
Windows 10  
Control Flow Guard  

Internals
MJ0011

Agenda
• Introduction to Control Flow Guard

• How CFG Works: User Mode Part

• How CFG Works: Kernel Mode Part

• The Weakness of CFG

 
Intro to Control Flow Guard  

• New security mitigation introduced in Windows8.1 Preview
• Then disabled in Windows 8.1 RTM because of compatibility issues

• Re-enabled in Windows10 Technical Preview
• With some minor changes

• An imperfect implementation of Control-Flow Integrity(CFI)
• Prevent exploits which attempts to subvert machine code execution

Control-Flow Integrity
• “Control-Flow Integrity - Principles, Implementations, and

Applications”
• http://research.microsoft.com/pubs/69217/ccs05-cfi.pdf

• “Native Client: A Sandbox for Portable, Untrusted x86 Native Code”
• http://static.googleusercontent.com/media/research.google.com/en/us/

pubs/archive/34913.pdf

• “Practical Control Flow Integrity & Randomization for Binary
Executables”
• http://www.cs.berkeley.edu/~dawnsong/papers/Oakland2013-CCFIR-CR.pdf

http://research.microsoft.com/pubs/69217/ccs05-cfi.pdf
http://research.microsoft.com/pubs/69217/ccs05-cfi.pdf
http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/34913.pdf
http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/34913.pdf
http://www.cs.berkeley.edu/~dawnsong/papers/Oakland2013-CCFIR-CR.pdf
http://www.cs.berkeley.edu/~dawnsong/papers/Oakland2013-CCFIR-CR.pdf
http://www.cs.berkeley.edu/~dawnsong/papers/Oakland2013-CCFIR-CR.pdf
http://www.cs.berkeley.edu/~dawnsong/papers/Oakland2013-CCFIR-CR.pdf

Control Flow Guard
• CFG prevents untrusted indirect call
• Also called “icall guard” in project code

• It relys on compile and link level processing on binary
• Enforce additional calls target check before each indirect calls in

machine code

• Windows adds some kernel mechanisms to improve its
performance
• Build shared function bitmap table into protected process

How CFG Works: User Mode Part
• New load config structure

• Initialize SystemDllInitBlock and load config

• Function bitmap layout and target validation logics

• Add CFG exception

New Load Config Structure

• New load config structure adds 5 new fields

• Including key data for CFG which is generated in build processing
• CFG check function pointer(point to null subroutine)
• CFG function table(used by NT kernel)
• CFG flags

Init LdrSystemDllInitBlock and Load Config
• Initialize LdrSystemDllInitBlock
• +0x60 : Bitmap Address
• +0x68 : Bitmap Size
• Initialized by PspPrepareSystemDllInitBlock

• NtCreateUserProcess->PspAllocateProcess->PspSetupUserProcessAddressSpace

• LdrpCfgProcessLoadConfig
• Check PE Headers->OptionalHeader.DllCharacteristics

• IMAGE_DLLCHARACTERISTICS_GUARD_CF flag

• Set LoadConfig->GuardCFCheckFunctionPointer
• LdrpValidateUserCallTarget

Call Target Validation Logics
• LdrpValidateUserCallTarget

• It only executes 10 instructions in most cases

Call Target Validation Logics
• LdrpValidateUserCallTarget

• Use (Address / 0x100) as index to get 32 bits from function
bitmap
• So one bit in function bitmap will indicates 8 bytes address range

Call Target Validation Logics
• LdrpValidateUserCallTarget

• Clean low 3 bits of address and use bit3~bit7 as index in 32 bits
bitmap
• So address must at least aligned to 0x8

Call Target Validation Logics
• LdrpValidateUserCallTarget

• Actually in most cases valid call target is aligned to 0x10
• Address which is not aligned to 0x10 will always use odd bit
• In most cases there are only half bits used in bitmap

Call Target Validation Logics
• LdrpValidateUserCallTarget

• Finally, bit test to see if there is a valid function at this
location

Function Bitmap Layout
• Guard function bitmap is mapping into every protected process

• Every bit in the bitmap indicates 8 bytes in address space
• Bitmap size = HighestUserAddress / 8 / 8 = 0x80000000 / 0x40 = 0x2000000
• It will use 32MB user address space and about 7MB are committed(non-3GB

Mode)
• There are about only 200~300KB remaining in working set (physical memory)
• Bitmap is mapped into every process and shared with each other

Unmapped Bitmap Processing
• RtlDispatchException adds a mechanism to process the case when

call target validation tries to access unmapped bitmap area
• When exception raised and dispatched to user mode exception handler

• KiUserExceptionDispatcher-> RtlDispatchException

• It will check whether Eip is the instruction inside
LdrpValidateUserCallTarget

• Then it will call RtlpHandleInvalidUserCallTarget to avoid invalid call

• This is why LdrpValidateUserCallTarget doesn’t need its own exception
handler

Add CFG Exception
• CFG allows user process to add some exceptions for

compatibility

• Kernelbase!SetProcessValidCallTargets

• It will call NtSetInformationVirtualMemory->
MiCfgMarkValidEntries to add valid call bits into bitmap

How CFG Works: Kernel Mode Part
• CFG Initialization in Booting Process

• CFG Bitmap Mapping in Process Creation Process

• CFG Bitmap Building in Image Loading Process

• Shared Bitmap VS. Private Bitmap

Booting Process
• MiInitializeCfg
• Check PspSystemMitigationOptions from CCS\Session Manager\Kernel:

MitigationOptions

• Calculate CFG bitmap section size using MmSystemRangeStart

• Create CFG bitmap section object(MiCfgBitMapSection32)

Process Creation Process
• PspApplyMitigationOptions

• PspAllocateProcess
• Check mitigation options and set Process->Flags.ControlFlowGuardEnabled

• MiCfgInitializeProcess
• MmInitializeProcessAddressSpace-> MiMapProcessExecutable
• After map system dlls , map CFG bitmap section into process
• Reference and commit CFG VAD bits in bitmap
• Write bitmap mapping information to hyper space
• 0xC0802144:bitmap mapped address
• 0xC0802148: bitmap size
• 0xC0802150: bitmap VAD

Image Loading Process
• MiParseImageCfgBits + MiUpdateCfgSystemWideBitmap
• MiRelocateImage/MiRelocateImageAgain

• When system relocates image, NT kernel will parse new image’s guard
function table and update it into bitmap

• Compress guard function RVA list and set it to global bitmap

Shared Bitmap VS. Private Bitmap
• NT Kernel will check the behaviors which try to modify mapped

bitmap
• NtAllocateVirtualMemory
• NtMapviewOfSection(Data/Image/Physical section)
• NtProtectVirtualMemory

• If user mode code tries to modify mapped bitmap page, kernel
will mark this page into private process memory
• So that process can change bitmap locally or globally
• But so far this feature doesn’t work on my VM(win10 9860) ,

it’s always blocked when acquiring VAD’s push lock☹

The Weakness of CFG
• Rely on Security of Stack Address

• Unaligned Guard Functions

• Unprotected Images and Processes

Stack Address
• If we know thread stack address, we can bypass CFG in many ways

• Overwrite return address on the stack
• CFG only checks indirect call target , does not validate “ret” instruction

• Bypass some checks on trusted functions and still achieve ROP
• Bypass some checks on trusted function to achieve our own purpose

• And stack address is not difficult to obtain☺

• Also if you can leak some important data location, you can
control program behavior indirectly

Unaligned Guard Functions
• CFG only use 32MB address space on X86 machine because of

memory limit
• One bit indicates 8bytes address and actually in most cases 16bytes
• Every guard function address needs to be aligned to 0x10
• If function address is not aligned to 0x10 , it will use the odd bit only

• Unaligned guard function will allow untrusted function call
near the trusted function address

Unaligned Guard Functions
• Is every guard function well aligned?
• I created a tool to parse every binary on Windows10
• The result has many binary with unaligned guard functions!

Unprotected Images and Processes
• CFG relys on compile and link level processing

• So third party modules and even old version MS binary are not
protected

• If the main executable image is not made for CFG, CFG will be
disabled in full process even it will load some system modules
that support CFG

Summary
• CFG is a well designed and implemented mitigation.

• Performance loss and memory consumption are controlled
precisely

• It will significantly raise the bar on memory bug exploitation

• Hope it will finally ship to RTM version of Windows10☺

Acknowledgement
• Yuki Chen
• Vangelis

Question?

• Thank you!

