
Windows
A Software Engineering 
Odyssey

Mark Lucovsky

Distinguished Engineer

Microsoft Corporation



Agenda

History of NT

Design Goals/Culture

NT 3.1 Development vs. Windows 2000 
Development

Development for the next 10 years



NT Timeline first 10 years

2/89 Coding Begins

7/93 NT 3.1 Ships

9/94 NT 3.5 Ships

5/95 NT 3.51 Ships

7/96 NT 4.0 Ships

12/99 NT 5.0 a.k.a. Windows 2000 
ships



Unix Timeline first 20 years

’69 Coding Begins

’71 First Edition – PDP 11/20

’73 Fourth Edition – Rewritten in C

’75 Fifth Edition – Leaves Bell Labs, basis for 
BSD 1.x

’79 Seventh Edition – One of the best

’82 System III

’84 4.2 BSD 

’89 SVR4 Unification of Xenix, BSD, System V
 NT development begins



History of NT

Team forms November 1988

Six guys from DEC

One guy from Microsoft

Build from the ground up
 Advanced PC Operating System

 Designed for for desktops and servers

 Secure, scalable SMP design

 All new code

Schedule: 18months (only missed our date by 
3 years)



History of NT (cont.)

Initial effort targeted at Intel i860 code-named N10, 
hence the name NT which doubled as N-Ten and New 
Technology

Most development done on i860 simulator running on 
OS/2 1.2 (took about 30 minutes) 

Microsoft built a single board i860 computer code 
named Dazzle including the supporting chipset and 
actually ran a full kernel, memory management, etc 
on the machine.

Compiler came from Metaware with weekly UUCP 
updates sent to my Sun-4/200.

Microsoft wrote a PE/Coff linker as well as a graphical 
cross debugger 



Design Longevity

OS Code has a long lifetime

You have to base your OS on solid design 
principles

You have to set goals, and not everything can 
be at the top of the list

You have to design for evolution in hardware, 
usage patterns, etc.,

Only way to succeed is base your design on a 
solid architectural foundation

Development environments never get enough 
attention…



Goal Setting

First job was to establish high level goals.
 Portability – Ability to target more than one processor, avoid 

assembler, abstract away machine dependencies. We purposely 
started the i386 port very late in order to avoid falling into a 
typical, Microsoft, x86 centric design.

 Reliability – Nothing should be able to crash the OS. Anything that 
crashes the OS is a bug. Very radical thinking inside of Microsoft 
considering Win16 was cooperative multi-tasking in a single 
address space, and OS/2 had many similar attributes with respect 
to memory isolation 

 Extensibility – Ability to extend the OS over time

 Compatibility – With DOS, OS/2, POSIX, or other popular runtimes. 
This is the foundation work that allowed us to invent windows two 
years into NT OS/2 development.

 Performance – All of the above are more important than raw 
speed!



NT OS/2 Design Workbook

Design of executive captured in functional specs

Written by engineers, for engineers

Every functional interface was defined and reviewed

Small teams can do this efficiently, 

 making this process scale is an almost impossible challenge

 Senior developers are inundated with spec reviews and the 
value of their feedback becomes meaningless

 You have to spread review duties broadly, and everyone 
must share the “culture”



Developing a Culture

To scale a development team, you need to 
establish a culture
 Common way of evaluating designs, making 

tradeoffs, etc.

 Common way of developing code and reacting to 
problems (build breaks, critical bugs, etc.)

 Common way of establishing ownership of 
problems

Goal setting can be the foundation for the 
culture

Keeping a culture alive as a team grows is a 
huge challenge



The NT Culture
Portability, Reliability, Security, and Extensibility 
ingrained as the teams top priority
 Every decision was made in the context of these design 

goals

Everyone owns all the code, so whenever something 
is busted anyone has a right and a duty to fix it
 Works in small groups (< 150 people) where people cover 

for each other

 Fails miserably in large groups

Sloppiness is not tolerated
 Great idea, but very difficult to nurture as group grows

 Abuse and intimidation gets way out of control, can’t keep 
calling people stupid and expect them to listen

A successful culture has to accept that mistakes will 
happen



Development Environment

NT 3.1 vs. Windows 2000

 Development Teams

 Source Code Control System

 Process Management

 Serialized Development

 Defects



Development Team

NT 3.1
 Starts very small (6), grows very slowly to 200 people

 NT Culture was commonly understood by all

Windows 2000
 Mass assimilation of other teams into the NT team

 NT 4.0 had 800 developers, Windows 2000 had 1400

 Original NT culture practiced by the old timers in the group, 
but keeping the culture alive was very difficult due to 
growth, physical separation, etc.
 Diluted culture leads to much conflict

 Accountability: I don’t “own” the code that is busted, see Markl

 reliability vs. new features

 64-bit portability vs. new features



Source Code Control System 
(NT 3.1)

Internally developed, maintained by a non-NT 
tools team
 No branch capability, but with small team, it was 

not needed

10-12 well isolated source “projects”, 6M LOC

Informal project separation worked well
 minimal obscure source level dependencies

Small hard drive could easily hold entire 
source tree

Developer could easily stay in synch with 
changes made to the system



Source Code Control System 
(Windows 2000)

Windows team takes ownership of source code control 
system which at this point is on life support

Branch capability sorely needed, tree copies used as 
substitute, so merging is a nightmare

180 source “projects” 29M LOC

No project separation, reaching “up and over” was very 
common as developers tried to minimize what they had 
to carry on their machines to get their jobs done

Full source base required about 50Gb of disk space

To keep a machine in synch was a huge chore (1 week 
to setup, 2 hours per-day to synchronize)



Process Management (NT 3.1)
Safe synch period in effect for ~4 hours each 
day, all other times the rule is check-in when 
ready

Build lab synchs during morning safe synch 
period, and starts a complete build. 
 Build breaks are corrected manually during the 

build process (1-2 breaks was normal)

Complete build time is 5 hours on ~486/50

Build is boot tested with some very minimal 
testing before release to stress testing
 Defects corrected with incremental build fixes

4pm, stress testing on ~100 machines begins



Process Management 
(Windows 2000)

Developers are not allowed to change the source tree without 
explicit, email/written permission
 Build lab manually approves each check-in using a combination of 

email, web, and bug tracking database

Build lab approves about 100 changes each day and manually 
issues the appropriate synch and build commands
 Build breaks are corrected manually, and when they occur, all 

further build processing is halted

 A developer that mistypes a build instruction can stop the build lab, 
which in turn stops over 5,000 people

Complete build time is 8 hours on 4 way PIII Xeon 550 with 
50Gb disk and 512k RAM

Build is boot tested and assuming we get a boot, extensive 
baseline testing begins
 Testing is a mostly manual, semi-automated process

 Defects occurring in the boot or test phase must be corrected 
before build is “released” for stress testing

4pm, stress testing on ~1000 machines begins



Team Size

Product Dev Team Size Test Team Size

NT 3.1 200 140

NT 3.5 300 230

NT 3.51 450 325

NT 4.0 800 700

Win2k 1400 1700



Serialized Development
The model from NT 3.1 -> Windows 2000

All developers on team check-in to a single main line branch

Master build lab synchs to main branch and builds and releases 
from that branch

Checked in defect affects everyone waiting for results



Defect Rates and Serialization

Compile time or run time bugs that occur in a 
developers office only affect that developer

Once a defect is checked-in, the number of people 
affected by the defect increases

Best developers are going to check-in a runtime or 
compile time mistake at least twice each year

Best developers will be able to cope with a checked-
in compile time or run time break very quickly (about 
20 minutes end-to-end) 

As the code base gets larger, and as the team gets 
larger, these numbers typically double



Defect Rates Data

Product

and

Team Size

Defects:

Per year

Per Dev

Time to Fix:

Per Defect

Defects:

Per Day

Total

Defect Fix Time

NT 3.1, 200 2 20 minutes 1 20 minutes

NT 3.5, 300 2 25 minutes 1.6 41 minutes

NT 3.51, 450 2 30 minutes 2.5 1.2 hours

NT 4.0, 800 3 35 minutes 6.6 3.8 hours

Win2k, 1400 4 40 minutes 15.3 10.2 hours

With serialized development:

 Good, small teams operate efficiently

 Even the absolute best large teams are always broken, and 
always serialized



Development Environment 
Summary

NT 3.1
 Fast and loose development, lots of fun, lots of energy

 Few barriers to getting your work done

 Defects serialized parts of the process, but didn’t stop the 
whole machine, minimal down time

Windows 2000
 Source code control system bursting at the seams

 Excessive process management serialized the entire 
development process, 1 defect stops 1400 devs, 5000 team 
members!

 Resources required to build a complete instance of NT were 
excessive giving few developers a way to be successful



Focused Fixes

Source Code Control System

Source Code Restructuring

Make the large team work like a set of small 
teams
 Windows is already organized into reasonable size 

development teams

 Goal is to allow these teams to work as a team 
when contributing source code changes rather 
than as a group of individuals that happen to work 
for the same VP
 Parallel Development, Team Level Independence

Automated Builds



Source Code Control System

New source code control system 
identified 3/99 (SourceDepot)

Native branch support

Scalable, high speed, client server 
architecture

New machine setup 3 hours vs. 1 week

Normal synch 5 minutes vs. 2 hours



Source Code Control System 
(cont.)

Transition to SourceDepot done on LIVE 
Win2k code base

Hand built SLM -> SourceDepot 
migration system allowed us to keep in 
synch with the old system while 
transitioning to SourceDepot and 
changing the source code layout



Source Code Restructuring

16 Depots for covering each major area 
of source code

Organization is focused on:
 minimizing cross project dependencies to 

reduce defect rate

 Sizing projects to compile in a reasonable 
amount of time

 To build a project, all you need is the code 
for that project, AND the public/root 
project

 Cross project sharing is explicit



New Tree Layout

The new tree layout features
 Root project houses public

 15 Additional projects hang off of 
the Root

 No nested projects

 All projects build independently

 Cross project dependencies 
resolved via Public, 
Public\internal using checked in 
interfaces



Explicit Internal Interface 
Sharing

The Base Project 

internal interfaces 

exposed here

The Admin Project 

internal interfaces 

exposed here



Team Level Independence
Each team determines its own check-in policy, enable 
rapid, frequent check ins

Teams are isolated from mistakes made by other 
teams
 When errors occur, only the team causing the error is 

affected

 A build, boot, or test break only affects a small subset of the 
product group

Each team has their own view of the source tree, 
their own mini build lab, and builds an entire 
installable build

Any developer with adequate resources can easily 
duplicate a mini build lab
 build and release a completely installable Windows System



Parallel Development (cont.)

Main Build Lab Branch

Debbl’s Windows Branch

• Main branch is built by the 

master build lab.

• Quality is always high because 

only well tested complete group 

check-ins are done here

Robs Base Branch

• Team branches have their own check-in 

policy.

• Team members check-in to their branch, not 

the main branch

• Each team branch has their own mini-build 

lab that produces full builds for that team

Robs team checks into his 

own branch without 

affecting Main, or Debbl

Debbl’s team makes similar 

check-ins without impacting 

Rob or Main

Rob integrates build lab 

changes to his tree

Rob builds resulting tree, tests tree and 

then integrates to the main branch
Debbl makes a few changes then 

integrates from the main build lab branch

During test, more changes are needed to 

make system work well. When done, 

integration into main build lab branch 

occurs. During this period, robs team 

continues to check-in to their branch N+1 Dev Branch

N+1 Team checks into their branch and periodically 

integrates from main

QFE/SP Branch

At RTM, a QFE/SP branch is created. N+1 Branch integrates 

from main, then integrates their branch into main



Parallel Development



Team Level Independence 
(cont.)

Teams integrate their changes into the “main” trunk one at a 
time, so there is a high degree of accountability when 
something goes wrong in “main”

Build breaks will happen, but they are easily localized to the 
branch level, not the main product codeline

Teams are isolated from mistakes made by other teams
 When errors occur, they affect smaller teams

 A build, boot, or test break only affects a small subset of the 
windows development team

Each team has their own view of the source tree and their own 
mini build lab
 I.e. Each team’s lab is enlisted in ALL projects and builds ALL 

projects

 Each team needs resources able to build an NT system

Each team’s build lab builds, tests, and mini-bvt’s a complete 
standalone system



Automated Builds

Build lab runs 100% hands off

10am and 10pm full synch and full build
 Build failures are auto detected and mailed to the 

team

 Successful builds are automatically released with 
automatic notification to the team

 Each VBL can build:
 4 platforms (x86 fre/chk, ia64 fre/chk) = 8 builds each 

day, 56 each week

 No manual steps at all. 100% Hands off automatic

 7 VBLs in Win2k Group

 Majority of builds work, but failures when they occur are 
isolated to a single team



Productivity Gains

Developers can easily switch from working on release 
N to release N+1

Developers in one team will not be impacted by 
mistakes/changes made by other teams

Developers have long, frequent checkin windows 
(Base team has a 24x7 open checkin window, vs. 2-3 
hour per day checkin window with manual approval 
used during W2K

Source code control system is fast and reliable

Testing is done on complete builds instead of 
assorted collections of private binaries
 What is in the source code control system is what is tested



How is it working?
Source code control system is working very 
well
 No scaling problems, easily handling 5100 total 

user enlistments and 411,000 files

Source code restructuring is working well
 No new depots added, explicit sharing between 

projects still the rule

Parallel Development is working very well
 Teams feel independent and able to control their 

own destiny

 Per-team serialization only occurs when a team 
“reverse integrates” their changes into the main 
branch



Summary

The initial NT development environment and 
culture worked well for the first few years

Ten years of team and code growth forced a 
major re-design of the development 
environment and culture

With the new environment in place, the team 
is working a lot like they did in the NT 3.1 
days with a small, fast moving, development 
team



Questions


