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Y LeCun
Plan

The motivation for ConvNets and Deep Learning: end-to-end learning
Integrating feature extractor, classifier, contextual post-processor

A bit of archeology: ideas that have been around for a while
Kernels with stride, non-shared local connections, metric learning...
“fully convolutional” training

What's missing from deep learning? 
1. Theory
2. Reasoning, structured prediction
3. Memory, short-term/working/episodic memory
4. Unsupervised learning that actually works

Post-
Processor

Low-Level
Features

More
Features

Classifier
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Deep Learning = Learning Hierarchical Representations

Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor

Trainable 
Classifier

Feature 
Extractor

Mainstream Modern Pattern Recognition: Unsupervised mid-level features

Trainable 
Classifier

Feature 
Extractor

Mid-Level
Features

Deep Learning: Representations are hierarchical and trained

Trainable 
Classifier

Low-Level
Features

Mid-Level
Features

High-Level
Features
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Early Hierarchical Feature Models for Vision

[Hubel & Wiesel 1962]: 
simple cells detect local features

complex cells “pool” the outputs of simple 
cells within a retinotopic neighborhood. 

Cognitron & Neocognitron [Fukushima 1974-1982]

pooling 
subsampling

“Simple cells”
“Complex 
cells”

Multiple 
convolutions
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The Mammalian Visual Cortex is Hierarchical

[picture from Simon Thorpe]

[Gallant & Van Essen] 

The ventral (recognition) pathway in the visual cortex has multiple stages
Retina - LGN - V1 - V2 - V4 - PIT - AIT ....
Lots of intermediate representations
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Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Trainable 
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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Early Networks [LeCun 85, 86]

Binary threshold units

trained supervised

with “target prop”

Hidden units compute a

virtual target
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First ConvNets (U Toronto)[LeCun 88, 89]

Trained with Backprop. 320 examples.

Single layer Two layers FC locally connected Shared weights Shared weights

- Convolutions with stride (subsampling)
- No separate pooling layers
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First “Real” ConvNets at Bell Labs [LeCun et al 89]

Trained with Backprop. 

USPS Zipcode digits: 7300 training, 2000 test.

Convolution with stride. No separate pooling.
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ConvNet with separate pooling layer [LeCun et al 90]

LeNet1  [NIPS 1989]

Filter Bank +non-linearity

Filter Bank +non-linearity

Pooling

Pooling

Filter Bank +non-linearity
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Convolutional Network (vintage 1992) 

Filters-tanh → pooling → filters-tanh → pooling → filters-tanh
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LeNet1 Demo from 1993

Running on a 486 PC with an AT&T DSP32C add-on board (20 Mflops!)
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Integrating Segmentation

Multiple Character Recognition
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Multiple Character Recognition [Matan et al 1992]

SDNN: Space Displacement Neural Net
Also known as “replicated convolutional net”, or just ConvNet 

– (are we going to call this “fully convolutional net” now?)

There is no such thing as a “fully connected layer”

they are actually convolutional layers with 1x1 convolution kernels.
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Multiple Character Recognition. Integrated Segmentation

Trained with “semi synthetic” data

– the individual character positions are known
Training sample: a character painted with flanking characters or a inter-
character space
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Multiple Character Recognition. Integrated Segmentation
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Word-level training with weak supervision [Matan et al 1992]

Word-level training
No labeling of individual characters
How do we do the training?
We need a “deformable part model”

ConvNet

5

4

3

2

window width of 
each classifier

Multiple classifiers



Y LeCun

“Deformable Part Model” on top of a ConvNet 
[Driancourt, Bottou 1991]

Spoken word recognition with trainable elastic word templates.
First example of structured prediction on top of deep learning
[Driancourt&Bottou 1991, Bottou 1991, Driancourt 1994]

Input Sequence

(acoustic vectors)

Trainable feature

extractors

Sequence of

feature vectors

Object models

(elastic template)

Warping

(latent var)
Category

(output)

Energies Switch

LVQ2 Loss
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Word-level training with elastic word models

- Isolated spoken word recognition
- trainable elastic templates and trainable feature extraction 
- Globally trained at the word level
- Elastic matching using dynamic time warping

- Viterbi algorithm on a trellis.

Sequence of

feature vectors
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[Driancourt&Bottou 1991, Bottou 1991, Driancourt 1994]
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The Oldest Example of Structured Prediction & Deep Learning 

Trainable Automatic Speech Recognition system with a 
convolutional net (TDNN) and dynamic time warping (DTW)

The feature extractor and 
the structured classifier 
are trained 
simultanesously in an 
integrated fashion.

with the LVQ2 Loss :
– Driancourt and 

Bottou's speech 
recognizer (1991)

with Neg Log Likelihood: 
– Bengio's speech 

recognizer (1992)
– Haffner's speech 

recognizer (1993)
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End-to-End Learning – Word-Level Discriminative Training

Making every single module 
in the system trainable.

Every module is trained 
simultaneously so as to 
optimize a global loss 
function. 

Includes the feature extractor, 
the recognizer, and the 
contextual post-processor 
(graphical model)

Problem: back-propagating 
gradients through the 
graphical model.

ConvNet or other 
Deep Architecture

Word Geometry

Energy

Character Hypotheses

Word Hypotheses

Language Model

Word Image

Segmentation Word

(latent)

(input)

(output)

(factor graph)

(factor graph)
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“Shallow” Structured Prediction

Energy function is linear in the parameters

with the NLL Loss :
– Conditional 

Random Field 
[Lafferty, McCallum, 
Pereira 2001]

with Hinge Loss: 
– Max Margin 

Markov Nets  and 
Latent SVM [Taskar, 
 Altun, Hofmann...]

with Perceptron Loss
– Structured 

Perceptron 
[Collins...]

+

Y1

E(X,Y,Z)

Y2 Y3 Y4

 X

Z1 Z2 Z3

Input:

Latent Vars:

Outputs:

h(X,Y,Z) h(X,Y,Z) h(X,Y,Z)

W1 W2 W3

E (X ,Y ,Z )=∑i
W i

T hi(X ,Y ,Z )

Features

Params
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Deep Structured Prediction

Energy function is linear in the parameters

Graph Transformer Networks 
– [LeCun, Bottou, 

Bengio,Haffner 97,98]
– NLL loss
– Perceptron loss

+

Y1

E(X,Y,Z)

Y2 Y3 Y4

 X

Z1 Z2 Z3

Input:

Latent Vars:

Outputs:

g(X,Y,Z,W)

E (X ,Y ,Z )=∑i
g i(X ,Y , Z ,W i)

ConvNet g(X,Y,Z,W) g(X,Y,Z,W)
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Graph Transformer 
Networks

Structured Prediction 

on top of Deep Learning

This example shows the structured 
perceptron loss.

In practice, we used negative log-
likelihood loss.

Deployed in 1996 in check reading 
machines.
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Check Reader

Graph transformer network 
trained to read check amounts.

Trained globally with Negative-
Log-Likelihood loss.

50% percent correct, 49% 
reject, 1% error (detectable 
later in the process.

Fielded in 1996, used in many 
banks in the US and Europe.

Processes an estimated 10% to 
20% of all the checks written in 
the US.
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Object Detection
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Face Detection [Vaillant et al. 93, 94]

ConvNet applied to large images
Heatmaps at multiple scales
Non-maximum suppression for candidates
6 second on a Sparcstation for 256x256 image
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x93%86%Schneiderman & Kanade

x96%89%Rowley et al

x83%70%xJones & Viola (profile)

xx95%90%Jones & Viola (tilted)

88%83%83%67%97%90%Our Detector

1.280.53.360.4726.94.42

MIT+CMUPROFILETILTEDData Set->

False positives per image->

mid 2000s: state of the art results on face detection

[Garcia & Delakis 2003][Osadchy et al. 2004] [Osadchy et al, JMLR 2007]
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Simultaneous face detection and pose estimation
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VIDEOS
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Semantic Segmentation
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ConvNets for Biological Image Segmentation

Biological Image Segmentation 
[Ning et al. IEEE-TIP 2005]

Pixel labeling with large context 
using a convnet

ConvNet takes a window of pixels and 
produces a label for the central pixel

Cleanup using a kind of conditional 
random field (CRF)

Similar to a field of expert, but 
conditional.

3D version for connectomics
[Jain et al. 2007]
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ConvNet for Long Range Adaptive Robot Vision 
(DARPA LAGR program 2005-2008)

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

[Hadsell et al., J. Field Robotics 2009]



Y LeCun
Long Range Vision with a Convolutional Net 

Pre-processing (125 ms)
–  Ground plane estimation
–  Horizon leveling
–  Conversion to YUV + local 

contrast normalization
–  Scale invariant pyramid of 

distance-normalized image 
“bands”
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Convolutional Net Architecture

YUV image band

20-36 pixels tall,

36-500 pixels wide

100 features per

3x12x25 input window `̀

YUV input

3@36x484

CONVOLUTIONS  (7x6)

20@30x484

...

MAX SUBSAMPLING  (1x4)

CONVOLUTIONS  (6x5)

20@30x125

...
...

100@25x121
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Scene Parsing/Labeling: Multiscale ConvNet Architecture

Each output sees a large input context:
46x46 window at full rez; 92x92 at ½ rez; 184x184 at ¼ rez

[7x7conv]->[2x2pool]->[7x7conv]->[2x2pool]->[7x7conv]->

Trained supervised on fully-labeled images
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Method 1: majority over super-pixel regions

[Farabet et al. IEEE T. PAMI 2013]
M

ulti-sca le C
onvN

et
Super-pix el bound ary hype theses

C
onvolut ional clas sifier

Majority

Vote

Over

Superpixels

Input image

Superpixel boundaries

Features from

Convolutional net

(d=768 per pixel)

“soft” categories scores

Categories aligned

With region

boundaries
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Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]
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Scene Parsing/Labeling on RGB+Depth Images

With temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]
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Scene Parsing/Labeling: Performance

Stanford Background Dataset [Gould 1009]: 8 categories

[Rejected from CVPR 2012] 
[Farabet et al. ICML 2012][Farabet et al. IEEE T. PAMI 2013]
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Scene Parsing/Labeling: Performance

[Farabet et al. IEEE T. PAMI 2012]

SIFT Flow Dataset
[Liu 2009]: 
33 categories

Barcelona dataset
[Tighe 2010]: 
170 categories.
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Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]
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Scene Parsing/Labeling

No post-processing
Frame-by-frame
ConvNet runs at 50ms/frame on Virtex-6 FPGA hardware

But communicating the features over ethernet limits system 
performance
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Then., two things happened...

The ImageNet dataset [Fei-Fei et al. 2012]
1.2 million training samples
1000 categories

Fast Graphical Processing Units (GPU)
Capable of 1 trillion operations/second

Backpack

Flute

Strawberry

Bathing cap

Matchstick

Racket

Sea lion
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Very Deep ConvNet for Object Recognition
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Kernels: Layer 1 (11x11) 

Layer 1: 3x96 kernels, RGB->96 feature maps, 11x11 Kernels, stride 4
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Kernels: Layer 1 (11x11) 

Layer 1: 3x512 kernels, 7x7, 2x2 stride.
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Learning in Action

● How the filters in the first layer learn
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Deep Face

[Taigman et al. CVPR 2014]

Alignment

ConvNet

Metric Learning



Y LeCun
Siamese Architecture and loss function

Loss function:
– Outputs 

corresponding to 
input samples 
that are neighbors 
in the 
neigborhood 
graph should be 
nearby

– Outputs for input 
samples that are 
not neighbors 
should be far away 
from each other
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Learning Video Features with C3D

• C3D Architecture
– 8 convolution, 5 pool, 2 fully-connected layers
– 3x3x3 convolution kernels
– 2x2x2 pooling kernels

• Dataset: Sports-1M [Karpathy et al. CVPR’14]
– 1.1M videos of 487 different sport categories
– Train/test splits are provided

Du Tran 
(1,2)

Lubomir Bourdev
(2)

Rob Fergus
(2,3)

Lorenzo Torresani
(1)

Manohar Paluri
(2)

(1) Dartmouth College, (2) Facebook AI Research, (3) New York University
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Sport Classification Results
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Video Classification

● Using a spatio-temporal ConvNet
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Video Classification

● Using a spatio-temporal ConvNet
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Video Classification

● Spatio-temporal ConvNet
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Now,
What's Wrong 

with Deep Learning?
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Missing Some Theory
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Theory

Why are ConvNets a good architecture?
– Scattering transform
– Mark Tygert's “complex ConvNet”

How many layers do we really need?
– Really?

How many effective free parameters are there in a large ConvNet
– The weights seem to be awfully redundant

What about Local Minima?
– Turns out almost all the local minima are equivalent
– Local minima are degenerate (very flat in most directions)
– Random matrix / spin glass theory comes to the rescue
– [Choromanska, Henaff, Mathieu, Ben Arous, LeCun AI-stats 2015]
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Deep Nets with ReLUs: 
Objective Function is Piecewise Polynomial

If we use a hinge loss, delta now depends on label Yk:

Piecewise polynomial in W with random 
coefficients

A lot is known about the distribution of critical 
points of polynomials on the sphere with random 
(Gaussian) coefficients [Ben Arous et al.]

High-order spherical spin glasses
Random matrix theory

14

22

3

31

W14,3

W22,14

W31,22

Z3

L (W )=∑
P

C p(X ,Y ,W )( ∏
(ij)∈P

W ij )
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Missing: Reasoning
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Energy Model
(factor graph)

Reasoning as Energy Minimization (structured prediction++)

Deep Learning systems can be assembled into 
energy models AKA factor graphs

Energy function is a sum of factors

Factors can embed whole deep learning 
systems

X: observed variables (inputs)

Z: never observed (latent variables)

Y: observed on training set (output 
variables)

Inference is energy minimization (MAP) or free 
energy minimization (marginalization) over Z 
and Y given an X

F(X,Y) = MIN_z E(X,Y,Z)

F(X,Y) = -log SUM_z exp[-E(X,Y,Z) ]

Energy Model
(factor graph)

E(X,Y,Z)

X 
(observed)

Z 
(unobserved)

Y
(observed on
training set)

F(X,Y) = Marg_z E(X,Y,Z)
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Energy-Based Learning [LeCun et al. 2006]

Push down on the energy of desired outputs

Push up on everything else

[LeCun et al 2006] “A tutorial on energy-based learning”
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Stick a CRF on top of a ConvNet
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Pose Estimation and Attribute Recovery with ConvNets

Body pose estimation [Tompson et al. ICLR, 2014]

Real-time hand pose recovery

[Tompson et al. Trans. on Graphics 14]

Pose-Aligned Network for Deep Attribute Modeling

 [Zhang et al. CVPR 2014] (Facebook AI Research)
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Person Detection and Pose Estimation 

[Tompson, Goroshin, Jain, LeCun, Bregler CVPR 2015]
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Person Detection and Pose Estimation 

Tompson, Goroshin, Jain, LeCun, Bregler arXiv:1411.4280 (2014)
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69

SPATIAL MODEL

Start with a tree graphical model
MRF over spatial locations

local evidence function

compatibility function

Joint Distribution:

observed

latent / hidden
      
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SPATIAL MODEL

70

Start with a tree graphical model

… And approximate it

           
i

||  iii xfcxfxffb

 f  ff |

 f  sf |

 fb

 ffc |

 sfc |
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SPATIAL MODEL: RESULTS

71

(1)B. Sapp and B. Taskar. MODEC: Multimodel decomposition models for human pose estimation. CVPR’13
(2)S. Johnson and M. Everingham. Learning Effective Human Pose Estimation for Inaccurate Annotation. CVPR’11

FLIC(1) 

Elbow
FLIC(1) 

Wrist

LSP(2) 

Arms
LSP(1) 

Legs
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Missing: Memory
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In Natural Language Processing: Word Embedding

Word Embedding in continuous vector spaces
[Bengio 2003][Collobert & Weston 2010]
Word2Vec [Mikolov 2011]
Predict a word from previous words and/or following words

what  are  the  major  languages  spoken  in  greece  ?

Neural net of some kind
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Compositional Semantic Property

Beijing – China + France = Paris



Y LeCun
Embedding Text (with convolutional or recurrent nets)

Embedding sentences into vector spaces
Using a convolutional net or a recurrent net.

what  are  the  major  languages  spoken  in  greece  ?

ConvNet or Recurrent Net

[sentence vector]
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“Who did Clooney 
marry in 1987?”

Word embeddings 
lookup table

K.Preston

ER
Lexington

1987

J. Travolta

Model

Honolulu

Actor

Male
Ocean’s 

11

Freebase embeddings 
lookup table

Detection of 
Freebase entity 
in the question

Embedding 
model

Freebase 
subgraph

1-hot 
encoding 

of the 
subgraph

Embedding 
of the 

subgraph

1-hot 
encoding 

of the 
question

Embedding 
of the 

question

Question

Subgraph of a 
candidate answer 
(here K. Preston)

Score How the candidate 
answer fits the 

question

Dot 
product

Question-Answering System

Clooney
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Question-Answering System

what are bigos? 
["stew"]        ["stew"]

what are dallas cowboys colors? 
[“navy_blue", "royal_blue", "blue", "white", "silver"]  ["blue", "navy_blue", 

"white", "royal_blue", "silver"]
how is egyptian money called? 

["egyptian_pound"]      ["egyptian_pound"]
what are fun things to do in sacramento ca?     

["sacramento_zoo"]      ["raging_waters_sacramento", "sutter_s_fort", 
"b_street_theatre", "sacramento_zoo", "california_state_capitol_museum", ….]

how are john terry's children called? 
["georgie_john_terry", "summer_rose_terry"]   ["georgie_john_terry", 

"summer_rose_terry"]
what are the major languages spoken in greece?  

["greek_language", "albanian_language"] ["greek_language", "albanian_language"]
what was laura ingalls wilder famous for?       

["writer", "author"]    ["writer", "journalist", "teacher", "author"]
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NLP: Question-Answering System

who plays sheldon cooper mother on the big bang theory? 
["jim_parsons"] ["jim_parsons"]

who does peyton manning play football for?      
["denver_broncos"]      ["indianapolis_colts", "denver_broncos"]

who did vladimir lenin marry?   
["nadezhda_krupskaya"]  ["nadezhda_krupskaya"]

where was teddy roosevelt's house?      
["new_york_city"]       ["manhattan"]

who developed the tcp ip reference model?       
["vint_cerf", "robert_e._kahn"] ["computer_scientist", "engineer”]
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Representing the world with “thought vectors”

Every object, concept or “thought” can be represented by a vector

[-0.2, 0.3, -4.2, 5.1, …..] represent the concept “cat”

[-0.2, 0.4, -4.0, 5.1, …..] represent the concept “dog”

The vectors are similar because cats and dogs have many properties in common

Reasoning consists in manipulating thought vectors

Comparing vectors for question answering, information retrieval, content filtering

Combining and transforming vectors for reasoning, planning, translating 
languages

Memory stores thought vectors

MemNN (Memory Neural Network) is an example

At FAIR we want to “embed the world” in thought vectors

                            We call this World2vec
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But How can Neural Nets Remember Things?

Recurrent networks cannot remember things for very long
The cortex only remember things for 20 seconds

We need a “hippocampus” (a separate memory module)
LSTM [Hochreiter 1997], registers
Memory networks [Weston et 2014] (FAIR), associative memory
NTM [DeepMind 2014], “tape”.

Recurrent net memory
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Memory Network [Weston, Chopra, Bordes 2014]

Add a short-term memory to a network

Results on 
Question Answering
Task

http://arxiv.org/abs/1410.3916
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Missing: 
Unsupervised Learning
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Energy-Based Unsupervised Learning 

Push down on the energy of desired outputs

Push up on everything else
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Seven Strategies to Shape the Energy Function

 1. build the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA

 2. push down of the energy of data points, push up everywhere else
Max likelihood (needs tractable partition function)

 3. push down of the energy of data points, push up on chosen locations
 contrastive divergence, Ratio Matching, Noise Contrastive Estimation, 
Minimum Probability Flow

 4. minimize the gradient and maximize the curvature around data points 
score matching

 5. train a dynamical system so that the dynamics goes to the manifold
denoising auto-encoder

 6. use a regularizer that limits the volume of space that has low energy
Sparse coding, sparse auto-encoder, PSD

 7. if E(Y) = ||Y - G(Y)||^2, make G(Y) as "constant" as possible.
Contracting auto-encoder, saturating auto-encoder
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#1: constant volume of low energy
Energy surface for PCA and K-means

 1. build the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA...

E (Y )=∥W TWY−Y∥
2

PCA K-Means,  
Z constrained to 1-of-K code

E (Y )=minz∑i
∥Y−W i Z i∥

2
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#6. use a regularizer that limits 
the volume of space that has low energy

 Sparse coding, sparse auto-encoder, Predictive Sparse Decomposition
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Energy Functions of Various Methods

encoder

decoder

energy
loss
pull-up

W ' Y

WZ

∥Y−WZ∥2

W eY 

W d Z

∥Y−WZ∥2

W e Z 

W d Z

∥Y−WZ∥2

−

WZ

∥Y−WZ∥2

F Y  F Y  F Y  F Y 
dimens. dimens. sparsity 1-of-N code

PCA 
(1 code unit)

K-Means
(20  code units)

autoencoder
(1 code unit)

sparse coding
(20 code units)

 2 dimensional toy dataset: spiral

 Visualizing energy surface
(black = low, white = high)  
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Dictionary Learning With 
Fast Approximate Inference:

Sparse Auto-Encoders
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How to Speed Up Inference in a Generative Model?

Factor Graph with an asymmetric factor

Inference Z → Y is easy
Run Z through deterministic decoder, and sample Y

Inference Y → Z is hard, particularly if Decoder function is many-to-one
MAP: minimize sum of two factors with respect to Z
Z* =  argmin_z  Distance[Decoder(Z), Y] + FactorB(Z)

Examples: K-Means (1of K), Sparse Coding (sparse), Factor Analysis

INPUT

Decoder

Y

Distance

Z
LATENT

VARIABLE

Factor B

Generative Model

Factor A
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Sparse Modeling: Sparse Coding + Dictionary Learning

Sparse linear reconstruction

Energy  = reconstruction_error + code_prediction_error + code_sparsity

E (Y i , Z )=∥Y i
−W d Z∥

2
+ λ∑ j

∣z j∣

[Olshausen & Field 1997]

INPUT Y Z

∥Y i
− Y∥

2

∣z j∣

W d Z

FEATURES 

∑ j
.

Y → Ẑ=argmin Z E (Y , Z )

Inference is expensive: ISTA/FISTA, CGIHT, coordinate descent....

DETERMINISTIC

FUNCTION
FACTOR

VARIABLE
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#6. use a regularizer that limits 
the volume of space that has low energy

 Sparse coding, sparse auto-encoder, Predictive Saprse Decomposition
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Encoder Architecture

Examples: most ICA models, Product of Experts

INPUT Y Z
LATENT

VARIABLE

Factor B

Encoder Distance

Fast Feed-Forward Model

Factor A'
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Encoder-Decoder Architecture

Train a “simple” feed-forward function to predict the result of a complex 
optimization on the data points of interest

INPUT

Decoder

Y

Distance

Z
LATENT

VARIABLE

Factor B

[Kavukcuoglu, Ranzato, LeCun, rejected by every conference, 2008-2009]

Generative Model

Factor A

Encoder Distance

Fast Feed-Forward Model

Factor A'

1. Find optimal Zi for all Yi; 2. Train Encoder to predict Zi from Yi
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Learning to Perform
Approximate Inference:

Predictive Sparse Decomposition
Sparse Auto-Encoders
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 Sparse auto-encoder: Predictive Sparse Decomposition (PSD)

Prediction the optimal code with a trained encoder

Energy  = reconstruction_error + code_prediction_error + code_sparsity

E Y i , Z =∥Y i
−W d Z∥

2
∥Z−ge W e ,Y i

∥
2
∑ j

∣z j∣

ge (W e , Y i
)=shrinkage(W e Y i

)

[Kavukcuoglu, Ranzato, LeCun, 2008 → arXiv:1010.3467],

INPUT Y Z

∥Y i
− Y∥

2

∣z j∣

W d Z

FEATURES 

∑ j
.

∥Z− Z∥
2ge W e ,Y i


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Regularized Encoder-Decoder Model (auto-Encoder) 
for Unsupervised Feature Learning

Encoder: computes feature vector Z from input X
Decoder: reconstructs input X from feature vector Z
Feature vector: high dimensional and regularized (e.g. sparse)
Factor graph with energy function E(X,Z) with 3 terms:

Linear decoding function and reconstruction error

Non-Linear encoding function and prediction error term

Pooling function and regularization term (e.g. sparsity)

INPUT Y Z

∥Y i−Ỹ∥
2 W d Z

FEATURES 

λ∑ .

∥Z− Z̃∥2g e (W e ,Y
i)

√ (∑ Z k
2 )

L2 norm within 
each pool

E (Y,Z )=∥Y−W d Z∥
2+∥Z−g e (W e ,Y )∥2+∑

j √ ∑
k∈P j

Z k
2
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PSD: Basis Functions on MNIST

Basis functions (and encoder matrix) are digit parts
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Training on natural images 
patches. 

12X12
256 basis functions

Predictive Sparse Decomposition (PSD): Training
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Learned Features on natural patches: 
V1-like receptive fields
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Learning to Perform
Approximate Inference

LISTA
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ISTA/FISTA: iterative algorithm that converges to optimal sparse code

INPUT Y ZW e sh()

S

+

[Gregor & LeCun, ICML 2010], [Bronstein et al. ICML 2012], [Rolfe & LeCun ICLR 2013]

Lateral Inhibition

Better Idea: Give the “right” structure to the encoder

ISTA/FISTA reparameterized:

LISTA (Learned ISTA): learn the We and S matrices to get fast solutions
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Think of the FISTA flow graph as a recurrent neural net where We and S are 
trainable parameters

INPUT Y ZW e sh()

S

+

Time-Unfold the flow graph for K iterations

Learn the We and S matrices with “backprop-through-time”

Get the best approximate solution within K iterations

Y

Z

W e

sh()+ S sh()+ S

LISTA: Train We and S matrices 
to give a good approximation quickly
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Learning ISTA (LISTA) vs ISTA/FISTA

Number of LISTA or FISTA iterations

R
ec
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st
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ct
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n 
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ro
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LISTA with partial mutual inhibition matrix

Proportion of S matrix elements that are non zero

R
ec

on
st

ru
ct

io
n 

Er
ro

r

Smallest elements
removed
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Learning Coordinate Descent (LcoD): faster than LISTA

Number of LISTA or FISTA iterations

R
ec
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Architecture

 Rectified linear units

Classification loss: cross-entropy

Reconstruction loss: squared error

Sparsity penalty: L1 norm of last hidden layer

Rows of Wd and columns of We constrained in unit sphere

W e

()
+ S +

W c

W d

Can be repeated

Encoding

Filters

Lateral

Inhibition
Decoding

Filters

X̄

Ȳ

X

L1 Z̄

X

Y

0

()
+

[Rolfe & LeCun ICLR 2013]

Discriminative Recurrent Sparse Auto-Encoder (DrSAE)



Y LeCun

Image = prototype + sparse sum of “parts” (to move around the manifold)

DrSAE Discovers manifold structure of handwritten digits
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Replace the dot products with dictionary element by convolutions.
Input Y is a full image
Each code component Zk is a feature map (an image)
Each dictionary element is a convolution kernel

Regular sparse coding

Convolutional S.C.

∑
k

. * Zk

Wk

Y =

“deconvolutional networks” [Zeiler, Taylor, Fergus CVPR 2010]

Convolutional Sparse Coding



Y LeCun

Convolutional Formulation
Extend sparse coding from PATCH to IMAGE

PATCH based learning CONVOLUTIONAL learning

Convolutional PSD: Encoder with a soft sh() Function 



Y LeCun
Convolutional Sparse Auto-Encoder on Natural Images

Filters and Basis Functions obtained with 1, 2, 4, 8, 16, 32, and 64 filters.
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Phase 1: train first layer using PSD

FEATURES 

Y Z

∥Y i−Ỹ∥
2

∣z j∣

W d Z λ∑ .

∥Z−Z̃∥2g e (W e ,Y
i)

Using PSD to Train a Hierarchy of Features
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Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

FEATURES 

Y ∣z j∣

g e (W e ,Y
i)

Using PSD to Train a Hierarchy of Features
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Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

FEATURES 

Y ∣z j∣

g e (W e ,Y
i)

Y Z

∥Y i−Ỹ∥
2

∣z j∣

W d Z λ∑ .

∥Z−Z̃∥2g e (W e ,Y
i)

Using PSD to Train a Hierarchy of Features
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Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

Phase 4: use encoder + absolute value as 2nd feature extractor

FEATURES 

Y ∣z j∣

g e (W e ,Y
i)

∣z j∣

g e (W e ,Y
i )

Using PSD to Train a Hierarchy of Features
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Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

Phase 4: use encoder + absolute value as 2nd feature extractor

Phase 5: train a supervised classifier on top

Phase 6 (optional): train the entire system with supervised back-propagation

FEATURES 

Y ∣z j∣

g e (W e ,Y
i)

∣z j∣

g e (W e ,Y
i )

classifier

Using PSD to Train a Hierarchy of Features
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[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. ArXiv 2012]

ConvNet

Color+Skip

Supervised

ConvNet

Color+Skip

Unsup+Sup

ConvNet

B&W

Unsup+Sup

ConvNet

B&W

Supervised

Pedestrian Detection: INRIA Dataset. Miss rate vs false 
positives
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Unsupervised Learning:
Invariant Features
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Learning Invariant Features with L2 Group Sparsity

Unsupervised PSD ignores the spatial pooling step.
Could we devise a similar method that learns the pooling layer as well?
Idea [Hyvarinen & Hoyer 2001]: group sparsity on pools of features

Minimum number of pools must be non-zero

Number of features that are on within a pool doesn't matter

Pools tend to regroup similar features

INPUT Y Z

∥Y i−Ỹ∥
2 W d Z

FEATURES 

λ∑ .

∥Z−Z̃∥2g e (W e ,Y
i )

√ (∑ Z k
2 )

L2 norm within 
each pool

E (Y,Z )=∥Y−W d Z∥
2+∥Z−g e (W e ,Y )∥

2+∑
j √ ∑

k∈P j

Z k
2
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Learning Invariant Features with L2 Group Sparsity

Idea: features are pooled in group. 
Sparsity: sum over groups of L2 norm of activity in group.

[Hyvärinen Hoyer 2001]: “subspace ICA” 
decoder only, square

[Welling, Hinton, Osindero NIPS 2002]: pooled product of experts 
encoder only, overcomplete, log student-T penalty on L2 pooling

[Kavukcuoglu, Ranzato, Fergus LeCun, CVPR 2010]: Invariant PSD
encoder-decoder (like PSD), overcomplete, L2 pooling

[Le et al. NIPS 2011]: Reconstruction ICA
Same as [Kavukcuoglu 2010] with linear encoder and tied decoder 

[Gregor & LeCun arXiv:1006:0448,  2010] [Le et al. ICML 2012]
Locally-connect non shared (tiled) encoder-decoder

INPUT

Y
Encoder only (PoE, ICA),

Decoder Only or

Encoder-Decoder (iPSD, RICA)
Z INVARIANT

FEATURES 

λ∑ .

√ (∑ Z k
2 )

L2 norm within 
each pool

SIMPLE 
FEATURES 
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Groups are local in a 2D Topographic Map

The filters arrange 
themselves spontaneously 
so that similar filters enter 
the same pool.
The pooling units can be 
seen as complex cells
Outputs of pooling units are 
invariant to local 
transformations of the input

For some it's 
translations, for others 
rotations, or other 
transformations.
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Image-level training, local filters but no weight sharing

Training on 115x115 images. Kernels are 15x15 (not shared across 
space!)

[Gregor & LeCun 2010]

Local receptive fields

No shared weights

4x overcomplete

L2 pooling

Group sparsity over pools

Input

Reconstructed Input

(Inferred) Code

Predicted Code

Decoder

Encoder
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Image-level training, local filters but no weight sharing

Training on 115x115 images. Kernels are 15x15 (not shared across space!)
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119x119 Image Input
100x100 Code

20x20 Receptive field size
sigma=5 Michael C. Crair, et. al. The Journal of Neurophysiology 

Vol. 77 No. 6 June 1997, pp. 3381-3385 (Cat)

K Obermayer and GG Blasdel, Journal of 
Neuroscience, Vol 13, 4114-4129 (Monkey)Topographic Maps
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Image-level training, local filters but no weight sharing

Color indicates orientation (by fitting Gabors)
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Invariant Features Lateral Inhibition

Replace the L1 sparsity term by a lateral inhibition matrix
Easy way to impose some structure on the sparsity 

[Gregor, Szlam, LeCun NIPS 2011]
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Invariant Features via Lateral Inhibition: Structured Sparsity

 Each edge in the tree indicates a zero in the S matrix (no mutual inhibition)

Sij is larger if two neurons are far away in the tree
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Invariant Features via Lateral Inhibition: Topographic Maps

Non-zero values in S form a ring in a 2D topology
Input patches are high-pass filtered
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Sparse Auto-Encoder with “Slow Feature” Penalty

Supervised filters CIFAR10              sparse conv. auto-encoder               slow & sparse conv. auto-encoder

                                                                                                                Trained on YouTube videos

[Goroshin et al. Arxiv:1412.6056]



Y LeCun
Invariant Features through Temporal Constancy 

Object is cross-product of object type and instantiation parameters
Mapping units [Hinton 1981], capsules [Hinton 2011]

small medium large

Object type Object size[Karol Gregor et al.]
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What-Where Auto-Encoder Architecture

St St-1 St-2

C
1
t C

1
t-1 C

1
t-2 C

2
t

Decoder

W1 W1 W1 W2

Predicted
input

C
1
t C

1
t-1 C

1
t-2 C

2
t

St St-1 St-2

Inferred 
code

Predicted
code

InputEncoder

f ∘ W̃ 1 f ∘ W̃ 1 f ∘ W̃ 1

W̃ 2

f

W̃ 2
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Low-Level Filters Connected to Each Complex Cell

C1
(where)

C2
(what)
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Integrated Supervised &
Unsupervised Learning

[Zhao, Mathieu, LeCun arXiv:1506.02351]

Stacked What-Where Auto-Encoder
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The End
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The bAbI Tasks

Questions that an AI system 
ought to be able to answer



(1) Basic Factoid QA with Single Supporting Fact 

Our first task consists of questions where a single supporting fact, 
previously given, provides the answer.

We test simplest cases of this, by asking for the location of a person.

A small sample of the task is thus:

This kind of synthetic data was already used with MemNNs.

It can be considered the simplest case of some real world QA datasets 
such as in Fader et al., ‘13.

John is in the playground.
Bob is in the office.
Where is John? A:playground



(2) Factoid QA with Two Supporting Facts

A harder task is to answer questions where two supporting statements 
have to be chained to answer the question:

John is in the playground.
Bob is in the office.
John picked up the football.
Bob went to the kitchen.
Where is the football?  A:playground
Where was Bob before the kitchen? 
A:office

E.g. to answer the first question Where is the football? both John 
picked up the football and John is in the playground are 
supporting facts.

Again, this kind of task was already used with MemNNs.



(2) Shuffled Factoid QA with Two Supporting Facts

▪ Note that, to show the difficulty of these tasks for a learning 
machine with no other knowledge we can shuffle the letters 
of the alphabet and produce equivalent datasets:

Sbdm ip im vdu yonrckblms.
Abf ip im vdu bhhigu.
Sbdm yigaus ly vdu hbbvfnoo.
Abf zumv vb vdu aivgdum.
Mduku ip vdu hbbvfnoo? 
A:yonrckblms
Mduku znp Abf fuhbku vdu aivgdum? 
A:bhhigu



(3) Factoid QA with Three Supporting Facts

Similarly, one can make a task with three supporting facts:

John picked up the apple.
John went to the office.
John went to the kitchen.
John dropped the apple.
Where was the apple before the kitchen? 
A:office

The first three statements are all required to answer 
this.



(4) Two Argument Relations: Subject vs. Object

To answer questions the ability to differentiate and recognize 
subjects and objects is crucial.

We consider the extreme case: sentences feature re-ordered 
words:

The office is north of the bedroom.
The bedroom is north of the bathroom.
What is north of the bedroom? A:office
What is the bedroom north of? 
A:bathroom

Note that the two questions above have exactly the 
same words, but in a different order, and different 
answers.

So a bag-of-words will not work.



(5) Three Argument Relations

▪ Similarly, sometimes one needs to differentiate three 
separate arguments, such as in the following task:

Mary gave the cake to Fred.
Fred gave the cake to Bill.
Jeff was given the milk by Bill.
Who gave the cake to Fred? A:Mary
Who did Fred give the cake to? A:Bill
What did Jeff receive? A:milk
Who gave the milk? A:Bill

The last question is potentially the hardest for a learner 
as the first two can be answered by providing the actor 
that is not mentioned in the question.



(6) Yes/No Questions

▪ This task tests, in the simplest case possible (with a single 
supporting fact) the ability of a model to answer true/false 
type questions:

John is in the playground.
Daniel picks up the milk.
Is John in the classroom? A:no
Does Daniel have the milk? A:yes



(7) Counting

▪ This task tests the ability of the QA system to perform 
simple counting operations, by asking about the number 
of objects with a certain property:

Daniel picked up the football.
Daniel dropped the football.
Daniel got the milk.
Daniel took the apple.
How many objects is Daniel holding? 
A:two



(8) Lists/Sets

▪ While many of our tasks are designed to have single word 
answers for simplicity, this tasks tests the ability to 
produce a set of single word answers in the form of a list:

Daniel picks up the football.
Daniel drops the newspaper.
Daniel picks up the milk.
What is Daniel holding? A:milk,football

The task above can be seen as a QA task related to database 
search. 
Note that we could also consider the following question types:
Intersection: Who is in the park carrying food?
Union: Who has milk or cookies?
Set difference: Who is in the park apart from Bill?
However, we leave those for future work.



(9) Simple Negation

▪ We test one of the simplest types of negation, that of 
supporting facts that imply a statement is false:

Sandra travelled to the office.
Fred is no longer in the office.
Is Fred in the office? A:no
Is Sandra in the office? A:yes

The Yes/No task (6) is a prerequisite.

Slightly harder: we could add things like “Is Fred with 
Sandra?”



(10) Indefinite knowledge

▪ This task tests if we can model statements that describe 
possibilities rather than certainties:

John is either in the classroom or the 
playground.
Sandra is in the garden.
Is John in the classroom? A:maybe
Is John in the office? A:no

The Yes/No task (6) is a prerequisite.

Slightly harder: we could add things like “Is John with 
Sandra?”



(11) Basic Coreference

▪ This task tests the simplest type of coreference, that of 
detecting the nearest referent, for example:

Daniel was in the kitchen.
Then he went to the studio.
Sandra was in the office.
Where is Daniel? A:studio

Next level of difficulty: flip order of last two statements, 
and it has to learn the difference between ‘he’ and 
‘she’.

Much harder difficulty: adapt a real coref dataset 
into a question answer format. 



(12) Conjunction

▪ This task tests referring to multiple subjects in a single 
statement, for example:

Mary and Jeff went to the kitchen.
Then Jeff went to the park.
Where is Mary? A:kitchen



(13) Compound Coreference

▪ This task tests coreference in the case where the pronoun 
can refer to multiple actors:

Daniel and Sandra journeyed to the 
office.
Then they went to the garden.
Sandra and John travelled to the kitchen.
After that they moved to the hallway.
Where is Daniel? A:garden



(14) Time manipulation

▪ While our tasks so far have included time implicitly in the 
order of the statements, this task tests understanding the 
use of time expressions within the statements:

In the afternoon Julie went to the park. 
Yesterday Julie was at school.
Julie went to the cinema this evening.
Where did Julie go after the park? 
A:cinema

Much harder difficulty: adapt a real time expression 
labeling dataset into a question answer format, e.g. 
Uzzaman et al., ‘12. 



(15) Basic Deduction

▪ This task tests basic deduction via inheritance of 
properties:

Sheep are afraid of wolves.
Cats are afraid of dogs.
Mice are afraid of cats.
Gertrude is a sheep.
What is Gertrude afraid of? A:wolves

Deduction should prove difficult for MemNNs because it 
effectively involves search, although our setup might 
be simple enough for it.



(16) Basic Induction

▪ This task tests basic induction via inheritance of 
properties:

Lily is a swan.
Lily is white. 
Greg is a swan.
What color is Greg? A:white

Induction should prove difficult for MemNNs because it 
effectively involves search, although our setup might 
be simple enough for it.



(17) Positional Reasoning

▪ This task tests spatial reasoning, one of many 
components of the classical SHRDLU system:

The triangle is to the right of the blue square.
The red square is on top of the blue square.
The red sphere is to the right of the blue 
square.
Is the red sphere to the right of the blue 
square? A:yes
Is the red square to the left of the triangle? 
A:yes

The Yes/No task (6) is a prerequisite.



(18) Reasoning about size

▪ This tasks requires reasoning about relative size of objects 
and is inspired by the commonsense reasoning examples 
in the Winograd schema challenge:

The football fits in the suitcase.
The suitcase fits in the cupboard.
The box of chocolates is smaller than the 
football.
Will the box of chocolates fit in the suitcase? 
A:yesTasks 3 (three supporting facts) and 6 (Yes/No) are 

prerequisites.



(19) Path Finding

▪ In this task the goal is to find the path between locations:

The kitchen is north of the hallway.
The den is east of the hallway.
How do you go from den to kitchen?  
A:west,north

This is going to prove difficult for MemNNs because it 
effectively involves search.
(The original MemNN can also output only one word )



(20) Reasoning about Agent’s Motivations

▪ This task tries to ask why an agent performs a certain action.

▪ It addresses the case of actors being in a given state (hungry, 
thirsty, tired, …) and the actions they then take:

John is hungry.
John goes to the kitchen.
John eats the apple.
Daniel is hungry.
Where does Daniel go? A:kitchen
Why did John go to the kitchen? A:hungry



One way of solving these tasks: Memory 
Networks!!

MemNNs have four component networks (which 
may or may not have shared parameters):

▪ I: (input feature map) this converts incoming 
data to the internal feature representation.

▪ G: (generalization) this updates memories 
given new input.

▪ O: this produces new output (in 
featurerepresentation space) given the 
memories.

▪ R: (response) converts output O into a 
response seen by the outside world.



Experiments
▪ Protocol: 1000 training QA pairs, 1000 for test.

“Weakly supervised” methods:  

▪ Ngram baseline, uses bag of Ngram features 
from sentences that share a word with the 
question.

▪ LSTM

Fully supervised methods (for train data, have 
supporting facts labeled): 

▪ Original MemNNs, and all our variants. 





Action Recognition Results

Use optical flows

Use raw pixel inputs

Baselines
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