
Y LeCun

What's Wrong
With

Deep Learning?

Yann LeCun
Facebook AI Research &
Center for Data Science, NYU
yann@cs.nyu.edu
http://yann.lecun.com

mailto:yann@cs.nyu.edu
http://yann.lecun.com/

Y LeCun
Plan

The motivation for ConvNets and Deep Learning: end-to-end learning
Integrating feature extractor, classifier, contextual post-processor

A bit of archeology: ideas that have been around for a while
Kernels with stride, non-shared local connections, metric learning...
“fully convolutional” training

What's missing from deep learning?
1. Theory
2. Reasoning, structured prediction
3. Memory, short-term/working/episodic memory
4. Unsupervised learning that actually works

Post-
Processor

Low-Level
Features

More
Features

Classifier

Y LeCun
Deep Learning = Learning Hierarchical Representations

Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor

Trainable
Classifier

Feature
Extractor

Mainstream Modern Pattern Recognition: Unsupervised mid-level features

Trainable
Classifier

Feature
Extractor

Mid-Level
Features

Deep Learning: Representations are hierarchical and trained

Trainable
Classifier

Low-Level
Features

Mid-Level
Features

High-Level
Features

Y LeCun
Early Hierarchical Feature Models for Vision

[Hubel & Wiesel 1962]:
simple cells detect local features

complex cells “pool” the outputs of simple
cells within a retinotopic neighborhood.

Cognitron & Neocognitron [Fukushima 1974-1982]

pooling
subsampling

“Simple cells”
“Complex
cells”

Multiple
convolutions

Y LeCun
The Mammalian Visual Cortex is Hierarchical

[picture from Simon Thorpe]

[Gallant & Van Essen]

The ventral (recognition) pathway in the visual cortex has multiple stages
Retina - LGN - V1 - V2 - V4 - PIT - AIT
Lots of intermediate representations

Y LeCun
Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Trainable
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Y LeCun
Early Networks [LeCun 85, 86]

Binary threshold units

trained supervised

with “target prop”

Hidden units compute a

virtual target

Y LeCun
First ConvNets (U Toronto)[LeCun 88, 89]

Trained with Backprop. 320 examples.

Single layer Two layers FC locally connected Shared weights Shared weights

- Convolutions with stride (subsampling)
- No separate pooling layers

Y LeCun
First “Real” ConvNets at Bell Labs [LeCun et al 89]

Trained with Backprop.

USPS Zipcode digits: 7300 training, 2000 test.

Convolution with stride. No separate pooling.

Y LeCun
ConvNet with separate pooling layer [LeCun et al 90]

LeNet1 [NIPS 1989]

Filter Bank +non-linearity

Filter Bank +non-linearity

Pooling

Pooling

Filter Bank +non-linearity

Y LeCun
Convolutional Network (vintage 1992)

Filters-tanh → pooling → filters-tanh → pooling → filters-tanh

Y LeCun
LeNet1 Demo from 1993

Running on a 486 PC with an AT&T DSP32C add-on board (20 Mflops!)

Y LeCun

Integrating Segmentation

Multiple Character Recognition

Y LeCun
Multiple Character Recognition [Matan et al 1992]

SDNN: Space Displacement Neural Net
Also known as “replicated convolutional net”, or just ConvNet

– (are we going to call this “fully convolutional net” now?)

There is no such thing as a “fully connected layer”

they are actually convolutional layers with 1x1 convolution kernels.

Y LeCun
Multiple Character Recognition. Integrated Segmentation

Trained with “semi synthetic” data

– the individual character positions are known
Training sample: a character painted with flanking characters or a inter-
character space

Y LeCun
Multiple Character Recognition. Integrated Segmentation

Y LeCun
Word-level training with weak supervision [Matan et al 1992]

Word-level training
No labeling of individual characters
How do we do the training?
We need a “deformable part model”

ConvNet

5

4

3

2

window width of
each classifier

Multiple classifiers

Y LeCun

“Deformable Part Model” on top of a ConvNet
[Driancourt, Bottou 1991]

Spoken word recognition with trainable elastic word templates.
First example of structured prediction on top of deep learning
[Driancourt&Bottou 1991, Bottou 1991, Driancourt 1994]

Input Sequence

(acoustic vectors)

Trainable feature

extractors

Sequence of

feature vectors

Object models

(elastic template)

Warping

(latent var)
Category

(output)

Energies Switch

LVQ2 Loss

Y LeCun
Word-level training with elastic word models

- Isolated spoken word recognition
- trainable elastic templates and trainable feature extraction
- Globally trained at the word level
- Elastic matching using dynamic time warping

- Viterbi algorithm on a trellis.

Sequence of

feature vectors

O
bj

ec
t m

od
el

s

(e
la

st
ic

 te
m

pl
at

e)

Warping/Path

(latent var)

Energy
Trellis

[Driancourt&Bottou 1991, Bottou 1991, Driancourt 1994]

Y LeCun
The Oldest Example of Structured Prediction & Deep Learning

Trainable Automatic Speech Recognition system with a
convolutional net (TDNN) and dynamic time warping (DTW)

The feature extractor and
the structured classifier
are trained
simultanesously in an
integrated fashion.

with the LVQ2 Loss :
– Driancourt and

Bottou's speech
recognizer (1991)

with Neg Log Likelihood:
– Bengio's speech

recognizer (1992)
– Haffner's speech

recognizer (1993)

Y LeCun
End-to-End Learning – Word-Level Discriminative Training

Making every single module
in the system trainable.

Every module is trained
simultaneously so as to
optimize a global loss
function.

Includes the feature extractor,
the recognizer, and the
contextual post-processor
(graphical model)

Problem: back-propagating
gradients through the
graphical model.

ConvNet or other
Deep Architecture

Word Geometry

Energy

Character Hypotheses

Word Hypotheses

Language Model

Word Image

Segmentation Word

(latent)

(input)

(output)

(factor graph)

(factor graph)

Y LeCun
“Shallow” Structured Prediction

Energy function is linear in the parameters

with the NLL Loss :
– Conditional

Random Field
[Lafferty, McCallum,
Pereira 2001]

with Hinge Loss:
– Max Margin

Markov Nets and
Latent SVM [Taskar,
 Altun, Hofmann...]

with Perceptron Loss
– Structured

Perceptron
[Collins...]

+

Y1

E(X,Y,Z)

Y2 Y3 Y4

 X

Z1 Z2 Z3

Input:

Latent Vars:

Outputs:

h(X,Y,Z) h(X,Y,Z) h(X,Y,Z)

W1 W2 W3

E (X ,Y ,Z)=∑i
W i

T hi(X ,Y ,Z)

Features

Params

Y LeCun
Deep Structured Prediction

Energy function is linear in the parameters

Graph Transformer Networks
– [LeCun, Bottou,

Bengio,Haffner 97,98]
– NLL loss
– Perceptron loss

+

Y1

E(X,Y,Z)

Y2 Y3 Y4

 X

Z1 Z2 Z3

Input:

Latent Vars:

Outputs:

g(X,Y,Z,W)

E (X ,Y ,Z)=∑i
g i(X ,Y , Z ,W i)

ConvNet g(X,Y,Z,W) g(X,Y,Z,W)

Y LeCun

Graph Transformer
Networks

Structured Prediction

on top of Deep Learning

This example shows the structured
perceptron loss.

In practice, we used negative log-
likelihood loss.

Deployed in 1996 in check reading
machines.

Y LeCun
Check Reader

Graph transformer network
trained to read check amounts.

Trained globally with Negative-
Log-Likelihood loss.

50% percent correct, 49%
reject, 1% error (detectable
later in the process.

Fielded in 1996, used in many
banks in the US and Europe.

Processes an estimated 10% to
20% of all the checks written in
the US.

Y LeCun

Object Detection

Y LeCun
Face Detection [Vaillant et al. 93, 94]

ConvNet applied to large images
Heatmaps at multiple scales
Non-maximum suppression for candidates
6 second on a Sparcstation for 256x256 image

Y LeCun

x93%86%Schneiderman & Kanade

x96%89%Rowley et al

x83%70%xJones & Viola (profile)

xx95%90%Jones & Viola (tilted)

88%83%83%67%97%90%Our Detector

1.280.53.360.4726.94.42

MIT+CMUPROFILETILTEDData Set->

False positives per image->

mid 2000s: state of the art results on face detection

[Garcia & Delakis 2003][Osadchy et al. 2004] [Osadchy et al, JMLR 2007]

Y LeCun

Simultaneous face detection and pose estimation

Y LeCun

VIDEOS

Y LeCun

Semantic Segmentation

Y LeCun
ConvNets for Biological Image Segmentation

Biological Image Segmentation
[Ning et al. IEEE-TIP 2005]

Pixel labeling with large context
using a convnet

ConvNet takes a window of pixels and
produces a label for the central pixel

Cleanup using a kind of conditional
random field (CRF)

Similar to a field of expert, but
conditional.

3D version for connectomics
[Jain et al. 2007]

Y LeCun

ConvNet for Long Range Adaptive Robot Vision
(DARPA LAGR program 2005-2008)

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

[Hadsell et al., J. Field Robotics 2009]

Y LeCun
Long Range Vision with a Convolutional Net

Pre-processing (125 ms)
– Ground plane estimation
– Horizon leveling
– Conversion to YUV + local

contrast normalization
– Scale invariant pyramid of

distance-normalized image
“bands”

Y LeCun
Convolutional Net Architecture

YUV image band

20-36 pixels tall,

36-500 pixels wide

100 features per

3x12x25 input window `̀

YUV input

3@36x484

CONVOLUTIONS (7x6)

20@30x484

...

MAX SUBSAMPLING (1x4)

CONVOLUTIONS (6x5)

20@30x125

...
...

100@25x121

Y LeCun
Scene Parsing/Labeling: Multiscale ConvNet Architecture

Each output sees a large input context:
46x46 window at full rez; 92x92 at ½ rez; 184x184 at ¼ rez

[7x7conv]->[2x2pool]->[7x7conv]->[2x2pool]->[7x7conv]->

Trained supervised on fully-labeled images

Y LeCun

Method 1: majority over super-pixel regions

[Farabet et al. IEEE T. PAMI 2013]
M

ulti-sca le C
onvN

et
Super-pix el bound ary hype theses

C
onvolut ional clas sifier

Majority

Vote

Over

Superpixels

Input image

Superpixel boundaries

Features from

Convolutional net

(d=768 per pixel)

“soft” categories scores

Categories aligned

With region

boundaries

Y LeCun
Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
Scene Parsing/Labeling on RGB+Depth Images

With temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]

Y LeCun
Scene Parsing/Labeling: Performance

Stanford Background Dataset [Gould 1009]: 8 categories

[Rejected from CVPR 2012]
[Farabet et al. ICML 2012][Farabet et al. IEEE T. PAMI 2013]

Y LeCun
Scene Parsing/Labeling: Performance

[Farabet et al. IEEE T. PAMI 2012]

SIFT Flow Dataset
[Liu 2009]:
33 categories

Barcelona dataset
[Tighe 2010]:
170 categories.

Y LeCun
Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
Scene Parsing/Labeling

No post-processing
Frame-by-frame
ConvNet runs at 50ms/frame on Virtex-6 FPGA hardware

But communicating the features over ethernet limits system
performance

Y LeCun
Then., two things happened...

The ImageNet dataset [Fei-Fei et al. 2012]
1.2 million training samples
1000 categories

Fast Graphical Processing Units (GPU)
Capable of 1 trillion operations/second

Backpack

Flute

Strawberry

Bathing cap

Matchstick

Racket

Sea lion

Y LeCun

Very Deep ConvNet for Object Recognition

Y LeCun
Kernels: Layer 1 (11x11)

Layer 1: 3x96 kernels, RGB->96 feature maps, 11x11 Kernels, stride 4

Y LeCun
Kernels: Layer 1 (11x11)

Layer 1: 3x512 kernels, 7x7, 2x2 stride.

Y LeCun

Learning in Action

● How the filters in the first layer learn

Y LeCun

Deep Face

[Taigman et al. CVPR 2014]

Alignment

ConvNet

Metric Learning

Y LeCun
Siamese Architecture and loss function

Loss function:
– Outputs

corresponding to
input samples
that are neighbors
in the
neigborhood
graph should be
nearby

– Outputs for input
samples that are
not neighbors
should be far away
from each other

∥G
W
x

1
−G

w
 x

2
∥

D
W

G
W
 x

1
 G

W
 x

2


x
1

x
2

∥G
W
x

1
−G

w
 x

2
∥

D
W

G
W
 x

1
 G

W
 x

2


x
1

x
2

Similar images (neighbors

in the neighborhood graph)

Dissimilar images

(non-neighbors in the
neighborhood graph)

Make this small Make this large

Y LeCun

Learning Video Features with C3D

• C3D Architecture
– 8 convolution, 5 pool, 2 fully-connected layers
– 3x3x3 convolution kernels
– 2x2x2 pooling kernels

• Dataset: Sports-1M [Karpathy et al. CVPR’14]
– 1.1M videos of 487 different sport categories
– Train/test splits are provided

Du Tran
(1,2)

Lubomir Bourdev
(2)

Rob Fergus
(2,3)

Lorenzo Torresani
(1)

Manohar Paluri
(2)

(1) Dartmouth College, (2) Facebook AI Research, (3) New York University

Y LeCun

Sport Classification Results

Y LeCun

Video Classification

● Using a spatio-temporal ConvNet

Y LeCun

Video Classification

● Using a spatio-temporal ConvNet

Y LeCun

Video Classification

● Spatio-temporal ConvNet

Y LeCun

Now,
What's Wrong

with Deep Learning?

Y LeCun

Missing Some Theory

Y LeCun
Theory

Why are ConvNets a good architecture?
– Scattering transform
– Mark Tygert's “complex ConvNet”

How many layers do we really need?
– Really?

How many effective free parameters are there in a large ConvNet
– The weights seem to be awfully redundant

What about Local Minima?
– Turns out almost all the local minima are equivalent
– Local minima are degenerate (very flat in most directions)
– Random matrix / spin glass theory comes to the rescue
– [Choromanska, Henaff, Mathieu, Ben Arous, LeCun AI-stats 2015]

Y LeCun

Deep Nets with ReLUs:
Objective Function is Piecewise Polynomial

If we use a hinge loss, delta now depends on label Yk:

Piecewise polynomial in W with random
coefficients

A lot is known about the distribution of critical
points of polynomials on the sphere with random
(Gaussian) coefficients [Ben Arous et al.]

High-order spherical spin glasses
Random matrix theory

14

22

3

31

W14,3

W22,14

W31,22

Z3

L (W)=∑
P

C p(X ,Y ,W)(∏
(ij)∈P

W ij)

Y LeCun

Missing: Reasoning

Y LeCun

Energy Model
(factor graph)

Reasoning as Energy Minimization (structured prediction++)

Deep Learning systems can be assembled into
energy models AKA factor graphs

Energy function is a sum of factors

Factors can embed whole deep learning
systems

X: observed variables (inputs)

Z: never observed (latent variables)

Y: observed on training set (output
variables)

Inference is energy minimization (MAP) or free
energy minimization (marginalization) over Z
and Y given an X

F(X,Y) = MIN_z E(X,Y,Z)

F(X,Y) = -log SUM_z exp[-E(X,Y,Z)]

Energy Model
(factor graph)

E(X,Y,Z)

X
(observed)

Z
(unobserved)

Y
(observed on
training set)

F(X,Y) = Marg_z E(X,Y,Z)

Y LeCun
Energy-Based Learning [LeCun et al. 2006]

Push down on the energy of desired outputs

Push up on everything else

[LeCun et al 2006] “A tutorial on energy-based learning”

Y LeCun

Stick a CRF on top of a ConvNet

Y LeCun
Pose Estimation and Attribute Recovery with ConvNets

Body pose estimation [Tompson et al. ICLR, 2014]

Real-time hand pose recovery

[Tompson et al. Trans. on Graphics 14]

Pose-Aligned Network for Deep Attribute Modeling

 [Zhang et al. CVPR 2014] (Facebook AI Research)

Y LeCun
Person Detection and Pose Estimation

[Tompson, Goroshin, Jain, LeCun, Bregler CVPR 2015]

Y LeCun
Person Detection and Pose Estimation

Tompson, Goroshin, Jain, LeCun, Bregler arXiv:1411.4280 (2014)

Y LeCun

69

SPATIAL MODEL

Start with a tree graphical model
MRF over spatial locations

local evidence function

compatibility function

Joint Distribution:

observed

latent / hidden
      

i
ii

ji
ji xxxx

Z
wesfP ~, ,

1
,,,

,

 we,

 es,

 sf ,  ss ,~

 ee ,~ ww,~

 ff ,
~

e~e

s~sf

ww~

f
~

Y LeCun
SPATIAL MODEL

70

Start with a tree graphical model

… And approximate it

           
i

|| iii xfcxfxffb

 f  ff |

 f  sf |

 fb

 ffc |

 sfc |

Y LeCun
SPATIAL MODEL: RESULTS

71

(1)B. Sapp and B. Taskar. MODEC: Multimodel decomposition models for human pose estimation. CVPR’13
(2)S. Johnson and M. Everingham. Learning Effective Human Pose Estimation for Inaccurate Annotation. CVPR’11

FLIC(1)

Elbow
FLIC(1)

Wrist

LSP(2)

Arms
LSP(1)

Legs

Y LeCun

Missing: Memory

Y LeCun
In Natural Language Processing: Word Embedding

Word Embedding in continuous vector spaces
[Bengio 2003][Collobert & Weston 2010]
Word2Vec [Mikolov 2011]
Predict a word from previous words and/or following words

what are the major languages spoken in greece ?

Neural net of some kind

Y LeCun
Compositional Semantic Property

Beijing – China + France = Paris

Y LeCun
Embedding Text (with convolutional or recurrent nets)

Embedding sentences into vector spaces
Using a convolutional net or a recurrent net.

what are the major languages spoken in greece ?

ConvNet or Recurrent Net

[sentence vector]

Y LeCun

“Who did Clooney
marry in 1987?”

Word embeddings
lookup table

K.Preston

ER
Lexington

1987

J. Travolta

Model

Honolulu

Actor

Male
Ocean’s

11

Freebase embeddings
lookup table

Detection of
Freebase entity
in the question

Embedding
model

Freebase
subgraph

1-hot
encoding

of the
subgraph

Embedding
of the

subgraph

1-hot
encoding

of the
question

Embedding
of the

question

Question

Subgraph of a
candidate answer
(here K. Preston)

Score How the candidate
answer fits the

question

Dot
product

Question-Answering System

Clooney

Y LeCun

Question-Answering System

what are bigos?
["stew"] ["stew"]

what are dallas cowboys colors?
[“navy_blue", "royal_blue", "blue", "white", "silver"] ["blue", "navy_blue",

"white", "royal_blue", "silver"]
how is egyptian money called?

["egyptian_pound"] ["egyptian_pound"]
what are fun things to do in sacramento ca?

["sacramento_zoo"] ["raging_waters_sacramento", "sutter_s_fort",
"b_street_theatre", "sacramento_zoo", "california_state_capitol_museum", ….]

how are john terry's children called?
["georgie_john_terry", "summer_rose_terry"] ["georgie_john_terry",

"summer_rose_terry"]
what are the major languages spoken in greece?

["greek_language", "albanian_language"] ["greek_language", "albanian_language"]
what was laura ingalls wilder famous for?

["writer", "author"] ["writer", "journalist", "teacher", "author"]

Y LeCun

NLP: Question-Answering System

who plays sheldon cooper mother on the big bang theory?
["jim_parsons"] ["jim_parsons"]

who does peyton manning play football for?
["denver_broncos"] ["indianapolis_colts", "denver_broncos"]

who did vladimir lenin marry?
["nadezhda_krupskaya"] ["nadezhda_krupskaya"]

where was teddy roosevelt's house?
["new_york_city"] ["manhattan"]

who developed the tcp ip reference model?
["vint_cerf", "robert_e._kahn"] ["computer_scientist", "engineer”]

Y LeCun
Representing the world with “thought vectors”

Every object, concept or “thought” can be represented by a vector

[-0.2, 0.3, -4.2, 5.1, …..] represent the concept “cat”

[-0.2, 0.4, -4.0, 5.1, …..] represent the concept “dog”

The vectors are similar because cats and dogs have many properties in common

Reasoning consists in manipulating thought vectors

Comparing vectors for question answering, information retrieval, content filtering

Combining and transforming vectors for reasoning, planning, translating
languages

Memory stores thought vectors

MemNN (Memory Neural Network) is an example

At FAIR we want to “embed the world” in thought vectors

 We call this World2vec

Y LeCun
But How can Neural Nets Remember Things?

Recurrent networks cannot remember things for very long
The cortex only remember things for 20 seconds

We need a “hippocampus” (a separate memory module)
LSTM [Hochreiter 1997], registers
Memory networks [Weston et 2014] (FAIR), associative memory
NTM [DeepMind 2014], “tape”.

Recurrent net memory

Y LeCun

Memory Network [Weston, Chopra, Bordes 2014]

Add a short-term memory to a network

Results on
Question Answering
Task

http://arxiv.org/abs/1410.3916

Y LeCun

Missing:
Unsupervised Learning

Y LeCun
Energy-Based Unsupervised Learning

Push down on the energy of desired outputs

Push up on everything else

Y LeCun
Seven Strategies to Shape the Energy Function

 1. build the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA

 2. push down of the energy of data points, push up everywhere else
Max likelihood (needs tractable partition function)

 3. push down of the energy of data points, push up on chosen locations
 contrastive divergence, Ratio Matching, Noise Contrastive Estimation,
Minimum Probability Flow

 4. minimize the gradient and maximize the curvature around data points
score matching

 5. train a dynamical system so that the dynamics goes to the manifold
denoising auto-encoder

 6. use a regularizer that limits the volume of space that has low energy
Sparse coding, sparse auto-encoder, PSD

 7. if E(Y) = ||Y - G(Y)||^2, make G(Y) as "constant" as possible.
Contracting auto-encoder, saturating auto-encoder

Y LeCun

#1: constant volume of low energy
Energy surface for PCA and K-means

 1. build the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA...

E (Y)=∥W TWY−Y∥
2

PCA K-Means,
Z constrained to 1-of-K code

E (Y)=minz∑i
∥Y−W i Z i∥

2

Y LeCun

#6. use a regularizer that limits
the volume of space that has low energy

 Sparse coding, sparse auto-encoder, Predictive Sparse Decomposition

Y LeCun
Energy Functions of Various Methods

encoder

decoder

energy
loss
pull-up

W ' Y

WZ

∥Y−WZ∥2

W eY 

W d Z

∥Y−WZ∥2

W e Z 

W d Z

∥Y−WZ∥2

−

WZ

∥Y−WZ∥2

F Y  F Y  F Y  F Y 
dimens. dimens. sparsity 1-of-N code

PCA
(1 code unit)

K-Means
(20 code units)

autoencoder
(1 code unit)

sparse coding
(20 code units)

 2 dimensional toy dataset: spiral

 Visualizing energy surface
(black = low, white = high)

Y LeCun

Dictionary Learning With
Fast Approximate Inference:

Sparse Auto-Encoders

Y LeCun

How to Speed Up Inference in a Generative Model?

Factor Graph with an asymmetric factor

Inference Z → Y is easy
Run Z through deterministic decoder, and sample Y

Inference Y → Z is hard, particularly if Decoder function is many-to-one
MAP: minimize sum of two factors with respect to Z
Z* = argmin_z Distance[Decoder(Z), Y] + FactorB(Z)

Examples: K-Means (1of K), Sparse Coding (sparse), Factor Analysis

INPUT

Decoder

Y

Distance

Z
LATENT

VARIABLE

Factor B

Generative Model

Factor A

Y LeCun
Sparse Modeling: Sparse Coding + Dictionary Learning

Sparse linear reconstruction

Energy = reconstruction_error + code_prediction_error + code_sparsity

E (Y i , Z)=∥Y i
−W d Z∥

2
+ λ∑ j

∣z j∣

[Olshausen & Field 1997]

INPUT Y Z

∥Y i
− Y∥

2

∣z j∣

W d Z

FEATURES

∑ j
.

Y → Ẑ=argmin Z E (Y , Z)

Inference is expensive: ISTA/FISTA, CGIHT, coordinate descent....

DETERMINISTIC

FUNCTION
FACTOR

VARIABLE

Y LeCun

#6. use a regularizer that limits
the volume of space that has low energy

 Sparse coding, sparse auto-encoder, Predictive Saprse Decomposition

Y LeCun

Encoder Architecture

Examples: most ICA models, Product of Experts

INPUT Y Z
LATENT

VARIABLE

Factor B

Encoder Distance

Fast Feed-Forward Model

Factor A'

Y LeCun

Encoder-Decoder Architecture

Train a “simple” feed-forward function to predict the result of a complex
optimization on the data points of interest

INPUT

Decoder

Y

Distance

Z
LATENT

VARIABLE

Factor B

[Kavukcuoglu, Ranzato, LeCun, rejected by every conference, 2008-2009]

Generative Model

Factor A

Encoder Distance

Fast Feed-Forward Model

Factor A'

1. Find optimal Zi for all Yi; 2. Train Encoder to predict Zi from Yi

Y LeCun

Learning to Perform
Approximate Inference:

Predictive Sparse Decomposition
Sparse Auto-Encoders

Y LeCun

 Sparse auto-encoder: Predictive Sparse Decomposition (PSD)

Prediction the optimal code with a trained encoder

Energy = reconstruction_error + code_prediction_error + code_sparsity

E Y i , Z =∥Y i
−W d Z∥

2
∥Z−ge W e ,Y i

∥
2
∑ j

∣z j∣

ge (W e , Y i
)=shrinkage(W e Y i

)

[Kavukcuoglu, Ranzato, LeCun, 2008 → arXiv:1010.3467],

INPUT Y Z

∥Y i
− Y∥

2

∣z j∣

W d Z

FEATURES

∑ j
.

∥Z− Z∥
2ge W e ,Y i



Y LeCun

Regularized Encoder-Decoder Model (auto-Encoder)
for Unsupervised Feature Learning

Encoder: computes feature vector Z from input X
Decoder: reconstructs input X from feature vector Z
Feature vector: high dimensional and regularized (e.g. sparse)
Factor graph with energy function E(X,Z) with 3 terms:

Linear decoding function and reconstruction error

Non-Linear encoding function and prediction error term

Pooling function and regularization term (e.g. sparsity)

INPUT Y Z

∥Y i−Ỹ∥
2 W d Z

FEATURES

λ∑ .

∥Z− Z̃∥2g e (W e ,Y
i)

√ (∑ Z k
2)

L2 norm within
each pool

E (Y,Z)=∥Y−W d Z∥
2+∥Z−g e (W e ,Y)∥2+∑

j √ ∑
k∈P j

Z k
2

Y LeCun
PSD: Basis Functions on MNIST

Basis functions (and encoder matrix) are digit parts

Y LeCun

Training on natural images
patches.

12X12
256 basis functions

Predictive Sparse Decomposition (PSD): Training

Y LeCun

Learned Features on natural patches:
V1-like receptive fields

Y LeCun

Learning to Perform
Approximate Inference

LISTA

Y LeCun

ISTA/FISTA: iterative algorithm that converges to optimal sparse code

INPUT Y ZW e sh()

S

+

[Gregor & LeCun, ICML 2010], [Bronstein et al. ICML 2012], [Rolfe & LeCun ICLR 2013]

Lateral Inhibition

Better Idea: Give the “right” structure to the encoder

ISTA/FISTA reparameterized:

LISTA (Learned ISTA): learn the We and S matrices to get fast solutions

Y LeCun

Think of the FISTA flow graph as a recurrent neural net where We and S are
trainable parameters

INPUT Y ZW e sh()

S

+

Time-Unfold the flow graph for K iterations

Learn the We and S matrices with “backprop-through-time”

Get the best approximate solution within K iterations

Y

Z

W e

sh()+ S sh()+ S

LISTA: Train We and S matrices
to give a good approximation quickly

Y LeCun
Learning ISTA (LISTA) vs ISTA/FISTA

Number of LISTA or FISTA iterations

R
ec

on
st

ru
ct

io
n

Er
ro

r

Y LeCun
LISTA with partial mutual inhibition matrix

Proportion of S matrix elements that are non zero

R
ec

on
st

ru
ct

io
n

Er
ro

r

Smallest elements
removed

Y LeCun
Learning Coordinate Descent (LcoD): faster than LISTA

Number of LISTA or FISTA iterations

R
ec

on
st

ru
ct

io
n

Er
ro

r

Y LeCun

Architecture

 Rectified linear units

Classification loss: cross-entropy

Reconstruction loss: squared error

Sparsity penalty: L1 norm of last hidden layer

Rows of Wd and columns of We constrained in unit sphere

W e

()
+ S +

W c

W d

Can be repeated

Encoding

Filters

Lateral

Inhibition
Decoding

Filters

X̄

Ȳ

X

L1 Z̄

X

Y

0

()
+

[Rolfe & LeCun ICLR 2013]

Discriminative Recurrent Sparse Auto-Encoder (DrSAE)

Y LeCun

Image = prototype + sparse sum of “parts” (to move around the manifold)

DrSAE Discovers manifold structure of handwritten digits

Y LeCun

Replace the dot products with dictionary element by convolutions.
Input Y is a full image
Each code component Zk is a feature map (an image)
Each dictionary element is a convolution kernel

Regular sparse coding

Convolutional S.C.

∑
k

. * Zk

Wk

Y =

“deconvolutional networks” [Zeiler, Taylor, Fergus CVPR 2010]

Convolutional Sparse Coding

Y LeCun

Convolutional Formulation
Extend sparse coding from PATCH to IMAGE

PATCH based learning CONVOLUTIONAL learning

Convolutional PSD: Encoder with a soft sh() Function

Y LeCun
Convolutional Sparse Auto-Encoder on Natural Images

Filters and Basis Functions obtained with 1, 2, 4, 8, 16, 32, and 64 filters.

Y LeCun

Phase 1: train first layer using PSD

FEATURES

Y Z

∥Y i−Ỹ∥
2

∣z j∣

W d Z λ∑ .

∥Z−Z̃∥2g e (W e ,Y
i)

Using PSD to Train a Hierarchy of Features

Y LeCun

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

FEATURES

Y ∣z j∣

g e (W e ,Y
i)

Using PSD to Train a Hierarchy of Features

Y LeCun

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

FEATURES

Y ∣z j∣

g e (W e ,Y
i)

Y Z

∥Y i−Ỹ∥
2

∣z j∣

W d Z λ∑ .

∥Z−Z̃∥2g e (W e ,Y
i)

Using PSD to Train a Hierarchy of Features

Y LeCun

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

Phase 4: use encoder + absolute value as 2nd feature extractor

FEATURES

Y ∣z j∣

g e (W e ,Y
i)

∣z j∣

g e (W e ,Y
i)

Using PSD to Train a Hierarchy of Features

Y LeCun

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

Phase 4: use encoder + absolute value as 2nd feature extractor

Phase 5: train a supervised classifier on top

Phase 6 (optional): train the entire system with supervised back-propagation

FEATURES

Y ∣z j∣

g e (W e ,Y
i)

∣z j∣

g e (W e ,Y
i)

classifier

Using PSD to Train a Hierarchy of Features

Y LeCun

[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. ArXiv 2012]

ConvNet

Color+Skip

Supervised

ConvNet

Color+Skip

Unsup+Sup

ConvNet

B&W

Unsup+Sup

ConvNet

B&W

Supervised

Pedestrian Detection: INRIA Dataset. Miss rate vs false
positives

Y LeCun

Unsupervised Learning:
Invariant Features

Y LeCun
Learning Invariant Features with L2 Group Sparsity

Unsupervised PSD ignores the spatial pooling step.
Could we devise a similar method that learns the pooling layer as well?
Idea [Hyvarinen & Hoyer 2001]: group sparsity on pools of features

Minimum number of pools must be non-zero

Number of features that are on within a pool doesn't matter

Pools tend to regroup similar features

INPUT Y Z

∥Y i−Ỹ∥
2 W d Z

FEATURES

λ∑ .

∥Z−Z̃∥2g e (W e ,Y
i)

√ (∑ Z k
2)

L2 norm within
each pool

E (Y,Z)=∥Y−W d Z∥
2+∥Z−g e (W e ,Y)∥

2+∑
j √ ∑

k∈P j

Z k
2

Y LeCun

Learning Invariant Features with L2 Group Sparsity

Idea: features are pooled in group.
Sparsity: sum over groups of L2 norm of activity in group.

[Hyvärinen Hoyer 2001]: “subspace ICA”
decoder only, square

[Welling, Hinton, Osindero NIPS 2002]: pooled product of experts
encoder only, overcomplete, log student-T penalty on L2 pooling

[Kavukcuoglu, Ranzato, Fergus LeCun, CVPR 2010]: Invariant PSD
encoder-decoder (like PSD), overcomplete, L2 pooling

[Le et al. NIPS 2011]: Reconstruction ICA
Same as [Kavukcuoglu 2010] with linear encoder and tied decoder

[Gregor & LeCun arXiv:1006:0448, 2010] [Le et al. ICML 2012]
Locally-connect non shared (tiled) encoder-decoder

INPUT

Y
Encoder only (PoE, ICA),

Decoder Only or

Encoder-Decoder (iPSD, RICA)
Z INVARIANT

FEATURES

λ∑ .

√ (∑ Z k
2)

L2 norm within
each pool

SIMPLE
FEATURES

Y LeCun
Groups are local in a 2D Topographic Map

The filters arrange
themselves spontaneously
so that similar filters enter
the same pool.
The pooling units can be
seen as complex cells
Outputs of pooling units are
invariant to local
transformations of the input

For some it's
translations, for others
rotations, or other
transformations.

Y LeCun
Image-level training, local filters but no weight sharing

Training on 115x115 images. Kernels are 15x15 (not shared across
space!)

[Gregor & LeCun 2010]

Local receptive fields

No shared weights

4x overcomplete

L2 pooling

Group sparsity over pools

Input

Reconstructed Input

(Inferred) Code

Predicted Code

Decoder

Encoder

Y LeCun
Image-level training, local filters but no weight sharing

Training on 115x115 images. Kernels are 15x15 (not shared across space!)

Y LeCun

119x119 Image Input
100x100 Code

20x20 Receptive field size
sigma=5 Michael C. Crair, et. al. The Journal of Neurophysiology

Vol. 77 No. 6 June 1997, pp. 3381-3385 (Cat)

K Obermayer and GG Blasdel, Journal of
Neuroscience, Vol 13, 4114-4129 (Monkey)Topographic Maps

Y LeCun
Image-level training, local filters but no weight sharing

Color indicates orientation (by fitting Gabors)

Y LeCun
Invariant Features Lateral Inhibition

Replace the L1 sparsity term by a lateral inhibition matrix
Easy way to impose some structure on the sparsity

[Gregor, Szlam, LeCun NIPS 2011]

Y LeCun
Invariant Features via Lateral Inhibition: Structured Sparsity

 Each edge in the tree indicates a zero in the S matrix (no mutual inhibition)

Sij is larger if two neurons are far away in the tree

Y LeCun
Invariant Features via Lateral Inhibition: Topographic Maps

Non-zero values in S form a ring in a 2D topology
Input patches are high-pass filtered

Y LeCun
Sparse Auto-Encoder with “Slow Feature” Penalty

Supervised filters CIFAR10 sparse conv. auto-encoder slow & sparse conv. auto-encoder

 Trained on YouTube videos

[Goroshin et al. Arxiv:1412.6056]

Y LeCun
Invariant Features through Temporal Constancy

Object is cross-product of object type and instantiation parameters
Mapping units [Hinton 1981], capsules [Hinton 2011]

small medium large

Object type Object size[Karol Gregor et al.]

Y LeCun
What-Where Auto-Encoder Architecture

St St-1 St-2

C
1
t C

1
t-1 C

1
t-2 C

2
t

Decoder

W1 W1 W1 W2

Predicted
input

C
1
t C

1
t-1 C

1
t-2 C

2
t

St St-1 St-2

Inferred
code

Predicted
code

InputEncoder

f ∘ W̃ 1 f ∘ W̃ 1 f ∘ W̃ 1

W̃ 2

f

W̃ 2

W̃ 2

Y LeCun
Low-Level Filters Connected to Each Complex Cell

C1
(where)

C2
(what)

Y LeCun

Integrated Supervised &
Unsupervised Learning

[Zhao, Mathieu, LeCun arXiv:1506.02351]

Stacked What-Where Auto-Encoder

Y LeCun

The End

Y LeCun

The bAbI Tasks

Questions that an AI system
ought to be able to answer

(1) Basic Factoid QA with Single Supporting Fact

Our first task consists of questions where a single supporting fact,
previously given, provides the answer.

We test simplest cases of this, by asking for the location of a person.

A small sample of the task is thus:

This kind of synthetic data was already used with MemNNs.

It can be considered the simplest case of some real world QA datasets
such as in Fader et al., ‘13.

John is in the playground.
Bob is in the office.
Where is John? A:playground

(2) Factoid QA with Two Supporting Facts

A harder task is to answer questions where two supporting statements
have to be chained to answer the question:

John is in the playground.
Bob is in the office.
John picked up the football.
Bob went to the kitchen.
Where is the football? A:playground
Where was Bob before the kitchen?
A:office

E.g. to answer the first question Where is the football? both John
picked up the football and John is in the playground are
supporting facts.

Again, this kind of task was already used with MemNNs.

(2) Shuffled Factoid QA with Two Supporting Facts

▪ Note that, to show the difficulty of these tasks for a learning
machine with no other knowledge we can shuffle the letters
of the alphabet and produce equivalent datasets:

Sbdm ip im vdu yonrckblms.
Abf ip im vdu bhhigu.
Sbdm yigaus ly vdu hbbvfnoo.
Abf zumv vb vdu aivgdum.
Mduku ip vdu hbbvfnoo?
A:yonrckblms
Mduku znp Abf fuhbku vdu aivgdum?
A:bhhigu

(3) Factoid QA with Three Supporting Facts

Similarly, one can make a task with three supporting facts:

John picked up the apple.
John went to the office.
John went to the kitchen.
John dropped the apple.
Where was the apple before the kitchen?
A:office

The first three statements are all required to answer
this.

(4) Two Argument Relations: Subject vs. Object

To answer questions the ability to differentiate and recognize
subjects and objects is crucial.

We consider the extreme case: sentences feature re-ordered
words:

The office is north of the bedroom.
The bedroom is north of the bathroom.
What is north of the bedroom? A:office
What is the bedroom north of?
A:bathroom

Note that the two questions above have exactly the
same words, but in a different order, and different
answers.

So a bag-of-words will not work.

(5) Three Argument Relations

▪ Similarly, sometimes one needs to differentiate three
separate arguments, such as in the following task:

Mary gave the cake to Fred.
Fred gave the cake to Bill.
Jeff was given the milk by Bill.
Who gave the cake to Fred? A:Mary
Who did Fred give the cake to? A:Bill
What did Jeff receive? A:milk
Who gave the milk? A:Bill

The last question is potentially the hardest for a learner
as the first two can be answered by providing the actor
that is not mentioned in the question.

(6) Yes/No Questions

▪ This task tests, in the simplest case possible (with a single
supporting fact) the ability of a model to answer true/false
type questions:

John is in the playground.
Daniel picks up the milk.
Is John in the classroom? A:no
Does Daniel have the milk? A:yes

(7) Counting

▪ This task tests the ability of the QA system to perform
simple counting operations, by asking about the number
of objects with a certain property:

Daniel picked up the football.
Daniel dropped the football.
Daniel got the milk.
Daniel took the apple.
How many objects is Daniel holding?
A:two

(8) Lists/Sets

▪ While many of our tasks are designed to have single word
answers for simplicity, this tasks tests the ability to
produce a set of single word answers in the form of a list:

Daniel picks up the football.
Daniel drops the newspaper.
Daniel picks up the milk.
What is Daniel holding? A:milk,football

The task above can be seen as a QA task related to database
search.
Note that we could also consider the following question types:
Intersection: Who is in the park carrying food?
Union: Who has milk or cookies?
Set difference: Who is in the park apart from Bill?
However, we leave those for future work.

(9) Simple Negation

▪ We test one of the simplest types of negation, that of
supporting facts that imply a statement is false:

Sandra travelled to the office.
Fred is no longer in the office.
Is Fred in the office? A:no
Is Sandra in the office? A:yes

The Yes/No task (6) is a prerequisite.

Slightly harder: we could add things like “Is Fred with
Sandra?”

(10) Indefinite knowledge

▪ This task tests if we can model statements that describe
possibilities rather than certainties:

John is either in the classroom or the
playground.
Sandra is in the garden.
Is John in the classroom? A:maybe
Is John in the office? A:no

The Yes/No task (6) is a prerequisite.

Slightly harder: we could add things like “Is John with
Sandra?”

(11) Basic Coreference

▪ This task tests the simplest type of coreference, that of
detecting the nearest referent, for example:

Daniel was in the kitchen.
Then he went to the studio.
Sandra was in the office.
Where is Daniel? A:studio

Next level of difficulty: flip order of last two statements,
and it has to learn the difference between ‘he’ and
‘she’.

Much harder difficulty: adapt a real coref dataset
into a question answer format.

(12) Conjunction

▪ This task tests referring to multiple subjects in a single
statement, for example:

Mary and Jeff went to the kitchen.
Then Jeff went to the park.
Where is Mary? A:kitchen

(13) Compound Coreference

▪ This task tests coreference in the case where the pronoun
can refer to multiple actors:

Daniel and Sandra journeyed to the
office.
Then they went to the garden.
Sandra and John travelled to the kitchen.
After that they moved to the hallway.
Where is Daniel? A:garden

(14) Time manipulation

▪ While our tasks so far have included time implicitly in the
order of the statements, this task tests understanding the
use of time expressions within the statements:

In the afternoon Julie went to the park.
Yesterday Julie was at school.
Julie went to the cinema this evening.
Where did Julie go after the park?
A:cinema

Much harder difficulty: adapt a real time expression
labeling dataset into a question answer format, e.g.
Uzzaman et al., ‘12.

(15) Basic Deduction

▪ This task tests basic deduction via inheritance of
properties:

Sheep are afraid of wolves.
Cats are afraid of dogs.
Mice are afraid of cats.
Gertrude is a sheep.
What is Gertrude afraid of? A:wolves

Deduction should prove difficult for MemNNs because it
effectively involves search, although our setup might
be simple enough for it.

(16) Basic Induction

▪ This task tests basic induction via inheritance of
properties:

Lily is a swan.
Lily is white.
Greg is a swan.
What color is Greg? A:white

Induction should prove difficult for MemNNs because it
effectively involves search, although our setup might
be simple enough for it.

(17) Positional Reasoning

▪ This task tests spatial reasoning, one of many
components of the classical SHRDLU system:

The triangle is to the right of the blue square.
The red square is on top of the blue square.
The red sphere is to the right of the blue
square.
Is the red sphere to the right of the blue
square? A:yes
Is the red square to the left of the triangle?
A:yes

The Yes/No task (6) is a prerequisite.

(18) Reasoning about size

▪ This tasks requires reasoning about relative size of objects
and is inspired by the commonsense reasoning examples
in the Winograd schema challenge:

The football fits in the suitcase.
The suitcase fits in the cupboard.
The box of chocolates is smaller than the
football.
Will the box of chocolates fit in the suitcase?
A:yesTasks 3 (three supporting facts) and 6 (Yes/No) are

prerequisites.

(19) Path Finding

▪ In this task the goal is to find the path between locations:

The kitchen is north of the hallway.
The den is east of the hallway.
How do you go from den to kitchen?
A:west,north

This is going to prove difficult for MemNNs because it
effectively involves search.
(The original MemNN can also output only one word )

(20) Reasoning about Agent’s Motivations

▪ This task tries to ask why an agent performs a certain action.

▪ It addresses the case of actors being in a given state (hungry,
thirsty, tired, …) and the actions they then take:

John is hungry.
John goes to the kitchen.
John eats the apple.
Daniel is hungry.
Where does Daniel go? A:kitchen
Why did John go to the kitchen? A:hungry

One way of solving these tasks: Memory
Networks!!

MemNNs have four component networks (which
may or may not have shared parameters):

▪ I: (input feature map) this converts incoming
data to the internal feature representation.

▪ G: (generalization) this updates memories
given new input.

▪ O: this produces new output (in
featurerepresentation space) given the
memories.

▪ R: (response) converts output O into a
response seen by the outside world.

Experiments
▪ Protocol: 1000 training QA pairs, 1000 for test.

“Weakly supervised” methods:

▪ Ngram baseline, uses bag of Ngram features
from sentences that share a word with the
question.

▪ LSTM

Fully supervised methods (for train data, have
supporting facts labeled):

▪ Original MemNNs, and all our variants.

Action Recognition Results

Use optical flows

Use raw pixel inputs

Baselines

	Slide 1
	Slide 2
	Slide 3
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 44
	Slide 45
	Slide 48
	Slide 49
	Slide 52
	Slide 60
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Spatial Model
	Slide 70
	Slide 71
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 90
	Slide 91
	Slide 92
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	(1) Basic Factoid QA with Single Supporting Fact
	(2) Factoid QA with Two Supporting Facts
	(2) Shuffled Factoid QA with Two Supporting Facts
	(3) Factoid QA with Three Supporting Facts
	(4) Two Argument Relations: Subject vs. Object
	(5) Three Argument Relations
	(6) Yes/No Questions
	(7) Counting
	(8) Lists/Sets
	(9) Simple Negation
	(10) Indefinite knowledge
	(11) Basic Coreference
	(12) Conjunction
	(13) Compound Coreference
	(14) Time manipulation
	(15) Basic Deduction
	(16) Basic Induction
	(17) Positional Reasoning
	(18) Reasoning about size
	(19) Path Finding
	(20) Reasoning about Agent’s Motivations
	One way of solving these tasks: Memory Networks!!
	Experiments
	Slide 174

