = Character
__\ Recognizer

SDNN
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Multiple Character Recognition'. IntegratedSegmentation
& . Y LeCun

# Trained with “semi synthetic” data

— the individual character positions are known
# Training sample: a character painted with flanking characters or a inter-
character space

%mr feNet 5 | peseancs

answer: 5
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Multiple Character Recognition'. IntegratedSegmentation
& . Y LeCun

' é‘“ﬂ‘ feNel S | pesearcu

a8 answer: 31

553561114




Word-level training with weak supervision aMatan etal 1992]
e e Y LeCun

# Word-level training
# No labeling of individual characters
# How do we do the training?
=

ConvNet

A

window width of
each classifier
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3
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Multiple classifiers —— >



”Deformable Part Model” on topéf a ConvNe:c

[Driancourt, Bottou 19911 | =} Y LeCun

Spoken word recognition with trainable elastic word templates.
First example of structured prediction on top of deep learning
[Driancourt&Bottou 1991, Bottou 1991, Driancourt 1994]

A
Object models | I
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) Energies Switch
Sequence of
feature vectors
I I I I I I LVQ?2 Loss

Trainable feature

/ TRAIRIRTAT

(acoustic vectors) Warping  Category
(latent var) (output)

extractors

I
I
I
I
I
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Word:level training with elastic word models

Y LeCun

- Isolated spoken word recognition
- trainable elastic templates and trainable feature extraction
- Globally trained at the word level
- Elastic matching using dynamic time warping
- Viterbi algorithm on a trellis.

> Energy
w = Trellis
o g
2
E S
2 Z
R
Warping/Path
Sequence of (latent var)

feature vectors

[Driancourt&Bottou 1991, Bottou 1991, Driancourt 1994]



The Oldest Example of Structured Predlctlf_" n & Deep Leam'ngL E
ecun

Tralnable Automatlc Speech Recognltlon system W|th a

convolutional net (TDNN) and dynamic time warping (DTW)
AEW,Z2,Y,X)

The feature extractor and
the structured classifier
are trained
simultanesously in an
integrated fashion.

with the LVQ2 Loss :

— Driancourt and
Bottou's speech
recognizer (1991)

with Neg Log Likelihood:
— Bengio's speech
recognizer (1992)

— Haffner's speech
recognizer (1993)

word templates

Path

X (acoustic vectors)

o A
L
o #I
!
|
— | R Ry

word in
the lexicon

Y



End—to End Learnlng Word Level Dlscrl linative ﬁaining

_ _ Y LeCun
< Energy > Making every single module
in the system trainable.
Every module is trained
< Word Hypotheses simultaneously so as to

optimize a global loss

(factor graph)l -y Geometry function.

C Character Hypothe@ Includes the feature extractor,
o the recognizer, and the

ConvNet th contextual post-processor
i (graphical model)
Deep Architecture

Segmentatio) (WOrdD Problem: back-propagating

radients through the
(latent) @Ord Ima@ (output) graphical mode?.
(input)




“Shallow” Structiired Prediction
Y LeCun

Energy function is linear in the pareters

E(X,Y,Z
E(X,Y,Z)=), W h(X,Y,Z) e

with the NLL Loss :

— Conditional
Random Field
[ Lafferty, McCallum,
Pereira 2001] Params

W1 W2 W3
" e F
- Max Margin eatures (X,Y,Z) (X,Y.Z) (X,Y,Z)

Markov Nets and
Latent SVM [Taskar,

Altun, Hofmann...] OutputS' Y1
with Perceptron Loss

— Structured Latent Vars: Z1
Perceptron

[Collins...] Input: X

Y4




Deep StructuredPrediction

| ‘ 1 Y LeCun
Energy function is linear in the parameters

E(X Y,2)

E(X,Y,Z)=) g(X,Y,Z, W)

Graph Transformer Networks
— [LeCun, Bottou,
Bengio,Haffner 97,98]
— NLL loss
— Perceptron loss - -
ConvNet [lg(xY.Zw) g(X,Y,Z,W) g(X,Y,Z,W)

Outputs: Y1 Y4

Latent Vars: Z1

Input: X



Loss Function
[@A]+17

Graph Transformer
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Check Reader

Graph transformer network
trained to read check amounts.

Trained globally with Negative-
Log-Likelihood loss.

50% percent correct, 49%
reject, 1% error (detectable
later in the process.

Fielded in 1996, used in many
banks in the US and Europe.

Processes an estimated 10% to
20% of all the checks written in
the US.
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Face Detection [Vaillant et al. 93, 94] "

# ConvNet applied to large images

# Heatmaps at multiple scales

# Non-maximum suppression for candidates

# 6 second on a Sparcstation for 256x256 image

20x20

4x16x16 || 4x8x8

4xlx

|1

E gl s




mid 2000s: state,of the ai't resillts on fac _:_-;detectiqﬁ

Y LeCun
Data Set->]| TILTED PROFILE MIT+CMU
False positives per image->| 4.42 | 269 | 0.47 3.36 0.5 1.28
Our Detector 90% [ 97% | 67% 83% 83% 88%
Jones & Viola (tilted) 90% | 95% X X
Jones & Viola (profile) X 70% 83% X

[Garcia & Delakis 2003][Osadchy et al. 2004] [Osadchy et al, JMLR 2007]
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Semantic Segmentation




ConvNets for Bi6logical Image Segmentation
=d Y LeCun

@ Biological Image Segmentation
» [Ning et al. IEEE-TIP 2005]

# Pixel labeling with large context
using a convnet r

@ ConvNet takes a window of pixels and |
produces a label for the central pixel

& Cleanup using a kind of conditional
random field (CRF)

» Similar to a field of expert, but
conditional.

@ 3D version for connectomics
» [Jain et al. 2007]



ConvNet for Long Range Adapti#e Robot V|S|on
(DARPA LAGR program 2005-2008) 2

. Y LeCun

[Hadsell et al., J. Field Robotics 2009]




i "

Long Range Vision with a Cohvolutiona} Net
._ Y LeCun

Pre-processing (125 ms)
— Ground plane estimation
— Horizon leveling

— Conversion to YUV + local
contrast normalization

— Scale invariant pyramid of
distance-normalized image
“bands”

12,.2m to IMF, =scale: 1.0

+ '|| i ""I'I“T-,

0. 7m to IMF, scale: 1.4

|l. 1 = |-I ‘1
1 B '._.: ,2m to INF, zcalet 1,9

- -I " il 7 e - u -. L -
_m 5,.8m to 17,6m, scalet 5,0
_m_ 4,1m to 11,3m, scale: 6,7



Y LeCun

100 features per

- -.:-r.-r.,

3x12x25 input window loo@asx121 | ZEE e
YUV image band
20-36 pixels tall,
36-500 pixels wide
20@30x484 . 5
vt ..-;.—.,::..-r,..r;:.:,.::;__ﬂ—f;r‘"'
3@36x484

YUV input




Scene Parsing/Labeling: Multi
o iE Y LeCun

scale ConvNgt Architécture

# Each output sees a large input text:
» 46x46 window at full rez; 92x92 at 2 rez; 184x184 at 4 rez

» [7x7conv]->[2x2pool]->[7x7conv]->[2x2pool]->[7x7conv]->

» Trained supervised on fully-labeled images

::r_-.::
l u “ =
L Categories
RGBE Input eIl
{ i
Laplacian Level 1 Level 2 Upsampled

Pyramid Features Features Level 2 Features



Method 1: majority over super-pixel regions
- Y LeCun

Majority
Vote
Over

Superpixels

Superpixel boundaries

sasayodAy Arepunoq [oxid-rodng

Categories aligned

With region

boundaries

Input image

sV lmana

1ONAUO)) J[BIS-INIA

“soft” categories scores

JIQTJISSEO [BUOIIN[OAUO))

Features from

Convolutional net
(d=768 per pixel)  [Farabet et al. IEEE T. PAMI 2013]



Scene Parsing/Labeling | p
Y LeCun

[Farabet et al. ICML 2012, PAMI 2013]
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Scene Parsing/Labéting on RGB+Depth Imaggs

Y LeCun

mm wall mm books mm chair mm furniture mm sofa mm object mm TV
mm bed wm ceiling mm floor pict./deco mm table mm window mm uknw
S it nm i

Ground truths

Our results

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 201 3]
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Scene Parsing/Labeling: Performance

# Stanford Background Dataset [Gould 1009] 8 categorles

Y LeCun

Pixel Acc. | Class Acc. | C1 (sec.)
Gould ef al. 2009 [14] 76.4% - 10 to 600s
Munoz et al. 2010 [37] 76.9% 66.2% 12s
Tiche ef al. 2010 [10] 775% : T0 to 300s
Socher et al. 2011 [45] 78.1% - ?
Kumar et al. 2010 [27] 79.4% - < 600s
Lempitzky ef al. 2011 | 81.9% 72.4% > 60s
singlescale convnet 66.0 % 56.5 % 0.35s
multiscale convnet 78.8 % 72.4% 0.68
multiscale net + superpixels 80.4% 74.56% 0.7s
multiscale net + gPb + cover | 80.4% 75.24% 61s
multiscale net + CRF on gPb | 81.4% 76.0% 60.5s

[Rejected from CVPR 2012]

[Farabet et al. ICML 201 2] [Farabet et al. IEEE T. PAMI 201 3]




Scené Parsing/Labeling: Performance '~

. Y LeCun
Pixel Acc. | Class Acc.

Liu et o 2009 7] T | g0
Tighe ef al. 2010 | ] 76.9% 29.4% 833 categories
raw multiscale net* 67.9% 45.9%

multiscale net + supurpir{elﬁl 71.9% 50.8%
multiscale net + cover! 72.3% 50.8%
multiscale net + cover 78.5% 29.6%
Pixel Acc. | Class Acc.
Tighe et al. 2010 [4] 66.9% 7.6%

# Barcelona dataset raw multiscale net! 37.8% 12.1%

# [Tighe 2010]: multiscale net + supﬂrpixelﬂl 44.1% 12.4%

# 170 categories. multiscale net + cover’ 46.4% 12.5%

multiscale net + cover? 67.8% 9.5%

[Farabet et al. IEEE T. PAMI 2012]



Scene Parsing/Labeling .
~ Y LeCun

[Farabet et al. ICML 2012, PAMI 201 3]



Scene Parsing/Labeling .
2 Y LeCun

# No post-processing

# Frame-by-frame

# ConvNet runs at 50ms/frame on Virtex-6 FPGA hardware

» But communicating the features over ethernet limits system
performance




Then., two things happened....

= || 1

& The ImageNet dataset [Fei-Fei et al. 2012]
» 1.2 million training samples
» 1000 categories

# Fast Graphical Processing Units (GPU)
» Capable of 1 trillion operations/second




f Very Deep ConvNet for Object Recognition

samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic Fox (1.0); ; ;
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Kernels: Layer ¥ (11x11) o
u

# Layer 1: 3x96 kernels, RGB->96 feature maps, 11x11 Kernels, stride 4

I I

i

.: '




Kernels: Layer T (11x11) Y LeC
ecun

Layer 1: 3x512 kernels, 7x7, 2x2 stride.

1: nn.5patialConvolutionRing nInutPIane=3 nDututPIa-ne=512 WH*kH=7*7 dW*
| | | , = ml

.




f Learning in Action

 How the filters in the first layer learn




f Deep Face

#l [Taigman et al. CVPR 2014]

» Alignment
» ConvNet

» Metric Learning

=R )
= =0
| @
=l \/ 12
Z /( |
L '.\ o
L el

2|/ Sl
3 q Wl

m

e/
I -
: Cl: M2: C3: L4: L5: LG: F7: FR:
Calista_Flockhart_0002 jpg Frontalization: 32x11x11x3 32x3In3In32 16x9x9x32 16x9xIx16 16x7x7xl6 16x5x5x16 4096d 4030d

Detection & Localization @152X152x3 @142x142 @71x71 @63IxNG3 {@55K55 @25x25 @21x%21



Siamese Architecture and loss function  } -
. T - ‘ Y LeCun

Loss function: Make this small Make this large

— OQOutputs o =
corresponding to wh wA
!(?]P;lt Samp'le;b 1G, (x)=G (x,)l 1G, (x)=G (x,)ll

at are neighbors

in the £ i A L
neigborhood
graph should be Gulx) G lx) G lx,)
nearby

— Outputs for input xﬁ xlf x#

samples that are
not neighbors
should be far away -

from each other -
Similar images (neighbors Dissimilar images
in the neighborhood graph) (non-neighbors in the

neighborhood graph)



f Y LeCun

Convla
64

Conv2a
128

Conv3a
256

Conv3b
256

Convda
512

Convédb
512

Convha
512

Convsb
512

Po

fch
4096

fc7
4096

L_Pool2 |

L_Pool3 |

L_Poola |

Lsoftmax]

I Pooll |

* (3D Architecture
— 8 convolution, 5 pool, 2 fully-connected layers
— 3x3x3 convolution kernels
— 2x2x2 pooling kernels

* Dataset: Sports-1M [Karpathy et al. CVPR'14]
— 1.1M videos of 487 different sport categories
— Train/test splits are provided

Lorenzo Torresani Manohar Paluri
(1) (2)

Du Tran Lubomir Bourdev
(1,2) (2)

Rob Fergus
(2,3)

(1) Dartmouth College, (2) Facebook Al Research, (3) New York University



Method Number of Nets | Clip hit@1 | Video hit@1 | Video hit@5
Deep Video’s Single-Frame + Multires [ | V] 3 nets 42.4 60.0 78.5
Deep Video’s Slow Fusion [19] 1 net 41.9 60.9 80.2
C3D (trained from scratch) 1 net 449 60.0 84.4
C3D (fine-tuned from I380K pre-trained model) 1 net 46.1 61.1 85.2
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f Video Classification

 Using a spatio-temporal ConvNet

i
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Y LeCun
£ Video Classification

 Using a spatio-temporal ConvNet




£ Video Classification

« Spatio-temporal ConvNet

bear €0 . 43,
lion:0.10
monkey:0.07
goldenretrieve
puppy:0:03 '




Now,
What's Wrong
with Deep Learning?







Y LeCun

Why are ConvNets a good architecture?
— Scattering transform
— Mark Tygert's “complex ConvNet”

How many layers do we really need?
— Really?

How many effective free parameters are there in a large ConvNet
— The weights seem to be awfully redundant

What about Local Minima?
— Turns out almost all the local minima are equivalent
— Local minima are degenerate (very flat in most directions)
— Random matrix / spin glass theory comes to the rescue
— [Choromanska, Henaff, Mathieu, Ben Arous, LeCun Al-stats 2015]



Deep Nets with RelLUs: ¥

Objective Functlon IS PleceW|se Polynomli

Y LeCun
@ If we use a hinge loss, delta now depends on label Yk:
Z c,(x, vy, w)(l]w, 31
(lJ)EP
@ Piecewise polynomlal in W with random W31,22
coefficients
&3 A lot is known about the distribution of critical O @ O
points of polynomials on the sphere with random
(Gaussian) coefficients [Ben Arous et al.] W22,14
» High-order spherical spin glasses
» Random matrix theory O O O @ O
o W14,3

nhidden

= @ @ @ @
50

100

250

500 Z3

count.



Issing: Reasoning
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Reasonlng as Energy M|n|m|zat|on (structl.ired predlct|0n++)

# Deep Learning systems can be assembled into
energy models AKA factor graphs

» Energy function is a sum of factors

» Factors can embed whole deep learning
systems

» X: observed variables (inputs)
» Z: never observed (latent variables)

» Y: observed on training set (output
variables)

# Inference is energy minimization (MAP) or free
energy minimization (marginalization) over Z
and Y given an X

» F(X,Y) = MIN_z E(X,Y,2)
» F(X,Y) = -log SUM_z exp[-E(X,Y,Z) ]

Y LeCun

F(X,Y) = Marg_z E(X,Y,Z)
A

E(X,Y.Z)

Energy Model
(factor graph)

Z
(unobserved)

X Y
(observed) (observed on
training set)
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Energy-Based Léarning [LeCun et al. 2008]

Y LeCun

Push down on the energy of desired outputs
Push up on everything else
[LeCun et al 2006] “A tutorial on energy-based learning”
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Pose Estimatiof and Attrlbute Recovery wlth Comﬁlets

Pose- Allgned Network for Deep Attribute Modellng Real time hand pose recovery
[Zhang et al. CVPR 2014] (Facebook AI Research) [Tompson et al. Trans. on Graphics 14]

Y LeCun

1 a) Highest scoring results for people wearing Eld}-NEN
rax ey

g
—-—-rﬂu-v\-lﬁ-

Body“n,pose estimatlon f”ﬁmpson et al! ICLR;2014]




Person Detectioh and Pose Estimation

[Tompson, Goroshin, Jain, LeCun, Bregler CVPR 2015]

Jx 2562256

Y LeCun

Coarse Heat-Map Model

Ixconv+

14x32x32

Final (x,y
(9)

len p~ conv fq pool o conv B pool =
pool ;
X conv
: : Ixeonv+
len =~ conv H{ pool = conv H{ pool = :
D00
coarse (x,y)
128xhdx64 14x128x0<0
T2ax128x128] CrOp [Tixizexiexis
128x128x128 at 14x128x18x18
128x256x256 (x,y] 14x128x36x36

Fine Heat-
Map Model




Oy =

Person Detectioh and Pose Estimation £
| , | g .\ Y LeCun

Tompson, Goroshin, Jain, LeCun, Bregler arXiv:1411.4280 (2014)




. SPATIAL MODEL

Start with a tree graphical model
MRF over spatial locations

local evidence function
7 g »Z ~ observed

S/
0|7, 1) ¥(f,s) 5]
O O O O

) O\
O O— 0= 0
w w
\ Joint Distribution:
atent / hidden
Pf,s,e,w)= H‘P(xl,x )H(ID

69

Y LeCun



 SPATIAL MODEL

Y LeCun

Start with a tree graphical model

... And approximate it

blf)=@(f) ] J(@lx,) = ®(f]x)+clf]x))
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SPATIAL MODEL: RESULTS

Ours (FLIC) Toshev et. al. MODEC — — Yang et. al.
Ours (FLIC—plus) Jain et. al. — — Eichneret.al. — — Sappet. al.
100 S e A A S S 100
90
80
° © 70
FLIC(l) © S 60
C c
2 2 50
3 3
Elbow : § 4
[a] o
301
20t
10 =
o=z
0 2 4 6 8 10 12 14 16 18 20
Normalized distance error (pixels) Normalized distance error (pixels)
100 S e A A S S 100 —
0H = Cubhow | 0H T Siihee |
Toshev et al.: wrist : : : : Toshev et al.: ankle : : : :
80| — — Toshev et al.: elbow B R Lo 4 80| — — Toshev etal.: knee B R Lo 4
Dantone et al.: wrist Dantone et al.: ankle
— — Dantone et al.: elbow : : : : — — Dantone et al.: knee : : : : B
70F Pishchulin et al.: wrist |~~i- 100 70 Pishchulin et al.: ankle |-~~~ o= ="
[0} — — Pishchulin et al.: elbow | : L= [0} — — Pishchulin et al.: knee : — .
LSPR)  §e I et g S
c c L 2
O gob v T K]
g g
Arms ¢ :
[a] [m]
0 —& ; ; ; ; ; ; ; ;
0 2 4 6 8 10 12 14 16 18 20
Normalized distance error (pixels) Normalized distance error (pixels)

FLICA)
Wrist

LSP)
Legs

(1)B. Sapp and B. Taskar. MODEC: Multimodel decomposition models for human pose estimation. CVPR’13
(2)S. Johnson and M. Everingham. Learning Effective Human Pose Estimation for Inaccurate Annotation. CVPR'11
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d.

In Natural Langtiage Processing: Word Eriibegjding""'

@ Word Embedding in continuous vector spaces
» [Bengio 2003][Collobert & Weston 2010]
» Word2Vec [Mikolov 2011]
» Predict a word from previous words and/or following words

Neural net of some kind

O A4 4

what are the major languages spoken in greece ?

Y LeCun
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Coh"lpc')Sitional Semantic Property

@ Beijing — China + France = Paris

Country and Capital Vectors Projected by PCA
2 1 I 1 I I I

Chinas«
Beijing
15 Russias =
Japarx
;) IR *Moscow i
Turkey< »Ankara >T0kyo
05 |- -
Poland«
0 Germanyx =]
France' Warsaw
» ~Berlin
0.5 | Italy< Paris =
»Athens
Greecex "
-1 I Spain¢ Rome -
i I - »Madrid o
1.5 | Portugal T
_2 | 1 | 1 | 1 |
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Y LeCun

Em'beading Text’ (with convolutional or r#url_:ent ﬁ‘ets)

@ Embedding sentences into vector spaces
» Using a convolutional net or a recurrent net.

[ sentence vector]

f

ConvNet or Recurrent Net

A N A R R N N

O A4 4

what are the major languages spoken in greece ?



f Question-Answering System

Score How the candidate

Embedding A answer fits the \
model question

Embedding S | Embedding
of the of the
question Dot Subgraph
Word embeddings product Freebase embeddings
lookup table lookup table

hot FPT 1 7 1 N B — ) —
encoding encoding

of the of the
question subgraph |

, Freebase 1987
“Who did ClOOl’ley Subgraph
Question | marry in 19872” \ W SETESton @
j ‘ Subgraph of a \

candidate answer
(here K. Preston)
Detection of m @
Freebase entity ~\
in the question @
i F o L :‘-.'E'.'-P;*id..'-l'..'-.{‘i-*:-:i‘ru:-'r-'.'::-'c




'F Question-Answering System

what are bigos?
["stew"] ["stew"]
what are dallas cowboys colors?
[“navy_blue”, "royal_blue”, "blue”, "white", "silver"] ["blue",
"white", "royal_blue", "silver"]
how is egyptian money called?
["egyptian_pound"] ["egyptian_pound"]
what are fun things to do in sacramento ca?
["sacramento_zoo0"] ["raging_waters_sacramento”, "sutter_s_fort",
"b_street_theatre", "sacramento_zoo", "california_state_capitol_museum®, ....]
how are john terry's children called?
["georgie_john_terry", "summer_rose_terry"] ["georgie_john_terry",
"summer_rose_terry"]
what are the major languages spoken in greece?
["greek_language”, "albanian_language"] ["greek_language",
what was laura ingalls wilder famous for?

["writer”, "author"] ["writer", "journalist”, "teacher”, "author"]

navy_blue",

albanian_language"]



'F NLP: Question-Answering System

who plays sheldon cooper mother on the big bang theory?
["Jim_parsons"] ["jim_parsons"]
who does peyton manning play football for?
["denver_broncos"] ["indianapolis_colts", "denver_broncos"]
who did vladimir lenin marry?
["nadezhda_krupskaya"] ["nadezhda_krupskaya"]
where was teddy roosevelt's house?
["new_york_city"] ["manhattan”]
who developed the tcp ip reference model?

["vint_cerf", "robert_e._kahn"] ["computer_scientist", "engineer”]



-F Representing the world with “thought vectors”

@l Every object, concept or “thought” can be represented by a vector

»[-0.2,0.3,-4.2,51, ..... ] represent the concept “cat”
»[-0.2,0.4,-4.0,51, ..... ] represent the concept “dog”
» The vectors are similar because cats and dogs have many properties in common

@l Reasoning consists in manipulating thought vectors

» Comparing vectors for question answering, information retrieval, content filtering

» Combining and transforming vectors for reasoning, planning, translating
languages

#l Memory stores thought vectors

» MemNN (Memory Neural Network) is an example
il At FAIR we want to “embed the world” in thought vectors

We call this World2vec



Y LeCun

But How can Néural Nets R_emember-Thiljgs'.{

@ Recurrent networks cannot remember things for very long
» The cortex only remember things for 20 seconds

@ We need a “hippocampus” (a separate memory module)
» LSTM [Hochreiter 1997], registers
» Memory networks [Weston et 2014] (FAIR), associative memory
» NTM [DeepMind 2014], “tape”.

% memory




'F Memory Network [Weston, Chopra, Bordes 2014]

# Add a short-term memory to a network http://arxiv.org/abs/1410.3916

I: (input feature map) — converts the incoming input to the internal feature

representation. Method Fl1
G: (generalization) — updates old memories given the new input. (Fader et al., 2013) E 0.54
O: (output feature map) — produces a new output (in the feature representation (Bordes et al., 2014) E 0.73
space), given the new input and the current memory. MemNN " ﬂ 71
R: Fl&bponf-}e) c?n»:er‘t.b thfﬂ ﬂutr.pu"s ‘111.1:0 the response format desired. For ex- MemNN (with BoW features)|0.79
ample, a textual response or an action.

Bilbo trawvelled to the cave.
Gollum dropped the ring there.

Bilbo took the ring. Results on

Bilbo went back to the Shire.

Bilbo left the ring there. . .
Frodo got the ring. QueSthl’l AI’ISWCI'IIlg
Frodo journeved to Mount-Doom.

Frodo dropped the ring there. TaSk

Sauron died.

Frodo went back to the Shire.

Bilbo travelled to the Grey-havens.
The End.

Where is the ring? A: Mount-Doom
Where is Bilbo now? A: Grey-havens
Where is Frodo now? A: Shire

Fig. 2. An example story with questions correctly answered by a MemNN. The MemNN
ras trained on the simulation described in Section[Z.2]and had never seen many of these
words before, e.g. Bilbo, Frodo and Gollum.



Missing:
Unsupervised Learning
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Energy-Based Unisupervised Learning 3 | o
| : eun

Push down on the energy of desired outputs
Push up on everything else

E
o
."H-l- pn

B R




Y LeCun

Seven Strategies to Shape the Energy 'Fuﬁctign

@ 1. build the machine so that the volume of low energy stuff is constant
» PCA, K-means, GMM, square ICA

@ 2. push down of the energy of data points, push up everywhere else
» Max likelihood (needs tractable partition function)

@ 3. push down of the energy of data points, push up on chosen locations
» contrastive divergence, Ratio Matching, Noise Contrastive Estimation,
Minimum Probability Flow
@ 4. minimize the gradient and maximize the curvature around data points
» score matching

@ 5. train a dynamical system so that the dynamics goes to the manifold
» denoising auto-encoder

@ 6. use a regularizer that limits the volume of space that has low energy
» Sparse coding, sparse auto-encoder, PSD

# 7.if E(Y) = 1IY - G(Y)IlI*2, make G(Y) as "constant" as possible.
» Contracting auto-encoder, saturating auto-encoder



#1: constant'volume of low &hergy

Energy surface for PCA and K~-means

Y LeCun

@ 1. build the machine so that the volume of low energy stuff is constant
» PCA, K-means, GMM, square ICA...

K-Means,
Z constrained to 1-of-K code

—_ T 2
E(Y)=[lw"wy-Y| E(Y)=min, ) ||Y—W,Z|’

PCA




#6. use a regularizer that limits ~

the volume of space that has low energy; P
E ecun

@ Sparse coding, sparse auto-encoder, Predictive Sparse Decomposition




Energy Functiofis of Various Methods: i

PCA
+———————(-code-unit)
decoder Wz
energy |y —wz|]
loss F(Y)
pull-up diments.

; y -

Y LeCun

@ 2 dimensional toy dataset: spiral

@ Visualizing energy surface
» (black = low, white = high)

autoencoder sparse coding K-Means
(1 code unit) (20 code units) (20 code units)
w,Z W,z wz
ly—wz|’ ly-wz|’ Iy -wz|f
F(Y) F(Y) F(Y)

dimens. sparsity 1-of-N code
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Dictionary Learning With
Fast Approximate Inference:
Sparse Auto-Encoders




How to Speed Up Inference in 4 Eene?ative_Model?

# Factor Graph with an asymmetric factor

@ Inference Z > Y is easy
» Run Z through deterministic decoder, and sample Y

@ Inference Y = Z is hard, particularly if Decoder function is many-to-one
» MAP: minimize sum of two factors with respect to Z
» Z* = argmin_z Distance[Decoder(Z2), Y] + FactorB(Z2)

@ Examples: K-Means (1of K), Sparse Coding (sparse), Factor Analysis

Generative Model

Factor B

LATENT
VARIABLE

INPUT

Y LeCun



pary Learning

Y LeCun

Sparse Modeling: Sparse Coding + Dictio

. . [Olshausen & Field 1997]
# Sparse linear reconstruction

@ Energy = reconstruction_error + code_prediction_error + code_sparsity

E(Y.2)=|Y'-w,z[+1.3 |2

FACTOR DETERMINISTIC

INPUT FUNCTION

VARIABLE

& Inference is expensive: ISTA/FISTA, CGIHT, coordinate descent....

Y->Z=argmin, E(Y,Z)



#6. use a regularizer that limits ~

the volume of space that has low energy; P
E ecun

@ Sparse coding, sparse auto-encoder, Predictive Saprse Decomposition




Encoder Architecture

Y LeCun

@l Examples: most ICA models, Product of Experts

Factor B

LATENT
VARIABLE

INPUT
Fast Feed-Forward Model




Encoder_~Decoder Architecture
| ,_ b ‘ Y LeCun
[Kavukcuoglu, Ranzato, LeCun, rejected by every conference, 2008-2009]

@ Train a “simple” feed-forward function to predict the result of a complex
optimization on the data points of interest

Generative Model

Factor B

LATENT
VARIABLE

INPUT

@ 1. Find optimal Zi for all Yi; 2. Train Encoder to predict Zi from Yi



Learning to Perform
Approximate Inference: |
Predictive Sparse Decomposition |
Sparse Auto-Encoders




Sparse auto-encoder: Predictive Sparse Dei;ompositié)n ()

Y LeCun

[Kavukcuoglu Ranzato, LeCun 08 — arXiv: 110.3467],
& Prediction the optimal code with a trained encoder

@ Energy = reconstruction_error + code_prediction_error + code_sparsity
EY,Z)=[lY'=W,Z["+|Z g, (W, Y +A 2 |z}
g (W ,Y')=shrinkage(W Y')




Regulanzed Encoder-Decoder lﬁodel (auto Encoder)

for Unsuperwsed Feature Learnlng . .j Y LeCun

# Encoder: computes feature vector Z from input X
# Decoder: reconstructs input X from feature vector Z
# Feature vector: high dimensional and regularized (e.g. sparse)
# Factor graph with energy function E(X,Z) with 3 terms:
» Linear decoding function and reconstruction error

» Non-Linear encoding function and prediction error term
» Pooling function and regularization term (e.g. sparsity)

EVZI=INY =W, ZIP+|Z =g, (W, Y|P+ > Z;

J keP,

FEATURES

L2 norm within
each pool



PSD:'Basis Functions on MNIST
Y LeCun

& Basis functions (and encoder matrix) are digit parts




patches.
»12X12
» 256 basis functions



Learned Features on natural patch®s:
V1-like receptive fields

Y LeCun




Learning to Perform

Approximate Inference
LISTA




Better Idea: Give the “right” structure tojthe encoder e

& ISTA/FISTA: iterative algorithm that converges to optimal sparse code

Lateral Inhibition —

Z(t + 1) = Shrinkage, , [Z(t) — %Wg(WdZ(t) - Y)]
& ISTA/FISTA reparameterized:
1 1
Z(t + 1) = Shrinkage, ,; [W)Y +SZ(t)]; We = Wa S=1I- Ewg” Wy

& LISTA (Learned ISTA): learn the We and S matrices to get fast solutions

[Gregor & LeCun, ICML 2010], [Bronstein et al. ICML 2012], [Rolfe & LeCun ICLR 2013]



I-'1STA:. Train We and S matrlcls

to give a good dpproximation quickly- A

& Think of the FISTA flow graph as a recurrent neural net where We and S are
trainable parameters

& Time-Unfold the flow graph for K iterations
& Learn the We and S matrices with “backprop-through-time”

@ Get the best approximate solution within K iterations




Learning ISTA/(LISTA) vs ISTA/FISTA

Reconstruction Error

Error
X X
% i X
X X
10 F
Je
i
&
2+ v & i
]
&
I -| x FISTA (4x) »
X FISTA (1x) @
0.5 ® LISTA (4x)
@ LISTA (1x)
| | | |
0 1 2 3 5

Number of LISTA or FISTA iterations

Y LeCun

iter



LISTA with partial mutual inhibit:r.on__‘ma,trix

Y LeCun
error
||
4L o ™
|
35+ o
. |
c ° ¢ -
2 ¢ ¢ o
+ 2.5+
—
frar o
C
S 2 /M dim reduction (4x) ®
O
(a4 ® elements removal (4x) o
dim reduction (1x) ° o
1.5 -|@ elements removal (1x) Smallest elements ®
| , — remqved | , Cof
0.01 0.02 0.05 0.1 0.2 0.5 |

Proportion of S matrix elements that are non zero



(LcoD): faster tha n'LISTA

bearning Coordifate Descent

Y LeCun
EIrror
W > CoD (4x)
X CoD (1x)
50 - X @0 LCoD (4x)
o0 LCoD (1x)
S X X
= % X
L 10 - X
c X
O 5 X X
o I ® X
o o X
= 2L @ %
7)) @
8 1 - ® § ||
&9 ®
0.5 ° o ©
O o
0.2 + X
®
] ] | ] ] | ] ] itEf
0 1 2 5 10 20 50 100 200

Number of LISTA or FISTA iterations
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Lat?l’?ll. Decoding -@ @
Inhibition

Filters

() ~
e ) L OW

Can be repeated

Discriminative Recurrent Sparse Autern’g’fodgr (DFSAE)

[Rolfe & LeCun ICLR 2013]

@Rectified linear units

.:lassification loss: cross-entropy

.{econstruction loss: squared error

iparsity penalty: L1 norm of last hidden layer

.iows of Wd and columns of We constrained in unit sphere



DrSAE Discoverg manifold structure of ha;ndwritten digits

Y LeCun

& Image = prototype + sparse sum of “parts” (to move around the manifold)

D T 0 S T e
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Convolutional Sparse Coding '

Y LeCun

& Replace the dot products with dictionary element by convolutions.
» Input Y is a full image
» Each code component Zk is a feature map (an image)
» Each dictionary element is a convolution kernel

@ Regular sparse coding E(Y, Z) = ||Y — Z Wi Zil|? + a Z | Z}|
k ke

@ Convolutional S.C. E(Y,Z)=|Y — Z Wi x Zi||* + az | Z|
k k

Y = Z'* 7k
© Wk

“deconvolutional networks” [Zeiler, Taylor, Fergus CVPR 2010]




Convolutional PSD: Encoder with a soft sii() Function

Y LeCun

< Convolutional Formulation
» Extend sparse coding from PATCH to IMAGE

L(z,z,D) —||$—ZDk*Zkllz+ZIIZk — f(WF xz)[[3 + |21

» PATCH based learning » CONVOLUTIONAL learning



Convolutional Sparse Auto-Encoder on Natural Images
Y LeCun

4 Filters and Basis Functions obtained with 1, 2, 4, 8, 16, 32, and 64 filters.
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Using PSD to Tréin a Hierarchy of Features

@ Phase 1: train first layer using PSD

FEATURES



Y LeCun

Usi'hg.PSD to Trdin a Hierarchy of Feat_Ure‘f

@ Phase 1: train first layer using PSD

& Phase 2: use encoder + absolute value as feature extractor

FEATURES



Y LeCun

Using PSD to Tréin a Hierarchy of Features

@ Phase 1: train first layer using PSD
& Phase 2: use encoder + absolute value as feature extractor

& Phase 3: train the second layer using PSD

FEATURES



Usi'hg'PSD to Trdin a Hierarchy of FeatUre§

Y LeCun
@ Phase 1: train first layer using PSD

@ Phase 2: use encoder + absolute value as feature extractor

& Phase 3: train the second layer using PSD

& Phase 4: use encoder + absolute value as 2nd feature extractor

FEATURES



Y LeCun

Usi'hg'PSD to Trdin a Hierarchy of FeatUre§

@ Phase 1: train first layer using PSD

@ Phase 2: use encoder + absolute value as feature extractor

& Phase 3: train the second layer using PSD

@ Phase 4: use encoder + absolute value as 2nd feature extractor

& Phase 5: train a supervised classifier on top

& Phase 6 (optional): train the entire system with supervised back-propagation

classifier

FEATURES



Miss rate

Pedestrlan Detection: INRIA D : aset. MISS

p05|t|ves

rate vs false.

Area Under Curve [0, 1] FPPI

- Shapelet-orig (94.71%)

« Poselnvsvm (79.04%)

« Poselnv (72.02%)

-+ Shapelet (65.09%)
V|-CpenCy (62.35%)

v V] (57.94%)
FtrMine (44.36%)

| — HOG (33.52%)

-~ Pls(30.49%)

1 -- HikSvm (30.13%)

| -~ LatSvm-V1 (28.20%)

— ConvNet-Supervised (26.05%)

Color+Sk|p
Superwsed

V]-OpenCv (32.97%)

 Shapelet (50.25%)
o V) (47.37%)

FtrMine (33.96%)
Pls (23.26%)

HOG (22.58%)
HikSvm (20.54%)
Latsvm-V1 (16.81%)
MultiFtr (15.11%)

- Shapelet-orig (91.13%)
« PoselnySvm (68.76%)
« Poselnv (55.01%)

False positives per image (FPPI)

[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. ArXiv 2012]

. MultiFtr (22.76%) ConvNet-Supervised (14.26%)
— ConvNet-MRC-5upervised {20.43%} D _ . . MultiFtr+C55 (10.70%)
ConvNet-Unsup (17.81%) ConvNet P \|: : ConvNet-Unsup (10.19%)
| == MultiFtr4C55 (16.18%) SRS . NSUURTIRONS O [FUNP U0 RIS SUUUUONS RROPN S A0S SN0 S RV ConvNet-MRC-Supervised (9.85%) |
N LatSvm-VZ{ld.BQ%}o COlOH’SkIp COhVNet Superv sed FPDW (9.34%) P ’
—  FPDW (13.17%) + : N LatSvm-V2 (8.66%)
— ChnFtrs {12.92%) Unsup SUp B&W A ChnFtrs (B.66%)
— ConvNet-MRC- Unsup (11.05%) U ConvNet-MRC-Unsup (6.62%)
. nsup+Suo | _CONVIERTRL nsup D028
10 10 10’ 10t

Y LeCun




Unsupervised Learning:
Invariant Features




Y LeCun

Learning Invariant Features with L2 Group Spfrsity

# Unsupervised PSD ignores the spatial pooling step.
# Could we devise a similar method that learns the pooling layer as well?
# Idea [Hyvarinen & Hoyer 2001]: group sparsity on pools of features

» Minimum number of pools must be non-zero

» Number of features that are on within a pool doesn't matter

» Pools tend to regroup similar features

E\Y,Z|=|lY-W Z|’+||Z—g,

SR dIE>IND IS

Jj keP,

FEATURES

L2 norm within
each pool



Learning Invariant Features with {2 Group Spdrsity
_ ' T 3 ‘ Y LeCun
M Idea: features are pooled in group. |
» Sparsity: sum over groups of L2 norm of activity in group.

# [Hyvarinen Hoyer 2001]: “subspace ICA”
» decoder only, square

# [Welling, Hinton, Osindero NIPS 2002]: pooled product of experts
» encoder only, overcomplete, log student-T penalty on L2 pooling

# [Kavukcuoglu, Ranzato, Fergus LeCun, CVPR 2010]: Invariant PSD
» encoder-decoder (like PSD), overcomplete, L2 pooling

M [Le et al. NIPS 2011]: Reconstruction ICA
» Same as [Kavukcuoglu 2010] with linear encoder and tied decoder

# [Gregor & LeCun arXiv:1006:0448, 2010] [Le et al. ICML 2012]

» Locally-connect non shared (tiled) encoder-decoder
SIMPLE L2 norm within
FEATURES each

INPUT

Encoder only (PoE, ICA),
Decoder Only or INVARIANT
Encoder-Decoder (1IPSD, RICA) FEATURES



Groups are local in & 2D Topographic. Map

so that similar filters enter “I
the same pool. y\F I
# The pooling units can be “H I
seen as complex cells
# Outputs of pooling units are

invariant to local ::I'I
transformations of the input :

# The filters arrange
themselves spontaneously

» For some it's
translations, for others
rotations, or other
transformations.

AT TS S o e ™
AT TN e s ™

r

Y LeCun



Image-l'ev.el training, local filteljs but no weiﬁt s______haririﬁg A

# Training on 115x115 images. Kernels are 15x15 (not shared across
space!)

» [Gregor & LeCun 2010] Reconstructed Input
» Local receptive fields '

» No shared weights

» 4x overcomplete

» L2 pooling
» Group sparsity over pools : Predicted Code

i

M




Image-level training, local filters but no weight sharing pr-

# Training on 115x115 images. Kernels are 15x15 (not shared across space!)

v sl WARYY
BER




Y LeCun

i = b

119x119 Image Input
100x100 Code
20x20 Receptive field size
sigma=>5

Michael C. Crair, et. al. The Journal of Neurophysiology
NO 6 Q )

P Q
N N 007 nn R1-
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BN ariant Featureshteral THibition
; . e 1 Y LeCun

# Replace the L1 sparsity term by a lateral inhibition matrix
# Easy way to impose some structure on the sparsity

VAP VAV D VaVaVaVi

"’ 7, “‘ L"‘ \ ‘"‘

._ \'ﬁqn'ﬂ H\;ip{') IR IR,

IR

W'c‘fy t,“,»‘\ X
Input

[Gregor, Szlam, LeCun NIPS 2011]

g



d.

IRvariant Features Via Lateral Inhibition: Strugtured Sparsity

Y LeCun

# Each edge in the tree indicates a zero in the S matrix (no mutual inhibition)
M Sij is larger if two neurons are far away in the tree




F 3
A

Invariant Features via Lateral Inhibition: Topngraphlc Maps pr

# Non-zero values in S form a ring in a 2D topology
» Input patches are high-pass filtered

F D = e e NANA N N
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Spafsé Auto-Encoder with “Slow Featuref; Penalty'
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Convolution

Retc Frame 1 |
Encoder

Convolution
C———— +Rectification
Encoder
Convolution L1

Y LeCun

Pooling I

} +Rectification

Decoder
Convolution

Rec Frame 2 |
o

sparse conv. auto-encoder

SRS T

Supervised filters CIFAR10

[Goroshin et al. Arxiv:1412.6056]

slow & sparse conv. auto-encoder

Pooling

Trained on YouTube videos



IRvariant Features th rough Temporal Cons_tan*ﬁy o

# Object is cross-product of object type and instantiation parameters
» Mapping units [Hinton 1981], capsules [Hinton 2011]
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A . ' small medium  large

Object type [Karol Gregor et al.] Object size
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Low-Level Filters Connected to Each ComplexCell
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Ihtegqated Supervised & |

Unsupervised Léarning

Fly

[Zhao, Mathieu, LeCun arXiv:1506.02351]

Stacked What-Where Auto-Encoder

B input

model accuracy
Convolutional Kernel Networks |18] 62.32%
HMP |1] 64.5%
NOMP [17] 67.9%
Multi-task Bayesian Optimization |31]  70.1%
Zero-bias ConvNets + ADCU [22] 70.2%
Exemplar ConvNets |2] 72.8%
WWAE-4layer +74.80%
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The bADbI Tasks

Questions that an Al system
| ought to be able to answer




(1) Basic Factoid QA with Single Supporting Fact

Our first task consists of questions where a single supporting fact,
previously given, provides the answer.

We test simplest cases of this, by asking for the location of a person.

A small sample of the task is thus:

John is in the playground.
Bob is in the office.

Where is John? A:playground
This kind of synthetic data was already used with MemNNSs.

It can be considered the simplest case of some real world QA datasets
such as in Fader et al., ‘13.



(2) Factoid QA with Two Supporting Facts

A harder task is to answer questions where two supporting statements
have to be chained to answer the question:

John is in the playground.

Bob is in the office.

John picked up the football.

Bob went to the kitchen.

Where is the football? A:playground
Where was Bob before the kitchen?
A:office

E.g. to answer the first question Where is the football? both John

picked up the football and John is in the playground are
supporting facts.

Again, this kind of task was already used with MemNNs.



(2) Shuffled Factoid QA with Two Supporting Facts

= Note that, to show the difficulty of these tasks for a learning
machine with no other knowledge we can shuffle the letters
of the alphabet and produce equivalent datasets:

Sbdm ip im vdu yonrckblms.

ADbf ip Im vdu bhhigu.

Sbdm yigaus ly vdu hbbvfnoo.

Abf zumv vb vdu aivgdum.

Mduku ip vdu hbbvfnoo?
A:yonrckblms

Mduku znp Abf fuhbku vdu aivgdum?
A:bhhigu




(3) Factoid QA with Three Supporting Facts

Similarly, one can make a task with three supporting facts:

NN picked up the apple.

nn went to the office.

nn went to the kitchen.

nn dropped the apple.

nere was the apple before the kitchen?
A:office

=o0o0oo

The first three statements are all required to answer
this.



(4) Two Argument Relations: Subject vs. Object

To answer gquestions the ability to differentiate and recognize
subjects and objects is crucial.

We consider the extreme case: sentences feature re-ordered
words:

The office is north of the bedroom.
The bedroom is north of the bathroom.
What is north of the bedroom? A:office
What is the bedroom north of?
A:bathroom

Note that the two questions above have exactly the
same words, but in a different order, and different
answers.

So a bag-of-words will not work.



(5) Three Argument Relations

= Similarly, sometimes one needs to differentiate three
separate arguments, such as in the following task:

Mary gave the cake to Fred.

Fred gave the cake to Bill.

Jeff was given the milk by Bill.

Who gave the cake to Fred? A:Mary
Who did Fred give the cake to? A:Bill
What did Jeff receive? A:milk

Who gave the milk? A:Bill

The last question is potentially the hardest for a learner
as the first two can be answered by providing the actor
that is not mentioned in the question.




(6) Yes/No Questions

= This task tests, in the simplest case possible (with a single
supporting fact) the ability of a model to answer true/false
type questions:

John is in the playground.

Daniel picks up the milk.

s John in the classroom? A:no
Does Daniel have the milk? A:yes




(7) Counting

= This task tests the ability of the QA system to perform
simple counting operations, by asking about the number
of objects with a certain property:

Daniel picked up the football.

Daniel dropped the football.

Daniel got the milk.

Daniel took the apple.

How many objects is Daniel holding?
A:two




(8) Lists/Sets

= While many of our tasks are designed to have single word
answers for simplicity, this tasks tests the ability to
produce a set of single word answers in the form of a list:

Daniel picks up the football.

Daniel drops the newspaper.

Daniel picks up the milk.

What is Daniel holding? A:milk,football

The task above can be seen as a QA task related to database
search.

Note that we could also consider the following question types:
Intersection: Who is in the park carrying food?

Union: Who has milk or cookies?

Set difference: Who is in the park apart from Bill?

However, we leave those for future work.




(9) Simple Negation

= \We test one of the simplest types of negation, that of
supporting facts that imply a statement is false:

Sandra travelled to the office.
-red i1s no longer in the office.
s Fred in the office? A:no

s Sandra in the office? A:yes

The Yes/No task (6) is a prerequisite.

Slightly harder: we could add things like “Is Fred with
Sandra?”



(10) Indefinite knowledge

= This task tests if we can model statements that describe
possibilities rather than certainties:

John is either in the classroom or the
playground.

Sandra is in the garden.

Is John in the classroom? A:maybe

Is John in the office? A:no

The Yes/No task (6) is a prerequisite.

Slightly harder: we could add things like “Is John with
Sandra?”



(11) Basic Coreference

= This task tests the simplest type of coreference, that of
detecting the nearest referent, for example:

Daniel was in the kitchen.
Then he went to the studio.
Sandra was in the office.
Where is Daniel? A:studio

Next level of difficulty: flip order of last two statements,
and it has to learn the difference between ‘he’ and
‘she’.

Much harder difficulty: adapt a real coref dataset
Into a question answer format.



(12) Conjunction

= This task tests referring to multiple subjects in a single
statement, for example:

Mary and Jeff went to the kitchen.
Then Jeff went to the park.
Where is Mary? A:kitchen




(13) Compound Coreference

= This task tests coreference in the case where the pronoun
can refer to multiple actors:

Daniel and Sandra journeyed to the

office.
Then they went to the garden.
Sandra and John travelled to the kitchen.

After that they moved to the hallway.
Where is Daniel? A:garden




(14) Time manipulation

= While our tasks so far have included time implicitly in the
order of the statements, this task tests understanding the
use of time expressions within the statements:

In the afternoon Julie went to the park.
Yesterday Julie was at school.
Julie went to the cinema this evening.

Where did Julie go after the park?
A:cinema

Much harder difficulty: adapt a real time expression
labeling dataset into a question answer format, e.g.
Uzzaman et al., ‘12.



(15) Basic Deduction

= This task tests basic deduction via inheritance of
properties:

Sheep are afraid of wolves.

Cats are afraid of dogs.

Mice are afraid of cats.

Gertrude is a sheep.

What is Gertrude afraid of? A:wolves

Deduction should prove difficult for MemNNs because it
effectively involves search, although our setup might
be simple enough for it.



(16) Basic Induction

= This task tests basic induction via inheritance of
properties:

Lily is a swan.

Lily is white.

Greg Is a swan.

What color is Greg? A:white

Induction should prove difficult for MemNNs because it
effectively involves search, although our setup might
be simple enough for it.



(17) Positional Reasoning

= This task tests spatial reasoning, one of many
components of the classical SHRDLU system:

ne triangle is to the right of the blue square.
ne red square is on top of the blue square.
ne red sphere is to the right of the blue
square.

Is the red sphere to the right of the blue
square? A:yes

Is the red square to the left of the triangle?
A:yes

The Yes/No task (6) is a prerequisite.



(18) Reasoning about size

= This tasks requires reasoning about relative size of objects
and is inspired by the commonsense reasoning examples
in the Winograd schema challenge:

ne football fits in the suitcase.

ne suitcase fits in the cupboard.

ne box of chocolates is smaller than the
football.

Will the box of chocolates fit in the suitcase?
TasksAy@Ehree supporting facts) and 6 (Yes/No) are
prerequisites.




(19) Path Finding

= |[n this task the goal is to find the path between locations:

The kitchen is north of the hallway.
The den is east of the hallway.

How do you go from den to kitchen?
A:west,north

This is going to prove difficult for MemNNs because it
effectively involves search.
(The original MemNN can also output only one word -F)



(20) Reasoning about Agent’s Motivations

= This task tries to ask why an agent performs a certain action.

= |t addresses the case of actors being in a given state (hungry,
thirsty, tired, ...) and the actions they then take:

John is hungry.

John goes to the kitchen.

John eats the apple.

Daniel is hungry.

Where does Daniel go? A:kitchen

Why did John go to the kitchen? A:hungry




One way of solving these tasks: Memory
Networks!!

MemNNs have four component networks (which
may or may not have shared parameters):

=|: (input feature map) this converts incoming
data to the internal feature representation.

= G: (generalization) this updates memories
given new input.

= O: this produces new output (in
featurerepresentation space) given the
memories.

= R: (response) converts output O into a

response seen by the outside world. A ,




Experiments
= Protocol: 1000 training QA pairs, 1000 for test.

“Weakly supervised” methods:

= Ngram baseline, uses bag of Ngram features
from sentences that share a word with the
question.

= STM

Fully supervised methods (for train data, have
supporting facts labeled):

= Original MemNNs, and all our variants.



Table 1. Test accuracy (%) on our 20 Tasks for various methods (training with 1000 training examples on each). Our proposed extensions
to MemNNs are in columns 5-9: with adaptive memory (AM), N-grams (NG), nonlinear matching function (NL), multilinear matching
(ML), and combinations thereof. Bold numbers indicate tasks where our extensions achieve > 95% accuracy but the original MemNN

model of (Weston et al., 2014) did not. The last two columns (10-11) give extra analysis of the A%emL method. Column 10 gives the

amount of training data for each task needed to obtain > 95% accuracy, or FAIL if this is not achievable with 1000 training examples.
The final column gives the accuracy when training on all data at once, rather than separately.

o
Sl 2| Lo a8 &7 I
o o‘}é & || R B I I
TASK AR N & 3 N ¥ f ¥
3.1 - Single Supporting Fact 36 50 100 100 100 100 100 100 250 ex 100
3.2 - Two Supporting Facts 2 20 100 100 100 100 100 100 500 ex 100
3.3 - Three Supporting Facts 7 20 20 100 99 100 99 100 500 ex 98
3.4 - Two Arg. Relations 50 61 71 69 100 73 100 100 500 ex 80
3.5 - Three Arg. Relations 20 70 83 83 86 86 98 98 1000 e 99
3.6 - Yes/No Questions 49 48 47 52 53 100 100 100 500 ex 100
3.7 - Counting 52 49 68 78 86 83 90 85 FAIL 86
3.8 - Lists/Sets 40 45 77 90 88 94 91 91 FAIL 93
3.9 - Simple Negation 62 64 65 71 63 100 100 100 500 e 100
3.10 - Indefinite Knowledge 45 44 59 57 54 97 96 98 1000 e 98
3.11 - Basic Coreference 29 72 100 100 100 100 100 100 250 ex 100
3.12 - Conjunction 9 74 100 100 100 100 100 100 250 ex 100
3.13 - Compound Coreference 26 94 100 100 100 100 100 100 250 e 100
3.14 - Time Reasoning 19 27 99 100 99 100 99 99 500 ex 99
3.15 - Basic Deduction 20 21 74 73 100 77 100 100 100 ex 100
3.16 - Basic Induction 43 23 27 100 100 100 100 100 100 ex 94
3.17 - Positional Reasoning 46 51 54 46 49 57 60 65 FAIL 72
3.18 - Size Reasoning 52 52 57 50 74 54 89 95 1000 ex 93
3.19 - Path Finding 0 8 0 9 3 15 34 36 FAIL 19
3.20 - Agent’s Motivations 76 91 100 100 100 100 100 100 250 ex 100
Mean Performance 34 49 75 79 83 87 93 93 92




Action Recognition Results

Method Accuracy (%)
Basel Imagenet 68.8
aselines _
iDT 16.2
Deep networks [ 9] 65.4
Use raw pixel inputs | Spatial stream network [56] 126
LRCN [7] 711
LSTM composite model [39] 75.8
C3D (1 net) 82.3
C3D (3 nets) 85.2
iDT with Fisher vector [ 1] 87.9
Temporal stream network [36] 83.7
Use optical flows Two-stream networks [30] 88.0
LRCN [7] 82.9
LSTM composite model [39] 84.3
Multi-skip feature stacking [26] 89.1
C3D (3 nets) +1DT 90.4




	Slide 1
	Slide 2
	Slide 3
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 44
	Slide 45
	Slide 48
	Slide 49
	Slide 52
	Slide 60
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Spatial Model
	Slide 70
	Slide 71
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 90
	Slide 91
	Slide 92
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	(1) Basic Factoid QA with Single Supporting Fact
	(2) Factoid QA with Two Supporting Facts
	(2) Shuffled Factoid QA with Two Supporting Facts
	(3) Factoid QA with Three Supporting Facts
	(4) Two Argument Relations: Subject vs. Object
	(5) Three Argument Relations
	(6) Yes/No Questions
	(7) Counting
	(8) Lists/Sets
	(9) Simple Negation
	(10) Indefinite knowledge
	(11) Basic Coreference
	(12) Conjunction
	(13) Compound Coreference
	(14) Time manipulation
	(15) Basic Deduction
	(16) Basic Induction
	(17) Positional Reasoning
	(18) Reasoning about size
	(19) Path Finding
	(20) Reasoning about Agent’s Motivations
	One way of solving these tasks: Memory Networks!!
	Experiments
	Slide 174

