
Jens Axboe
Software Engineer

What’s new with io_uring
FASTER IO WITH A CONSISTENT MODEL? YES PLEASE

Quick primer

Source: https://medium.com/nttlabs/rust-async-with-io-uring-db3fa2642dd4

System calls io_uring_setup(2)

Sets up an io_uring instance, application then mmap(2)’s the
SQ and CQ ring memory. Returns a file descriptor,
application closes fd when done (or on process exit).

io_uring_enter(2)

Informs the kernel about work to be done, waits for work to
be completed, or both.

io_uring_register(2)

Auxiliary functions, like registering file, buffers, setting
async worker CPU affinities, etc.

Why? AIO API is pretty horrible and inefficient. Opinions
are subjective, but I think we have pretty universal
agreement on that one. libaio is just a useless
wrapper.

AIO not widely used because it only supports one
niche use case, even 20 years later.

Why not do a proper API that could work in an
efficient manner for a wide range of use cases?

Key features Actually, you know, async!

Zero-copy submissions, no indirections.

Lock-less communication.

Extendable.

Easy to use.

Feature rich.

liburing Easy to use, minimize boilerplate code in app.

Kernel independent. Use any version with any kernel.

Helps hide some of the quirkiness that inevitably
ends up in APIs that can never get broken.

More future proof for kernel additions and changes.

Example

#include <liburing.h>

struct io_uring_sqe *sqe;
struct io_uring_cqe *cqe;
struct io_uring ring;

io_uring_queue_init(8, &ring, 0);

/* get request slot, prepare request */
sqe = io_uring_get_sqe(&ring);
io_uring_prep_read(sqe, fd, buf, sizeof(buf), offset);

/* submit request(s) to the kernel */
io_uring_submit(&ring);

/* wait for a completion */
io_uring_wait_cqe(&ring, &cqe);
if (cqe->res < 0)
 printf("Read error: %s\n", strerror(-cqe->res);
else
 printf("Read %d from file\n", cqe->res);

/* mark cqe as seen, increments CQ ring head */
io_uring_cqe_seen(&ring, cqe);

Lifetimes SQE lifetime is from get → submit. Hence SQ ring
size only limits batch size, not in-flight IO count.

Requests passing in data structs need to ensure
validity only until submit is done, not until
completion.

Store sqe→user_data and retrieve it as
cqe→user_data, tying a completion to a specific
submission.

CQE wait functions tell you nothing about the result
of a request, only if waiting was successful or not.

What’s new

Native
workers

Originally io-wq used kernel threads that assumed
the identity of the original task when needed. This
was risky.

Available in 5.12, io-wq is based on io-threads. These
are normal task threads, except they never leave the
kernel and they don’t take signals.

Source: https://blog.cloudflare.com/missing-manuals-io_uring-worker-pool/

Native
workers

Native io-threads eliminate security concerns with
io-wq offload, for the requests that need that.

It also makes offload a bit more efficient, as no
identify switching is needed (files_struct, mm, creds,
etc).

It also fixes cases that didn’t previously work, like
/proc/self, reading from signalfd, etc.

Enables IORING_SETUP_SQPOLL to work with any file
type, or any request in general, and without
privilege requirements.

Available in 5.12, identified by
IORING_FEAT_NATIVE_WORKERS.

io-wq poll io-wq used to just block when offloaded.

With hybrid mode, even io-wq can take advantage of
the internal poll support.

Not user visible, just faster and more efficient.

Available since 5.16.

TIF_NOTIFY_SIGNAL io_uring relies on a signal-like mechanism for
interrupting in-kernel waits just like normal signals.

Signals and threads are not happy partners.

Support for all architectures was added for
TIF_NOTIFY_SIGNAL, which decouples the signal
interruption from the shared struct
sighand_struct.

Was miserable work, but yielded very nice
performance improvements. Available since 5.10.

Direct
descriptors

Normal file descriptors can be slow, particularly for
threaded applications. fget / fput per system call is
an atomic inc and dec in shared data. Not unusual to
see 3-5% overhead.

Direct descriptors exist only within the ring itself, but
can be used for any request within that ring.

Enables use of links for

[open file X]→[read file X]→[close file X]

operations since the descriptor can be known in
advance.

Also referred to as fixed or registered files.

[1] https://lwn.net/Articles/863071/

io_uring

Thread A

io_uring

Thread B

io_uring

Thread C

io_uring

Thread D

struct files_struct

io_uring

Thread A

io_uring

Thread B

io_uring

Thread C

io_uring

Thread D

Direct descriptor table

Direct descriptor table

Direct descriptor table

Direct descriptor table

struct files_struct

How to use
direct
descriptors

io_uring_register_files(ring, files, nfiles);

Files is array of valid descriptors, or -1

io_uring_register_files_sparse(ring, nfiles);

Register existing normal file descriptor, use
registered index:

sqe→flags |= IOSQE_FIXED_FILE;
sqe→fd = fixed_file_index;

Or instantiate directly with the io_uring socket,
accept, openat/openat2. Open into existing slot to
close + replace.

io_uring_prep_openat_direct();
io_uring_prep_socket_direct();
io_uring_prep_accept_direct();

Managed
direct
descriptors

Prior to 5.19, applications had to manage their own
direct descriptor space.

5.19 enables io_uring to manage it, like the normal
file descriptor table.

Use IORING_FILE_INDEX_ALLOC as the index,
allocated descriptor value returned in
cqe→res.

io_uring has prep helpers for the direct cases too,
making this easy.

Registered
ring fd

Why not get rid of the fget / fput for the
io_uring_enter() system call as well?

Not usable on a shared ring. But don’t do those in
general!

int io_uring_register_ring_fd(struct io_uring *ring);
int io_uring_unregister_ring_fd(struct io_uring *ring);

Provided
buffers

Rather than pass in an IO buffer for a recv() or
recvmsg() type operation, provide a buffer pool
upfront. When the file or socket is ready to transfer
data, pick a buffer and tell the application about it in
the CQE.

Enables efficient use of memory with a completion
based IO model.

How to use
provided
buffers

io_uring_register_buffers(ring, vecs,
 nvecs);
io_uring_prep_provide_buffers();

Good use case for IOSQE_CQE_SKIP_SUCCESS

sqe→flags |= IOSQE_BUFFER_SELECT;
sqe→buf_group = buffer_group;

CQE has IORING_CQE_F_BUFFER set, cqe→flags
contains buffer ID of selected buffer.

Ring
provided
buffers

Even with IORING_CQE_SKIP_SUCCESS, the existing
provided buffers added some overhead to the
request. Batching helps, but can be hard and/or
expensive to do.

App allocates memory for the buffer ring, kernel
maps it.

Cannot share a buffer group ID with classic provided
buffers.

Available in 5.19.

io_uring_register_buf_ring(ring, reg, flags);
io_uring_buf_ring_add(br, buf, size, id, off);
io_uring_buf_ring_advance(br, count);
io_uring_buf_ring_cq_advance(ring, br, count);

Results

Normal flow of request is attempt to issue, arm
poll if data / space not available.

IORING_RECVSEND_POLL_FIRST

Don’t attempt issue first, go straight to poll.

IORING_CQE_F_SOCK_NONEMPTY

Previous eg recv() returns if there was more
data available.

Available in 5.19.

Support for app
driven issue and
poll

->uring_cmd() Communicate through the entire stack, file type
specific requests (aka async ioctls).

IORING_SETUP_SQE128, IORING_SETUP_CQE32

NVMe passthrough support, both IO and admin
queues.

Many potential use cases. Return bytes left in
socket after receive?

Trivial setsockopt() / getsockopt() for direct
descriptors.

Available in 5.19.
[1] https://lwn.net/Articles/844875/

Cooperative
completion
scheduling

io_uring uses task_work for retries or posting
completions. This uses IPI based signaling with
TIF_NOTIFY_SIGNAL, which forces a task
preemption if running in user space. This can cause
unnecessary re-schedules. Setup flags:

IORING_SETUP_COOP_TASKRUN
IORING_SETUP_TASKRUN_FLAG

If set, task_work runs happen when the task
transitions anyway. liburing supports it for peek,
too.

IORING_SQ_TASKRUN

Flag set in the SQ ring flags if events are
available.

Available in 5.19.

Cancelations Support for cancelations beyond just matching
user_data in 5.19.

IORING_ASYNC_CANCEL_ALL
IORING_ASYNC_CANCEL_FD
IORING_ASYNC_CANCEL_ANY

FD matches using the file descriptor of the original
request, rather than user_data. ALL keeps
canceling matching requests. ANY matches any
request.

io_uring_prep_cancel();
io_uring_prep_cancel_fd();

Multishot
accept

Usually a io_uring request will post a single
completion. Some can post more, and will inform
the app of more coming by setting
IORING_CQE_F_MORE in cqe→flags. Multi-shot poll is
one example.

5.19 supports this for accept as well. Application
can post a single accept request and get a
completion event every time a connection request
comes in. One accept request to rule them all.

io_uring_prep_multishot_accept();
io_uring_prep_multishot_accept_direct();

OP_MSG_RING Supports sending a “message” from one ring to
another – one 64-bit value and one 32-bit value.

io_uring_prep_msg_ring(…, fd, len, data, …);

Useful for passing eg a work item pointer between
threads that each have their own ring.

Direct descriptor passing a future potential use
case.

Available in 5.18

EXT_ARG Timeouts used to be done by posting a timeout
command. liburing hid this.

Unhandy for split submit+complete threads.

IORING_ENTER_EXT_ARG

Passes in a struct with signal and timeout
information.

Handled internally in liburing, but worth knowing
about because of the previous implied submission.

Generic
optimizations

Request (and other structs) memory recycling

Request reference counting

Request completion batching, inline completions

task_work optimizations

Locking optimizations (split and IRQ less)

LOOKUP_CACHED support for opening files

Pass batching information all the way down the
stack

Many many more optimizations. Cycle counting and
cacheline layout work is not a forgotten art here.

liburing 2.2 Release coming shortly, synced with 5.19.

Bug fixes, optimizations, and helpers for all the new
features.

2.1 had 8 man pages, 2.2 has 80. Almost all of
liburing is documented at this point. ~5200 new
lines of man pages was added.

~7000 added lines of regression tests.

Should you upgrade? Yes!

git://git.kernel.dk/liburing

Cross platform Microsoft introduced “I/O Rings” [1] with Windows
11, which DirectStorage is built on top of.

Eerily similar to io_uring, and even later additions
mostly mimic io_uring functionality.

Still fairly simplistic and limited in functionality.

Will make cross platform applications feasible [2].

Check out Yarden Shafir’s blog posts and P99 talk
for more details.

FreeBSD version in the works?

[1] https://docs.microsoft.com/en-us/windows/win32/api/ioringapi/
[2] https://github.com/CarterLi/libwinring

https://docs.microsoft.com/en-us/windows/win32/api/ioringapi/

Upcoming
features

Support for true async buffered writes. Targeting
5.20 with XFS support, btrfs in the works.

Further networking features to improve efficiency,
and improvements in this area in general. NAPI, zc,
etc.

Incrementally consumed provided buffers.

Level triggered poll support [1].

Not io_uring specific, but support for ITER_UBUF.

Faster io-wq offload.

Code split. Moving fs/io_uring.c into io_uring/
and splitting it into related opcodes and topical files
[2].

[1] OK so I ended up doing this while writing slides…
[2] https://git.kernel.dk/cgit/linux-block/log/?h=for-5.20/io_uring

Final words Completion based is a new IO model on networking
for Linux and related operating systems.

Retrofitting can be harder to do right because of
that.

Applications or library adaptions of io_uring that
simply switch an epoll(7) (or <insert event library
here>) based readiness model to io_uring are
trivial, but also woefully uninteresting.

The model unifies IO across all types of files and
sockets. Finally!

We’re in it for the long run. Who doesn’t need
another decade long project?

https://github.com/dragonflydb/dragonfly/

	We believe in the potential of people
	Slide 2
	Slide 3
	Schedule
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

