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ABSTRACT

Introduced in Windows 10, Segment Heap is the native heap implementation used in Windows apps (formerly
called Modern/Metro apps) and certain system processes. This new heap implementation is an addition to the
well-researched and widely documented NT Heap that is still used in traditional applications and in certain types of
allocations in Windows apps.

One important aspect of the Segment Heap is that it is enabled for Microsoft Edge which means that
components/dependencies running in Edge that do not use a custom heap manager will use the Segment Heap.
Therefore, reliably exploiting memory corruption vulnerabilities in these Edge components/dependencies would
require some level of understanding of the Segment Heap.

In this presentation, I'll discuss the data structures, algorithms and security mechanisms of the Segment Heap.
Knowledge of the Segment Heap is also applied by discussing and demonstrating how a memory corruption
vulnerability in the Microsoft WinRT PDF library (CVE-2016-0117) is leveraged for a reliable arbitrary write in the
context of the Edge content process.
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1. INTRODUCTION

With the introduction of Windows 10, Segment Heap, a new native heap implementation was also introduced. It is
currently the native heap implementation used in Windows apps (formerly called Modern/Metro apps) and in
certain system processes, while the older native heap implementation (NT Heap) is still the default for traditional
applications.

From a security researcher’s perspective, understanding the internals of the Segment Heap is important as
attackers may leverage or exploit this new and critical component in the near future, especially because it is being
used by the Edge browser. Additionally, a security researcher performing software audits may need to develop a
proof-of-concept for a vulnerability in order to prove exploitability to the vendor/developer. If creating the proof-
of-concept requires precise manipulation of a heap managed by the Segment Heap, an understanding of its
internals will definitely help. This paper aims to help the reader have a deep understanding of the Segment Heap.

This paper is divided into three major sections. The first section (Internals) discusses in depth the different
components of the Segment Heap. It includes the data structures and algorithms used by each Segment Heap
component when performing their functions. The second section (Security Mechanisms) discusses the different
mechanisms that make it difficult or unreliable to attack important Segment Heap metadata, and in certain cases,
make it difficult to conduct precise heap layout manipulation. The third section (Case Study) is where the
understanding of the Segment Heap is applied by discussing methods for manipulating the layout of a heap
managed by the Segment Heap in order to leverage a vulnerability for a reliable arbitrary write.

Since the Segment Heap and NT Heap share similar concepts, the reader is encouraged to read prior works that
discuss NT Heap internals [1, 2, 3, 4, 5]. These prior works and the various papers/presentations they reference
also discuss the security mechanisms and attack techniques for the NT Heap which will give the reader an idea why
certain heap security mechanisms are in place in the Segment Heap.

All information in this paper is based on NTDLL.DLL (64-bit) version 10.0.14295.1000 from the Windows 10
Redstone 1 Preview (Build 14295).

IBM Security | ©2016 IBM Corporation
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2. INTERNALS

This section discusses in depth the internals of the Segment Heap. The discussion will start with an overview of the
different components of the Segment Heap and then describing the instances when the Segment Heap will be
enabled. After the overview, each Segment Heap component will be discussed in details in their own subsections.

Note that internal NTDLL functions discussed here may be inlined in some NTDLL builds. Therefore, the internal
functions may not be seen in IDA’s functions listing and a copy of the functions may be seen embedded in other
functions.

2.1. OVERVIEW

Architecture

The Segment Heap is consists of four components: (1) The backend which services allocation requests for >128KB
to 508KB. It uses the virtual memory functions provided by the NT Memory Manager to create and manage the
segments where backend blocks are allocated from. (2) The variable size (VS) allocation component which services
allocation requests for <=128KB. It uses the backend to create the VS subsegments where VS blocks are allocated
from. (3) The Low Fragmentation Heap (LFH) services allocation requests for <=16,368 bytes but only if the
allocation size is detected to be commonly used in allocations. It uses the backend to create the LFH subsegments
where LFH blocks are allocated from. (4) The large blocks allocation component services allocation requests for
>508KB. It uses the virtual memory functions provided by the NT Memory Manager for the allocation and freeing
of large blocks.

<= 16,368 bytes <= 128 KB <= 588 KB » 588 KB
Segment Heap
Low Fragmentation Heap Variable Size Allocation
(LFH) (Vs)
LFH Subsegment V5 Subsegment
Allocation Allocation
Backend Large Blocks Allocation
segment Block
Allocation Allocation
v L4
NT Memory Manager

Defaults and Configuration

The Segment Heap is currently an opt-in feature. Windows apps are opted-in by default and executables with a
name that matches any of the following (names of system executables) are also opted-in by default to use the
Segment Heap:

° Ccsrss.exe

IBM Security | ©2016 IBM Corporation
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e Isass.exe

e runtimebroker.exe
e  services.exe

e  smss.exe

e svchost.exe

To enable or disable the Segment Heap for a specific executable, the following Image File Execution Options (IFEO)
registry entry can be set:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\
Image File Execution Options\(executable)
FrontEndHeapDebugOptions = (DWORD)

Bit 2 (©0x04): Disable Segment Heap
Bit 3 (0x08): Enable Segment Heap

To globally enable or disable the Segment Heap for all executables, the following registry entry can be set:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\Segment Heap
Enabled = (DWORD)

0 : Disable Segment Heap
(Not ©): Enable Segment Heap

If after all the checks it is determined that a process will use the Segment Heap, bit @ of the global variable
RtlpHpHeapFeatures will be set.

Note that even if Segment Heap is enabled in a process, not all heaps created by the process will be managed by
the Segment Heap as there are specific types of heaps that still need to be managed by the NT Heap (this will be
discussed in the next subsection).

Heap Creation

If the Segment Heap is enabled (bit @ of Rt1pHpHeapFeatures is set), the heap created by HeapCreate() will be
managed by the Segment Heap unless the dwMaximumSize argument passed to it is not zero (means the heap is
not growable).

If the Rt1CreateHeap() API is directly used to create the heap, all of the following should be true for the Segment
Heap to manage the created heap:

e Heap should be growable: Flags argument passed to Rt1CreateHeap() should have HEAP_GROWABLE set.

e Heap memory should not be pre-allocated (suggests a shared heap): HeapBase argument passed to
RtlCreateHeap() should be NULL.

e |f a Parameters argument is passed to RtlCreateHeap(), the following Parameters fields should be set
to @/NULL: SegmentReserve, SegmentCommit, VirtualMemoryThreshold and CommitRoutine.

e The Lock argument passed to RtlCreateHeap() should be NULL.

The illustration below shows the heaps created when the Edge content process (a Windows app) is initially loaded.

IBM Security | ©2016 IBM Corporation
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0:025> lheap

Heap Address HNT- Sequnent Heap
219d8de0000
219d8cfonon
219d3050000
219dae00000
221db340000

Heap
Heap
Heap
Heap
Heap

Seqgmnent
HT

Segnent
Segnent
Segmnent

3 Pid 2916 - WinDbg:10.0.14281.933 AMDB4 — m} X
File Edit View Debug Window Help
| & | BIEZHR B ([ NEEEEEEEOSE|EE] A
Command =
0:025> |.

0 id: bid attach nane: C:~\Windows Systendpps Microsoft MicrosoftEdge 8wekyb3id8bbwe nicrosof tedgecp. exe

[0:025s

Ln0, Col0 Sysl:<lLocal> Proc000:b&d Thrd 025:748

ASM  OVR  CAPS NUM

Four of five are managed by the Segment Heap. The first heap is the default process heap, and the third heap is
the MSVCRT heap (msvcrt!crtheap). The second heap is a shared heap (ntd11l!CsrPortHeap), and therefore, it is

managed by the NT Heap.

HeapBase and _SEGMENT_HEAP Structure

When a heap managed by the Segment Heap is created, the heap address/handle (called HeapBase for the rest of

this paper) returned by HeapCreate() or RtlCreateHeap()
counterpart of the _HEAP structure of the NT Heap.

will point to a _SEGMENT_HEAP structure, the

The HeapBase is the central location where the states of the different Segment Heap components are stored. It

has the following fields:

windbg> dt ntdll!_SEGMENT_HEAP

+0x000
+0x008
+0x010
+0x014
+0x018
+0x020
+0x024
+0x026
+0x028
+0x030
+0x038
+0x048
+0x050
+0x058
+0x060
+0x070
+0x078
+0x088
+0x090
+0x098
+0x0a0
+0x0a8
+0x0b0
+0x120

TotalReservedPages :

TotalCommittedPages
Signature
GlobalFlags

Interceptor

GlobalLockCount
GlobalLockOwner
LargeMetadatalock
LargeAllocMetadata

LargeReservedPages :
LargeCommittedPages :

SegmentAllocatorLoc
SegmentListHead
SegmentCount
FreePageRanges
StackTraceInitVar :
ContextExtendLock :
AllocatedBase
UncommittedBase
ReservedLimit
VsContext
LfhContext

Uint8B
: Uint8B

: Uint4B
: Uint4B
FreeCommittedPages :
: Uint4B
ProcessHeapListIndex :

Uint8B

Uint2B

: Uint2B
¢ Uint4B
¢ _RTL_SRWLOCK

: _RTL_RB_TREE
UintsB

UintsB
k : _RTL_SRWLOCK

¢ _LIST_ENTRY
: Uint8B

_RTL_RB_TREE
_RTL_RUN_ONCE
_RTL_SRWLOCK

: Ptr64 UChar

: Ptré64 UChar

: Ptré64 UChar

: _HEAP_VS_CONTEXT
: _HEAP_LFH_CONTEXT

e Signature - @xDDEEDDEE (heap is managed by the Segment Heap).
Fields for tracking large blocks allocation state (further discussed in 2.5):

e LargeAllocMetadata - Red-black tree (RB tree) [6] of large blocks metadata.
e LargeReservedPages - Number of pages that are reserved for all large blocks allocation.
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e LargeCommittedPages - Number of pages that are committed for all large blocks allocation.
Fields for tracking backend allocation state (further discussed in 2.2):

e SegmentCount - Number of segments owned by the heap.
e SegmentListHead - Linked list of segments owned by the heap.
e FreePageRanges - RB tree of free backend blocks.

The following substructures track the variable size allocation and the Low Fragmentation Heap states:

e VsContext - Tracks the state of the variable size allocation (see 2.3).
e LfhContext - Tracks the state of the Low Fragmentation Heap (see 2.4).

The heap is allocated and initialized via a call to Rt1pHpSegHeapCreate(). NtAllocateVirtualMemory () is used to
reserve and commit the virtual memory for the heap. The reserve size varies depending on the number of
processors and the commit size is the size of the _SEGMENT_HEAP structure.

The remaining reserved memory below the _SEGMENT_HEAP structure is called the LFH context extension and it is
dynamically committed to store the necessary data structures for activated LFH buckets.

HeapBase I —— .
=" Iwindhg) dt witdll! SEGMENT_HEAP

_SEGMENT_HEAP ! arge blocks ollocation stote
+8x838 LargedllocMetadata : _RTL_RE_TREE
+BxB48 LargeReservedPages : UintEB

+8x858 LargeCommittedPages @ UintsEB

|
| |
| |

i |

| |

i |

| |

1 | ! (: |
» |  +BxB6@ SegmentlistHead : _LIST_ENTRY '
| +@%@878 SegmentCount : UintEs :

| .

| |

| |

| |

| |

|

|

|

/' Bockend allocotion stote
LFH Context Extension 3
Dyn?mlcally committed for i +BXB7E FrocPageRanges @ RTL_RB_TREE
activated LFH buckets 4
H £ Woriable size (W5) ollocation stote
{MEM RESERUE} L'. +E)€E|:r'3 WsContext H _HEAP_US_CDNTE;(T
L'.I S Low Frogmentotion Heap (LFH) state
: +B%128 LEhContext : _HEAP_LFH_CONTEXT

Block Allocation
When allocating a block via HeapAlloc() or RtlAllocateHeap(), the allocation request will eventually be routed
to RtlpHpAllocateHeap() if the heap is managed by the Segment Heap.

Rt1lpHpAllocateHeap() has the following function signature:

PVOID RtlpHpAllocateHeap(_SEGMENT_HEAP* HeapBase, SIZE_T UserSize, ULONG Flags, USHORT Unknown)

Where UserSize (user-requested size) is the size passed to HeapAlloc() or RtlAllocateHeap(). The return value
is the pointer to the newly allocated block (called UserAddress for the rest of this paper).

The diagram below shows the logic of Rt1pHpAllocateHeap():
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PVOID RtlpHpAllocateHeap(_SEGMENT_HEAP* HeapBase, SIZE_T UserSize, ULONG Flags,
USHORT Unknown)

Allocsize =
EtlpHpLalculateAllocSize
(Usersize, Flags)

LFH Allocation

Usersaddress =
RtlpHpLfhontextAllocate] ...}

AllocSize <=
16,3687

Useraddress ==

VS Allecation

Userpddress =
RtlpHpVsContextAllocate(...)

Allocsize <=
131,8727

L 4

Backend Allocation

Userpddress =
RtlpHpSegalloc(...)

AllocSize <=
L2@,192°?

) 4

Large Block

Allocation

Userbddress =
REtlpHpLargealloc]...)

Y

return (Userdddress)

The purpose of RtlpHpAllocateHeap() is to call the allocation function of the appropriate Segment Heap
component based on AllocSize. AllocSize (allocation size) is the adjusted UserSize depending on Flags, but by
default, AllocSize will be equal to UserSize unless UserSize is @ (if UserSize is ©, AllocSize will be 1).

Note that the logic starting where AllocSize is checked is actually in a separate RtlpHpAllocateHeapInternal()
function, it is just inlined in the diagram for brevity. Also, one part to notice is that if LFH allocation returns -1, it
means that the LFH bucket corresponding to AllocSize is not yet activated, and therefore, the allocation request
will eventually be passed to the VS allocation component.

Block Freeing
When freeing a block via HeapFree() or Rt1FreeHeap(), the call will eventually be routed to Rt1pHpFreeHeap() if
the heap is managed by the Segment Heap.

Rt1pHpFreeHeap() has the following function signature:

BOOLEAN RtlpHpFreeHeap(_SEGMENT_HEAP* HeapBase, PVOID UserAddress, ULONG Flags,
SIZE_T* UserSize, USHORT* Unknown)

IBM Security | ©2016 IBM Corporation
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Where UserAddress is the block address returned by HeapAlloc() or Rt1AllocateHeap() and the UserSize will
become the user-requested size of the freed block.

The diagram below shows the freeing logic of Rt1pHpFreeHeap():

BOOLEAN RtlpHpFreeHeap( SEGMENT_HEAP* HeapBase, PVOID UserAddress, ULONG Flags, SIZE_T* UserSize,
USHORT* Unknown)

Large Block Freelng

kesult =
RtlpHpLargeFree(...}

oW 16 bits o
Useraddress are
clear?

serdddress 1s set in
Large Alloc Bitmap?

Subsegment =
Get subsegment of UserAddress

Backend Freeing

Result =
RtlpHpSegPageRangeshrink(...}

Userdddress <=
Subsegment?

LFH Freeing

Result =
RtlpHpLfhSubsegmentFresblock(...)

Subsegment is an
LFH Subsegment?

VS Freeing

Result =
RtlpHpvsContextFreal. ..,
&LthBlocksize)

Update LFH bucket usage for
LfhBlockSize

LfhBlockSize <=

16,3682 activated

or LfhBlockSize?

RtlpLfhBucketUsageupdatel...) —

return (Result)

The purpose of RtlpHpFreeHeap() is to call the freeing function of the appropriate Segment Heap component
based on the value of UserAddress and what type of subsegment it is located. Subsegments will be further
discussed later in this paper, but for now, subsegments are special types of backend blocks where VS and LFH
blocks are allocated from.

Since the address of large allocations are 64KB aligned, a UserAddress with low 16 bits cleared is first checked
against the large allocation bitmap. If the UserAddress (actually, UserAddress >> 16) is set in the large allocation
bitmap, large block freeing is called.
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Next, the subsegment where UserAddress is located is determined. If UserAddress is less than or equal the
resulting subsegment address, it means that the UserAddress is for a backend block, because the address of VS
blocks and LFH blocks are above the subsegment address due to VS/LFH subsegment headers being located before
the VS/LFH blocks. If UserAddress points to a backend block, backend freeing is called.

Finally, if the subsegment is an LFH subsegment, LFH freeing is called. Otherwise, VS freeing is called. If VS freeing
is called, and if the returned LfhBlockSize (equivalent to the block size of the freed VS block minus @x10) is
serviceable by the LFH, the usage counter of the LFH bucket corresponding to LfhBlockSize is updated.

Note that the logic starting where the subsegment of UserAddress is derived is actually in a separate
Rt1lpHpSegFree() function, it was inlined in the diagram for brevity. Also, the diagram only shows the freeing logic
of Rt1lpHpFreeHeap(), its other functionalities were not included.

2.2. BACKEND ALLOCATION

The backend is used for allocations with sizes 131,073 (0x20001) to 520,192 (0x7F000) bytes. Backend blocks have
a page size granularity and each does not have a block header at the beginning. In addition to allocating backend
blocks, the backend is also used by the VS and LFH component for the creation of VS/LFH subsegments (special
types of backend blocks) where VS/LFH blocks are allocated from.

Segment Structure
The backend operates on segment structures which are 1IMB (0x100000) blocks of virtual memory allocated via
NtAllocateVirtualMemory (). The segments are tracked via the SegmentListHead field in the HeapBase:

HeapBase Segment Segment
_SEGMENT_HEAP J g Segment Header J " Segment Header
SegmentlistHead can vis
Backend Block Backend Block
Backend Block Backend Block
Backend Block Backend Block
LFH Context Extension
Backend Block Backend Block
Backend Block Backend Block

The first @x2000 bytes of a segment is used for the segment header, while the rest is used for the allocation of
backend blocks. Initially, the first @x2000 plus an initial commit size of the segment is committed, while the rest are
in the reserve state and are committed and decommitted as needed.

The segment header is consists of an array of 256 page range descriptors that describe the status of each page in
the segment. Since the data portion of the segment starts at offset ©x2000, the first page range descriptor is
repurposed to store the _HEAP_PAGE_SEGMENT structure, while the second page range descriptor is unused.
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_HEAP_PAGE_SEGMENT Structure

As mentioned, the first page range descriptor is repurposed to store the _HEAP_PAGE_SEGMENT structure. It has
the following fields:

windbg> dt ntdll! HEAP_PAGE_SEGMENT
+0x000 ListEntry ¢ _LIST_ENTRY
+0x010 Signature : Uint8B

e ListEntry - Each segment is a node of the heap’s segments linked list (HeapBase.SegmentListHead).

e Signature - Used for verifying if an address is part of a segment. This field is computed via:
(SegmentAddress >> 0x14) ~ RtlpHeapKey ~ HeapBase ~ OxA2E64EADA2E64EAD.

_HEAP_PAGE_RANGE_DESCRIPTOR Structure

Also mentioned are page range descriptors that describe the status of each page of the segment. Since a backend
block can span multiple pages (a page range), the page range descriptor for the first page of the backend block is
marked as “first”, and therefore, will have additional fields set.

windbg> dt ntdl1l! HEAP_PAGE_RANGE_DESCRIPTOR -r
+0x000 TreeNode : _RTL_BALANCED_NODE
+0x000 TreeSignature ¢ Uint4B
+0x004 ExtraPresent : Pos 0, 1 Bit
+0x004 Spare0 : Pos 1, 15 Bits
+0x006 UnusedBytes ¢ Uint2B
+0x018 RangeFlags : UChar
+0x019 Sparel : UChar
+0x0la Key : _HEAP_DESCRIPTOR_KEY

+0x000 Key : Uint2B

+0x000 EncodedCommitCount : UChar

+0x001 PageCount : UChar
+0x01a Align : UChar
+0x01b Offset : UChar
+0x01b Size : UChar

e TreeNode - “First” page range descriptors of free backend blocks are nodes of the backend free tree
(HeapBase.FreePageRanges).
e UnusedBytes - For “first” page range descriptors. The difference between UserSize and the block size.
e RangeFlags — Bit field representing the type of the backend block and the state of the page represented
by the page range descriptor.
e  Ox01: PAGE_RANGE_FLAGS_LFH_SUBSEGMENT. For “first” page range descriptors. Backend block is
an LFH subsegment.
e  0Ox02: PAGE_RANGE_FLAGS_COMMITED. Page is committed.
e  0Ox04: PAGE_RANGE_FLAGS_ALLOCATED. Page is allocated/busy.
e  0Ox08: PAGE_RANGE_FLAGS_FIRST. Page range descriptor is marked as “first”.
®  Ox20: PAGE_RANGE_FLAGS_VS_SUBSEGMENT. For “first” page range descriptors. Backend block is a
VS subsegment.
e Key - For “first” page range descriptors of free backend blocks. This is used when a free backend block is
inserted to the backend free tree.
e Key - WORD-sized key used for the backend free tree, high BYTE is the PageCount field and the
low BYTE is the EncodedCommitCount field (see below).
e EncodedCommitCount - Bitwise NOT of the number of committed pages of the backend block.
The larger number of committed pages the free backend block has, the lower
EncodedCommitCount will be.
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e PageCount - Number pages of the backend block.

range descriptor.

Below is an illustration of a segment:

Segment

Axea | _HEAP_PAGE_SEGMENT

{Unused)

x40 | _HEAP_PAGE_RANGE_DESCRIPTOR [@x02] —

[
_HEAP_PAGE_RANGE_DESCRIPTOR [@x@3] [Ah

_HEAP_PAGE_RANGE_DESCRIPTOR [....]

_HEAP_PAGE_RANGE_DESCRIPTOR [@xFF]

8x2600 | Page #0x82 -1-| :
Page #0xe3 . _!
Page #...
Page #HOXFF —

Size - For “first” page range descriptors. Same value as Key .PageCount (overlapping fields).

14

Offset - For non-“first” page range descriptors. Offset of the page range descriptor from the “first” page

ll—windbg) dt ntdll! HEAP_PAGE RANGE_DESCRIPTOR -r
; /¢ First poge range descriptors of free backend blocks

s are nodes of the backend free tree
+Bx888 TreeNode : _RTL_BALANCED_MODE

/¢ RangeFlogs: First (start of block), Committed, Alloca

i LFH subsegment, VS subsegment
+Bx@18 RangeFlags : Uchar

A4 Key used when inserting to the backend free tree

+BNEla Key : HEAP_DESCRIPTOR_KEY
+@xB88 Koy ¢ Uint2B
+8x208 EncodedCommitCount : Uchar
A Number of poges of the bockend block
+@8x881 PageCount ¢ UChar

ted

A4 Non-fFirst: Offset from the first page range descriptor

+8x81b Offset : Uchar

" - w

L A First: Number of poges of the backend block
+Bxelb size i Uchar

|
|
|
|
|
|
|
|
|
|
|
I £ Bitwise NOT of the number af committed pages
|
|
|
|
|
|
|
|
|

And below is an illustration of a 131,328 bytes (6x20100) busy backend block and the corresponding page range
descriptors (the “first” page range descriptor is highlighted):

exea

x4

axdae

Bx2808

gx22ee8

Segment

_HEAP_PAGE_SEGMENT

_HEAP_PAGE_RANGE_DESCRIPTOR [@x@3]

_HEAP_PAGE_RANGE_DESCRIPTOR [....]

_HEAP_PAGE_RANGE_DESCRIPTOR [8x22]

Page #0x02

Page #0x03

Page #...

Page #8x22

—E

Backend Block

Described by Page Range Descriptor #8x2 to #8x22

Note that because the page range descriptors that describe the backend blocks are stored at the top of the

segment, it means that each backend block does not have a block header at the beginning.
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Backend Free Tree

Backend allocation and freeing use the backend free tree for finding and storing information on free backend
blocks.

The root of the backend free tree is stored in HeapBase.FreePageRanges and the tree nodes are the “first” page
range descriptors of free backend blocks. The key used for inserting nodes in the backend free tree is the “first”
page range descriptor’s Key . Key field (see details of Key.Key in the previous subsection).

Below is an illustration of a backend free tree in which there are three free backend blocks with sizes 8x21000,
0x23000 and 0x4F000 (all pages of the free blocks are decommitted - Key.EncodedCommitCount is @xFF):

HeapBase

_SEGMENT_HEAP

F p R
reePageRanges .
Root
-\'\
_HEAP_PAGE_RANGE_DESCRIPTOR
Key = 8x23FF
PageCount = @x23
EncodedCommitCount = BxFF
.-"’fa H\-H'“-
Left Right_
4-"'“, T
_HEAP_PAGE_RANGE_DESCRIPTOR _HEAP_PAGE_RANGE_DESCRIPTOR
Key = @x21FF Key = Bx4FFF
PageCount = 8x21 PageCount = @x4F
EncodedCommitCount = @xFF EncodedCommitCount = @xFF

Backend Allocation
Backend allocation is performed via Rt 1pHpSegAlloc () which has the following function signature:

PVOID RtlpHpSegAlloc(_SEGMENT_HEAP* HeapBase, SIZE_T UserSize, SIZE_T AllocSize, ULONG Flags)

RtlpHpSegAlloc() first calls RtlpHpSegPageRangeAllocate() to allocate a backend block.
RtlpHpSegPageRangeAllocate(), on the other hand, accepts the number of pages to allocate and returns the
“first” page range descriptor of the allocated backend block. Then, Rt1lpHpSegAlloc() converts the returned
“first” page range descriptor to the actual backend block address (UserAddress) which it will then use as the
return value.

The diagram below shows the logic of Rt1pHpSegPageRangeAllocate():
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_HEAP_PAGE_RANGE_DESCRIPTOR* RtlpHpSegPageRangeAllocate( SEGMENT_HEAP* HeapBase, ULONG PageCount, ULONG Flags)

|

HIGH BYTE({Searchkey) = PageCount
LOW_BYTE(Searchkey} = NOT{PageCount)

v

Curhode =
HeapBase.FreePageRanges. Root

v

SelectedNode = NULL

CurNode == NULL?

F 3

CurNode .Key . Key <
Searchiey?

CurNode .Key . Key >
Searchiey?

Selectediode = Curfode

l

FirstPageRangeDescriptor =
Selectediode

irstPageRangeDescripto
== NULL?

k|

— Selectediode = CurNode

NewSegment =
Allocate and initialize new segment

:

FirstPageRangeDescriptor =
NewSegment . PageRangeDescriptors[2]

Curbode =
Curlode. TreeNode . Right

v

CurNode =
CurNode . TreeNade. Left

Remove FirstPageRangeDescriptor
from the backend free tree

!

Split block described by
= FirstPageRangeDescriptor {(if
necessary)

!

Set Allocated flag in RangeFlags of
FirstPageRangebescriptor and other
page range descriptors of the
allocated block

-

return {FirstPageRkangeDescriptor)

RtlpHpSegPageRangeAllocate() first traverses the backend free tree to find a free backend block that can fit the
allocation. The search key used for finding a free backend block is a WORD-sized value in which the high BYTE is
the requested number of pages and the low BYTE is the bitwise NOT of the number of requested pages. This
means that a best-fit search is conducted with the most committed block given preference, in other words, if two
or more free blocks with equivalent size will best fit the allocation, the most committed free block will be selected
for the allocation. If any of the free backend blocks cannot fit the allocation, a new segment is created.

Since the selected free backend block can have more pages than the requested number of pages, the free block is
first split if necessary via RtlpHpSegPageRangeSplit() and the “first” page range descriptor of the resulting

remaining free block is inserted to the backend free tree.
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Free Block Splitting

Block:

FREE

17

A

Block: BUSY

4 Block: FREE

Finally, the RangeFlags field of the block’s page range descriptors are updated (PAGE_RANGE_FLAGS_ALLOCATED bit
is set) to mark the block’s pages as allocated.

Backend Freeing

Backend freeing is performed via Rt1pHpSegPageRangeShrink() which has the following function signature:

BOOLEAN RtlpHpSegPageRangeShrink(_SEGMENT_HEAP* HeapBase,
_HEAP_PAGE_RANGE_DESCRIPTOR* FirstPageRangeDescriptor,
ULONG NewPageCount, ULONG Flags)

Where FirstPageRangeDescriptor is the “first” page range descriptor of the to-be-freed backend block and

NewPageCount is @ which means to free the block.

Rt1lpHpSegPageRangeShrink() first clears the PAGE_RANGE_FLAGS_ALLOCATED bit in the RangeFlags field of all
(except the “first”) page range descriptors that describe the to-be-freed backend block. It then calls

RtlpHpSegPageRangeCoalesce() which coalesces the to-be-freed backend block with neighboring (before and
after) free backend blocks and clears the PAGE_RANGE_FLAGS_ALLOCATED bit in the RangeFlags field of the “first”

page range descriptor of the to-be-freed block.

Free Blocks Coalescing

Block:

FREE

Block:

BUSY to FREE

Block:

FREE

Block:

FREE

The “first” page range descriptor of the resulting coalesced block is then inserted to the backend free tree making

the coalesced free block available for allocations.
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2.3. VARIABLE SIZE ALLOCATION

Variable size (VS) allocation is used for allocations with sizes 1 to 131,072 (0x20000) bytes. VS blocks have a 16
bytes granularity and each has a block header at the beginning.

VS Subsegments

The VS allocation component relies on the backend for creating the VS subsegments where VS blocks are allocated
from. A VS subsegment is a special type of a backend block in which the RangeFlags of the “first” page range
descriptor has the PAGE_RANGE_FLAGS_VS_SUBSEGMENT (©x20) bit set.

Below is an illustration of the relationship of the HeapBase, a segment and a VS subsegment:
HeapBase

Segment V5 Subsegment

~

_SEGMENT_HEAP Segment Header /| VS Subsegment Header

VsContext.SubsegmentList |—

Backend Block

; V5 Block
Backend Block (VS Subsegment) Vs Block
LFH Context Extension Backend Block VS Block

_HEAP_VS_CONTEXT Structure

The VS context structure tracks the free VS blocks, VS subsegments, and other information related to the VS
allocation state. It is stored in the VsContext field in the HeapBase and has the following fields:

windbg> dt ntdll! HEAP_VS_CONTEXT
+0x0008 Lock : _RTL_SRWLOCK

+0x008 FreeChunkTree
+0x018 SubsegmentlList

+0x038 BackendCtx
+0x040 Callbacks

: _RTL_RB_TREE
: _LIST_ENTRY
+0x028 TotalCommittedUnits
+0x030 FreeCommittedUnits :
: Ptr64 Void

. _HEAP_SUBALLOCATOR_CALLBACKS

: Uint8B
Uint8B

e  FreeChunkTree - RB tree of free VS blocks.

e SubsegmentList - Linked list of all VS subsegments.

e BackendCtx - Pointer to the _SEGMENT_HEAP structure (HeapBase).

e Callbacks - Encoded (see 3.5) callbacks used for the management of VS subsegments.

_HEAP_VS_SUBSEGMENT Structure
VS subsegments are where VS blocks are allocated from. VS subsegments are allocated and initialized via
Rt1lpHpVsSubsegmentCreate() and will have the following _HEAP_VS_SUBSEGMENT structure as the header:

windbg> dt ntdl1l! HEAP_VS_SUBSEGMENT
+0x000 ListEntry ¢ _LIST_ENTRY
+0x010 CommitBitmap : Uint8B
+0x018 CommitLock ¢ _RTL_SRWLOCK
+0x020 Size : Uint2B
+0x022 Signature : Uint2B
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Listentry - Each VS subsegment is a node of the VS subsegments linked list
(VsContext.SubsegmentList).

CommitBitmap - Commit bitmap of the VS subsegment pages.

Size - Size of the VS subsegment (minus @x30 for the VS subsegment header) in 16-byte blocks.
Signature - Used for checking if the VS subsegment is corrupted. Computed via: Size ~ @xABED.

Below is an illustration of a VS subsegment. The _HEAP_VS_SUBSEGMENT structure is at offset 0x00, while the VS
blocks start at offset 0x30:

gxae

8wl

VS Subsegment

==""Twindbgs dt ntdll!_HEAP_VS_SUBSEGMENT |
HEAP_V5_SUBSEGMENT A
— - Sf Commit bitmop of the VS subsegment poges I
VS Block : +8x818 CommitBitmap : MntEB :
‘._'.‘ : F4 VS subsegment size (minus 8x38) 1 16-byte blocks |
V5 Block | +8xB2e Size : Uint2B [
\ |
e ___
V5 Block
Vs Block
V5 Block

_HEAP_VS_CHUNK_HEADER Structure
Busy VS blocks have a 16-byte (0x10) header which has following structure:

windbg> dt ntdll! HEAP_VS_CHUNK_HEADER -r

+0x000 Sizes : _HEAP_VS_CHUNK_HEADER_SIZE
+0x000 MemoryCost : Pos @, 16 Bits
+0x000 UnsafeSize : Pos 16, 16 Bits
+0x004 UnsafePrevSize : Pos 0, 16 Bits
+0x004 Allocated : Pos 16, 8 Bits
+0x000 KeyUShort : Uint2B
+0x000 KeyULong : Uint4B
+0x000 HeaderBits : Uint8B

+0x008 EncodedSegmentPageOffset : Pos @, 8 Bits

+0x008 UnusedBytes : Pos 8, 1 Bit

+0x008 SkipDuringWalk : Pos 9, 1 Bit

+0x008 Spare : Pos 10, 22 Bits

+0x008 AllocatedChunkBits : Uint4B

Sizes - Encoded (see 3.6) QWORD-sized substructure that encapsulates important size and state
information:

e MemoryCost - Used in free VS blocks. A value computed based on how large the committed
portion of the block is. The larger the portion of the block is committed, the lower the memory
cost is. This means that if a low memory cost block is selected for allocation, the smaller amount
of memory needs to be committed.

e UnsafeSize - Size of the VS block (includes the block header) in 16-byte blocks.

e UnsafePrevSize - Size of the previous VS block (includes the block header) in 16-byte blocks.

e Allocated - Block is busy if value is not zero.

IBM Security | ©2016 IBM Corporation



WINDOWS 10 SEGMENT HEAP INTERNALS > INTERNALS 20

e KeyULong - Used in free VS blocks. A DWORD-sized key used when inserting the free VS block to
the VS free tree. The high WORD is the UnsafeSize field and the low WORD is the MemoryCost
field.

EncodedSegmentPageOffset — Encoded (see 3.6) offset of the block from the start of the VS subsegment
in pages.

UnusedBytes - Flag that indicates whether the block has unused bytes which is the difference between
the UserSize and the total block size (minus ©x10 bytes for the header). If this flag is set, the last two
bytes of the VS block is treated as a 16 bit low endian value. If the number of unused bytes is 1, the high
bit of this 16 bit value is set and the rest of the bits are unused, otherwise, the high bit is clear and the low
13 bits are used to store the unused bytes value.

Below is an illustration of a busy VS block (note that the first 9 bytes are encoded):

_HEAP_VS_CHUNK_HEADER

axas

axle

exes 2xa2 Bxad 2x06
MemoryCost UnsafeSize UnsafePrevsize Allocated
Spo S|u
User Data
Unused Bytes Value

_HEAP_VS_CHUNK_FREE_HEADER Structure

Free

VS blocks have a 32-byte (0x20) header where the first 8 bytes are the first 8 bytes of the

_HEAP_VS_CHUNK_HEADER structure. Starting at offset 0x@8 is the Node field which acts as a node in the VS free tree
(VsContext.FreeChunkTree):

windbg> dt ntdll! HEAP_VS_CHUNK_FREE_HEADER -r
+0X000 Header : _HEAP_VS_CHUNK_HEADER
+0X000 Sizes : _HEAP_VS_CHUNK_HEADER_SIZE
+0x000 MemoryCost : Pos 0, 16 Bits
+0x000 UnsafeSize : Pos 16, 16 Bits
+0x004 UnsafePrevSize : Pos @, 16 Bits
+0x004 Allocated : Pos 16, 8 Bits
+0x000 KeyUShort : Uint2B
+0x000 KeyULong : Uint4B
+0x000 HeaderBits : Uint8B
+0x008 EncodedSegmentPageOffset : Pos @, 8 Bits
+0x008 UnusedBytes : Pos 8, 1 Bit
+0x008 SkipDuringWalk : Pos 9, 1 Bit
+0x008 Spare : Pos 10, 22 Bits
+0x008 AllocatedChunkBits : Uint4B
+0x000 OverlapsHeader : Uint8B
+0x008 Node : _RTL_BALANCED_NODE

Below is an illustration of a free VS block (note that the first 8 bytes are encoded):
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_HEAP_VS_CHUNK_FREE_HEADER
axee Bxe2 axad axBe6

VS Free Tree

VS allocation and freeing use the VS free tree for finding and storing information on free VS blocks.

The root of the VS free tree is stored in VsContext.FreeChunkTree and the tree nodes are the Node field of free
VS blocks. The key used for inserting nodes in the VS free tree is the free VS block’s Header.Sizes.KeyULong field
(Sizes.KeyULong is discussed in the “_HEAP_VS_CHUNK_HEADER Structure” subsection above).

Below is an illustration of a VS free tree in which there are three free VS blocks with sizes 0xF80, ©x1010 and
0x3010 (all portions of the free blocks are committed - MemoryCost is ©x0000):

HeapBase

VS Allocation
VS allocation is performed via Rt1pHpVsContextAllocate() which has the following function signature:

PVOID RtlpHpVsContextAllocate(_HEAP_VS_CONTEXT* VsContext, SIZE_T UserSize, SIZE_T AllocSize,
ULONG Flags)

The diagram below shows the logic of Rt1pHpVsContextAllocate():
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PVOID RtlpHpVsContextAllocate( HEAP_VS_CONTEXT* VsContext, SIZE_T UserSize, SIZE_T AllocSize, ULONG Flags)

k4

Searchiey =
(BLOCK_SIZE_16(AllocSize) + 1)
< 16

}

CurNde =
VsContext, FreeChunkTree, Root

v

SelectedNode = NULL

¥

CurNode s= MULL?

urNode . Header .5izes
KeylULong < Searchkey?

CurMode  Header . 5izes
KeyULong > SearchKey?

Selectediode = Curlode

Curfode =
CurNode . Node . Right

— SelectedMode = CurNede

v

Curfode =
CurNode. Node. Left

v

L Block = Selectedhiode

¥

Block = Block - @x8

|

Remove Block from the WS free tree
and then split Block (if mecessary)

!

UserAddress = Block + Bx1@

|

Allocate and initialize
new V5 subsegment

return {UserAddress )

I

Insert the free block of the new WS

subsegment in the V5 free tree

RtlpHpVsContextAllocate() first traverses the VS free tree to find a free VS block that can fit the allocation. The
search key used for finding a free VS block is a DWORD-sized value in which the high WORD is the number of 16-
byte blocks that can accommodate AllocSize plus one (for the block header) and the low WORD is O (for

MemoryCost). This means that a best-fit search is conducted with the free VS block with the lowest memory cost

(most portion of the block is committed) given preference, in other words, if two or more free blocks with

equivalent size will best fit the allocation, the most committed free block will be selected for the allocation. If any

of the free VS blocks cannot fit the allocation, a new VS subsegment is created.

Since the size of the selected free VS block can be larger than the block size that can accommodate AllocSize,

large free VS blocks are split unless the block size of the resulting remaining block will be less than @x2e bytes (the

size of a free VS block header).
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Free Block Splitting

< Block: BUSY

Block: FREE

4 Block: FREE

The free VS block splitting is performed by Rt1pHpVsChunkSplit(). RtlpHpVsChunkSplit() is also the function
that removes the free VS block from VS free tree and also inserts the resulting remaining free block to the VS free
tree if block splitting occurred.

VS Freeing

VS freeing is performed via RtlpHpVsContextFree () which has the following function signature:

BOOLEAN RtlpHpVsContextFree(_HEAP_VS_CONTEXT* VsContext, _HEAP_VS_SUBSEGMENT* VsSubegment,
PVOID UserAddress, ULONG Flags, ULONG* LfhBlockSize)

Where UserAddress is the address of the to-be-freed VS block and LfhBlockSize will become the block size of
the to-be-freed VS block minus @x1@ (busy VS block header size). LfhBlockSize will be used by the caller of
Rt1lpHpVsContextFree() in updating the LFH bucket usage counter corresponding to LfhBlockSize.

RtlpHpVsContextFree() first checks if the VS block is indeed allocated by checking the Allocated field in the
block’s header. It will then call RtlpHpVsChunkCoalesce() which will coalesce the to-be-freed block with
neighboring free blocks (before and after).

Free Blocks Coalescing

Block: FREE

Block: BUSY to FREE = |- »{ Block: FREE

Block: FREE

Finally, the coalesced free block is inserted to the VS free tree making it available for allocation.
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2.4. Low FRAGMENTATION HEAP

The Low Fragmentation Heap (LFH) is used for allocations with sizes 1 to 16,368 (6x3FF@) bytes. Similar to the LFH
in the NT Heap, the LFH in the Segment Heap prevents fragmentation by using a bucketing scheme which causes
similarly-sized blocks to be allocated from larger pre-allocated blocks of memory.

Below is a table listing the different LFH buckets, the allocation sizes distributed to the buckets, and the
corresponding granularity of the buckets:

Bucket Allocation Size Granularity

1-64 1 - 1,024 bytes 16 bytes
(0x1 - 0x400)

65 —-80 1,025 - 2,048 bytes 64 bytes
(0x401 - 0Ox800)

81-96 2,049 - 4,096 bytes 128 bytes
(0x801 - ©x1000)

97 -112 4,097 - 8,192 bytes 256 bytes
(0x1001 - ©x2000)

113-128 8,193 - 16,368 bytes 512 bytes
(0x2001 - Ox3FFO)

The LFH buckets are only activated (enabled) if their corresponding allocation sizes are detected to be popular. LFH
bucket activation and usage counter will be further discussed later.

Below is an illustration of a few activated buckets and non-activated buckets including their corresponding
allocation sizes:

Example Activated Buckets and Bucket Usage Counters

Allocation Size Bucket

1 - 16 » Bucket # 1 (Activated)

1,825 - 1,888 » Bucket # 65 (Activated)

2,849 - 2,176 Bucket # B1 (Usage Counter)

4,897 - 4,352 » Bucket # 97 (Activated)

8,193 - 8,784 Bucket #113 (Usage Counter)

Buckets #1, #65 and #97 are activated, and therefore, the allocation requests for the corresponding allocation sizes
will be serviced via the LFH buckets. Buckets #81 and #113 are still not activated, and therefore, the allocation
requests for the corresponding allocation sizes will cause the usage counter for the LFH buckets to be updated. If
the usage counter reaches a particular value after the update, the bucket will be activated and the allocation will
be serviced via the LFH bucket, otherwise, the allocation request will eventually be passed to the VS allocation
component.
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LFH Subsegments

The LFH component relies on the backend for creating the LFH subsegments where LFH blocks are allocated from.
An LFH subsegment is a special type of a backend block in which the corresponding “first” page range descriptor’s
RangeFlags field has the PAGE_RANGE_FLAGS_LFH_SUBSEGMENT (@x@1) bit set.

Below is an illustration of the relationship of the HeapBase, a segment and an LFH subsegment:

HeapBase Segment LFH Subsegment

_SEGMENT_HEAP Segment Header /| LFH Subsegment Header

LfhContext.Buckets ...

LEH Context Extension Backend Block / LEH Block
LFH bucket-related ~ |Backend Block (LFH Subsegment) LFH Block
structures Backend Block " |LFH Block

_HEAP_LFH_CONTEXT Structure

The LFH context tracks the LFH buckets, LFH bucket usage counters and other information related to the LFH state.
It is stored in the LfhContext field in the HeapBase and has the following fields:

windbg> dt ntdll!_HEAP_LFH_CONTEXT -r
+0x000 BackendCtx : Ptr64 Void
+0x008 Callbacks : _HEAP_SUBALLOCATOR_CALLBACKS
+0x030 SubsegmentCreationLock : _RTL_SRWLOCK
+0x038 MaxAffinity : UChar
+0x040 AffinityModArray : Ptré64 UChar
+0x050 SubsegmentCache : _HEAP_LFH_SUBSEGMENT_CACHE
+0X000 SLists : [7] _SLIST_HEADER
+0x0c0 Buckets : [129] Ptr64 _HEAP_LFH_BUCKET

e BackendCtx - Pointer to the _SEGMENT_HEAP structure (HeapBase).

e Callbacks — Encoded (see 3.5) callbacks for managing the LFH subsegments and the LFH context
extension.

e MaxAffinity - Maximum number of affinity slots that can be created.

e SubsegmentCache - Tracks cached (unused) LFH subsegments.

e Buckets - Array of pointers to the LFH buckets. If the bucket is activated, bit @ of the pointer is clear and
the pointer points to a _HEAP_LFH_BUCKET structure. Otherwise (if bit @ is set), the pointer is actually a
_HEAP_LFH_ONDEMAND_POINTER structure which is used for tracking LFH bucket usage.

The reserved virtual memory located after the _SEGMENT_HEAP structure in the HeapBase, called the LFH context
extension, is dynamically committed to additionally store LFH bucket-related structures for dynamically activated
LFH buckets (see previous illustration).

_HEAP_LFH_ONDEMAND_POINTER Structure

As mentioned above, if the LFH bucket is not activated, the entry for the bucket in LfhContext.Buckets will be a
usage counter. The bucket usage counter has the following structure:

- windbg> dt ntdll!_HEAP_LFH_ONDEMAND_POINTER
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+0x000 Invalid : Pos 0, 1 Bit
+0x000 AllocationInProgress : Pos 1, 1 Bit
+0x000 Spareo : Pos 2, 14 Bits
+0x002 UsageData ¢ Uint2B

+0x000 AllBits : Ptr64 Void

26

Invalid - Marker to determine if this pointer is an invalid _HEAP_LFH_BUCKET pointer (lowest bit set), and
therefore, the structure is a bucket usage counter.

UsageData — WORD-sized value describing the usage of the LFH bucket. The value represented by bit 0 to
4 is the number of active allocations for the bucket’s allocations size, it is incremented on allocations and
decremented on frees. The value represented by bit 5 to 15 is the number of allocation requests for the

bucket’s allocation size, it is incremented on allocations.

_HEAP_LFH_BUCKET Structure

If the bucket is activated, the entry for the bucket in LfhContext.Buckets is a pointer to a _HEAP_LFH_BUCKET

structure which has the following structure:

windbg> dt ntdll!_HEAP_LFH_BUCKET
+0x000 State : _HEAP_LFH_SUBSEGMENT_OWNER
+0x038 TotalBlockCount : Uint8B

+0x040 TotalSubsegmentCount :

Uint8B

+0x048 ReciprocalBlockSize : Uint4B

+0x04c Shift : UChar

+0x050 AffinityMappinglLock : _RTL_SRWLOCK

+0x058 ContentionCount : Uint4B

+0x060 ProcAffinityMapping : Ptré4 UChar

+0x068 AffinitySlots : Ptr64 Ptr64 _HEAP_LFH_AFFINITY_SLOT

TotalBlockCount - Total number of LFH blocks in all LFH subsegments related to the bucket.
TotalSubsegmentCount - Total number of LFH subsegments related to the bucket.

ContentionCount - Number of contentions identified when allocating blocks from the LFH subsegments.
Every time this field reaches Rt1pHpLfhContentionLimit, a new affinity slot is created for the requesting
thread’s processor.

ProcAffinityMapping - Points to an array of BYTE-sized indexes to AffinitySlots. This is used for
dynamically assigning processors to affinity slots (discussed later). Initially, all are set to @ which means
that all processors are assigned to the initial affinity slot that was created when the bucket was activated.
AffinitySlots - Pointer to an array of affinity slot pointers (_ HEAP_LFH_AFFINITY_SLOT*). When the
bucket is activated, only one slot is initially created, as more contentions are detected, new affinity slots
are created.

_HEAP_LFH_AFFINITY_SLOT Structure

An affinity slot owns the LFH subsegments where LFH blocks are allocated from. Initially, only one affinity slot is

created when the bucket is activated and all processors are assigned to the initial affinity slot.

Because only one affinity slot is initially created, it means that all processors will use the same set of LFH

subsegments, and therefore, contention can occur. If too many contentions are detected, a new affinity slot is

created and the requesting thread’s processor is reassigned to the new affinity slot via the ProcAffinityMapping

field in the bucket.

There is only one field in an affinity slot and its structure will be described next.
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windbg> dt ntd11! HEAP_LFH_AFFINITY_SLOT
+0x000 State : _HEAP_LFH_SUBSEGMENT_ OWNER

Below is an illustration of the relationship between buckets, processors, affinity slots, and LFH subsegments:

Bucket === ————————-
|
: LFH Subsegment I
» Affinity Slot — !
P |
R : LFH Subsegment I
|
— |
I'{ LFH Subsegment |
' |

» AFFinit —»

Processar y slot

I'| LFH Subsegment I
' |

_HEAP_LFH_SUBSEGMENT_OWNER Structure
The subsegment owner structure is used by the affinity slot (LfhAffinitySlot.State) to track the LFH
subsegments it owns, it has the following fields:

windbg> dt ntdll!_ HEAP_LFH_SUBSEGMENT_OWNER

+0x000 IsBucket : Pos 0, 1 Bit
+0x000 Spare0 : Pos 1, 7 Bits
+0x001 BucketIndex : UChar

+0x002 SlotCount : UChar

+0x002 SlotIndex : UChar

+0x003 Sparel : UChar

+0x008 AvailableSubsegmentCount : Uint8B
+0x010 Lock ¢ _RTL_SRWLOCK
+0x018 AvailableSubsegmentList : _LIST_ENTRY
+0x028 FullSubsegmentList : _LIST_ENTRY

e AvailableSubsegmentCount - Number of LFH subsegments in AvailableSubsegmentList.
e AvailableSubsegmentList - Linked list of LFH subsegments that have free LFH blocks.
e FullSubsegmentList - Linked list of LFH subsegments that have no free LFH blocks.

_HEAP_LFH_SUBSEGMENT Structure
The LFH subsegments are where LFH blocks are allocated from. LFH subsegments are created and initialized via
RtlpHpLfhSubsegmentCreate() and will have the following _HEAP_LFH_SUBSEGMENT structure as the header:

windbg> dt ntd11! HEAP_LFH_SUBSEGMENT -r
+0x000 ListEntry : _LIST_ENTRY
+0x000 Link : _SLIST_ENTRY
+0x010 Owner : Ptr64 HEAP_LFH_SUBSEGMENT OWNER
+0x010 DelayFree : _HEAP_LFH_SUBSEGMENT_DELAY_FREE

+0x000 DelayFree : Pos 0, 1 Bit
+0x000 Count : Pos 1, 63 Bits
+0x000 AllBits : Ptr64 Void

+0x018 CommitLock : _RTL_SRWLOCK

+0x020 FreeCount : Uint2B

+0x022 BlockCount . Uint2B

+0x020 InterlockedShort : Int2B

+0x020 InterlockedLong : Int4B

+0x024 FreeHint . Uint2B

+0x026 Location : UChar

+0x027 Spare : UChar

+0x028 BlockOffsets : _HEAP_LFH_SUBSEGMENT_ENCODED_OFFSETS
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+0x000 BlockSize : Uint2B
+0x002 FirstBlockOffset : Uint2B
+0x000 EncodedData : Uint4B

+0x02c CommitUnitShift : UChar
+0x02d CommitUnitCount : UChar
+0x02e CommitStateOffset : Uint2B
+0x030 BlockBitmap : [1] uint8B

Listentry - Each LFH subsegment is a node of one of the affinity slot’'s LFH subsegments lists
(LfhAffinitySlot.AvailableSubsegmentList or LfhAffinitySlot.FullSubsegmentList).
Owner - Pointer to the affinity slot that owns this LFH subsegment.
FreeHint - Block index of the recently allocated or freed LFH block. Used in the allocation algorithm when
searching for a free LFH block.
Location - Location of this LFH subsegment in the affinity slot’s LFH subsegments lists: o:
AvailableSubsegmentList, 1: FullSubsegmentList.
FreeCount - Number of free blocks in the LFH subsegment.
BlockCount - Total number of blocks in the LFH subsegment.
BlockOffsets - Encoded (see 3.7) DWORD-sized substructure containing the size of each LFH block and
the offset of the first LFH block in the LFH subsegment.

e BlockSize - Size of each LFH block in the LFH subsegment.

e FirstBlockOffset - Offset of the first LFH block in the LFH subsegment.
CommitStateOffset - Offset of the commit state array in the LFH subsegment. An LFH subsegment is
divided into multiple “commit portions”; commit state is an array of WORD-sized values that represent
the commit state of each these “commit portions”.
BlockBitmap - Each LFH block is represented by 2 bits in this block bitmap (further discussed below).

Below is an illustration of an LFH subsegment:

CammitStateOffset | CommitState ]

LFH Subsegment I R
7 Cwindbgr dt ntdll! HEAP_LFH_SUBSEGMENT -r

_HEAP_LFH_SUBSEGMENT

! Number of Free LFH blocks

+Bx828 FreeCount : Uintzp

ox32|BlockBitmap

Pl T irheR of [ EH B @e b
A Total number of LFH blocks

+8x822 BlockCount toUint2e

|
|
|
|
|
|
|
FirstBlockOffset |LFH Block V| /7 Size of eoch
|
|
|
|
|
|
|

agnd offset of
. ff in the LFH subs nt (both ence
H 48828 BlockDffsets : _HEAP_LFH SUBSEGMENT ENCODED OFFSETS
LFH Block #0080 Blocksize : Uint2B
K +8x882 FirstBlockOffset : Uint2B
LFH Block 3 i

S Block bitmap: 2 stotus bits per LFH block

LFH Block 1Bx030 BlockBitmap : [1] uvintse

And below is an illustration of the different data structures and fields that support the LFH component:
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HeapBase LFH Subsegment LFH Subsegment
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LfhContext.Buckets BlockBitmap BlockBitmap
LFH Context Extension CommitState CommitState
a _HEAP_LFH_BUCKET LFH Block LFH Block
ProcAffinityMapping LFH Block LFH Block
AffinitySlots LFH Block LFH Block
—*| BYTE AffinityMapping[MaxAffinity] LRk pRDK LFH Block
_HEAP_LFH_AFFINITY_SLOT* U
| AffinitySlots[MaxAffinity]
AffinitySlots[&]
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——>| _HEAP_LFH_AFFINITY_SLOT —!

_HEAP_LFH_AFFINITY_SLOT

LFH Block Bitmap

Each LFH block does not have a block header at the beginning, instead, and a block bitmap
(LfhSubsegment.BlockBitmap) is used to track the state of each LFH block in the LFH subsegment.

Each LFH block is represented by two bits in the block bitmap. Bit @ represents the BUSY bit and bit 1 represents
the UNUSED BYTES bit. If the UNUSED BYTES bit is set, it means that there is a difference between the UserSize
and the LFH block size, and the last two bytes of the LFH block is treated as a 16 bit low endian value to represent
the difference. If the number of unused bytes is 1, the high bit of this 16 bit value is set and the rest of the bits are
unused, otherwise, the high bit is clear and the low 14 bits are used to store the unused bytes value.

The block bitmap is also subdivided into QWORD-sized (64 bits) chunks, called BitmapBits in this paper, with each
BitmapBits representing 32 LFH blocks.

Below is an illustration of the LFH block bitmap:
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LfhSubsegment.BlockBitmap
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LFH Bucket Activation

In every allocation request in which the allocation size is <=16,368 (@x3FF0) bytes, Rt1pHpLfhContextAllocate()
is first called to check if the bucket corresponding to the allocation size is activated. If the bucket is activated, the
allocation is serviced by the LFH.

If the bucket is not activated, the bucket usage counter is updated. If after the update, the bucket usage counter
reaches a particular value, the bucket is activated via Rt1pHpLfhBucketActivate() and the LFH will service the
allocation request. Otherwise, the VS allocation component will eventually handle the allocation request.

Bucket activation occurs if there are 17 active allocations for the bucket’s allocation size. The 17" active allocation
will activate the bucket, and the 17" allocation and the next allocations afterwards will be serviced by the LFH.

Bucket activation also occurs if there are 2,040 allocation requests for the bucket’s allocation size, regardless if the
blocks from previous allocations were already freed. The 2,@4@th allocation will activate the bucket, and the
2,040th allocation and the next allocations afterwards will be serviced by the LFH.

LFH Allocation
LFH allocation is performed via Rt1pHpLfhContextAllocate() which has the following function signature:

PVOID RtlpHpLfhContextAllocate(_HEAP_LFH_CONTEXT* LfhContext, SIZE_T UserSize, SIZE_T AllocSize,
ULONG Flags)

The first action performed by RtlpHpLfhContextAllocate() is to check if the bucket corresponding to the
allocation size is activated. If the bucket is not activated, the usage counter of the bucket is updated, and if the
resulting bucket usage after the update is subject for activation, the bucket is activated and LFH allocation will
continue.

Next, the appropriate affinity slot in the bucket is selected depending on the requesting thread’s processor and the
processor-to-affinity slot mapping (LfhContext.ProcAffinityMapping). Once the affinity slot is selected,
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allocation in the affinity slot’s available LFH subsegment will be performed via a call to
RtlpHpLfhSlotAllocate().

RtlpHpLfhSlotAllocate(), on the other hand, first makes sure that the slot has an available LFH subsegment by
creating a new LFH subsegment or re-using a cached LFH subsegment if needed. RtlpHpLfhSlotAllocate() will
then call RtlpHpLfhSlotReserveBlock() to attempt to reserve a block from one of the affinity slot’s available LFH
subsegments by atomically decrementing an LFH subsegment’s FreeCount field. Too many contention detected
from RtlpHpLfhSlotReserveBlock() will eventually cause a new affinity slot to be created for the requesting
thread’s processor.

If RtlpHpLfhSlotReserveBlock() is able to reserve a block in one of the affinity slot’s LFH subsegments,
RtlpHpLfhSlotAllocate() will call RtlpHpLfhSubsegmentAllocateBlock() to perform the actual allocation
from the LFH subsegment where a block was reserved.

The logic of Rt1pHpLfhSubsegmentAllocateBlock() for finding a free LFH block in the LFH subsegment is shown
in the diagram below:

PVOID RtlpHpLfhSubsegmentAllocateBlock( HEAP_LFH_CONTEXT* LfhContext, _HEAP_LFH_AFFINITY_SLOT* Affinityslot,
_HEAP_LFH_SUBSEGMENT* LfhSubsegment, SIZE_T UserSize)

BlockBitmap =
LfhSubsegment . BlockBitmap

!

BlockBitmapSize =
LfhSubsegment.BlockCount = 2

BitmapBits = "BlockBitmapPos o

l BitmapBits = *BlockBitmapPos least one BUSY bit 1
BlockBitmapPos = BlockBitmap + glear in BitmopBits?
BLOCK_TNDEX_TO_BITMAP_OFS l
(LfhSubsegment . FreeHint) N N
BitmapBitsInverted =
Inverted (NOT) BitmapBits
with all UNUSED BYTES bits masked
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LfhSubsegment. FresHint = < P
AllocBlockInd hlready in the el o -
OLEI0CKELnCx & BlockBitmap? BlockBitmapPos 4= B
¢ Rotate (ROR) BitmapBitsInverted
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block's offset in the LFH l’ v
subsegment Scanindex =
i Scan (BSF) for a set bit in BlockBitmapPos =
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return {Userdddress) t
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position (BitIndex) in BitmapBits

{

Atomically update the value pointed
to by BlockBitmapPos with the
modified BitmapBits value

¥

AllocBlockIndex =
Calculate LFH block’s index in the
LFH subsegment based on BitIndex
and BlockBitmapFPos

L

The bulk of the logic is from Rt1pLfhBlockBitmapAllocate() (inlined in the diagram for brevity) which scans the
block bitmap for a clear BUSY bit. The starting position of the search in the block bitmap is biased by
LfhSubsegment.FreeHint and the selection of a clear BUSY bit is randomized.
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The logic starts by pointing BlockBitmapPos to a BitmapBits in the block bitmap where FreeHint is (block index
of recently allocated or freed LFH block). It then moves BlockBitmapPos forward until it finds a BitmapBits in
which at least 1 BUSY bit is clear. If BlockBitmapPos reaches the end of the block bitmap, BlockBitmapPos is
pointed to the start of the block bitmap and the search continues.

Once a BitmapBits is selected, the logic will randomly select a bit position in BitmapBits in which the BUSY bit is
clear. After the bit position (BitIndex) is selected, the BUSY bit (and UNUSED BYTES bit, if necessary) in the bit
position is set, then, the value pointed to by BlockBitmapPos is atomically updated with the modified BitmapBits
value. Finally, the bit position along with the value of BlockBitmapPos is translated into the address of the
allocated LFH block (UserAddress). Note that the retry logic when the atomic update failed is not included in the
diagram for brevity.

Below is an illustration where 8 LFH blocks are sequentially allocated from a new LFH subsegment, notice the
random position of each LFH allocation:

FREE FREE FREE FREE AlE:iY#E FREE FREE FREE
atocws| FEE | FREE |lnccwr |l attoews| FE | FREE |l asioe ue
FREE FREE FREE Al?:iv#l FREE FREE FREE FREE
Al?:iv#ﬁ FREE FREE FREE FREE AIES?#Z FREE FREE

LFH Freeing

LFH freeing is performed via Rt1pHpLfhSubsegmentFreeBlock()which has the following function signature:

BOOLEAN RtlpHpLfhSubsegmentFreeBlock(_HEAP_LFH_CONTEXT* LfhContext,
_HEAP_LFH_SUBSEGMENT* LfhSubsegment,
PVOID UserAddress, ULONG Flags)

The freeing code first computes the LFH block index of UserAddress (LfhBlockIndex). If LfhBlockIndex index is
less than or equal to LfhSubsegment.FreeHint, LfhSubsegment.FreeHint will be set with the value of
LfhBlockIndex.

Next, the corresponding BUSY and UNUSED BYTES bits of the LFH block in the block bitmap are atomically cleared.
Then, the LFH subsegment’s FreeCount field is atomically incremented making the LFH block available for
allocation.

2.5. LARGE BLOCKS ALLOCATION

Large blocks allocation is used for allocations with sizes 520,193 bytes and above (>= 0x7F@01). Large blocks do
not have a block header at the beginning and are allocated and freed using the virtual memory functions provided
by the NT Memory Manager.
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_HEAP_LARGE_ALLOC_DATA Structure
Each large block has a corresponding metadata with the following structure:

windbg> dt ntdll! HEAP_LARGE_ALLOC_DATA
+0x000 TreeNode ¢ _RTL_BALANCED_NODE
+0x018 VirtualAddress : Uint8B
+0x018 UnusedBytes : Pos 0, 16 Bits
+0x020 ExtraPresent : Pos 0, 1 Bit
+0x020 Spare : Pos 1, 11 Bits
+0x020 AllocatedPages : Pos 12, 52 Bits
e TreeNode - Each large block metadata is a node of the large blocks metadata tree

(HeapBase.LargeAllocMetadata).
e VirtualAddress - Address of the block. First 16 bits are used for the UnusedBytes field.
e UnusedBytes - Difference between the UserSize and the committed size of the block.
e AllocatedPages — Committed size of the block in pages.

Interestingly, this metadata is stored in a separate heap which address is stored in the global variable
RtlpHpMetadataHeap.

Large Block Allocation

Large block allocation is performed via Rt1pHpLargeAlloc() which has the following function signature:

§ PVOID RtlpHpLargeAlloc(_SEGMENT_HEAP* HeapBase, SIZE_T UserSize, SIZE_T AllocSize, ULONG Flags)

Large block allocation is straightforward since there’s no free tree/list to consult. First, an allocation of the block’s
metadata from the metadata heap is done. Next, via NtAllocateVirtualMemory(), a virtual memory with a size
equal to the allocation size plus ©x1000 bytes for the guard page is reserved. Then, a size equal to the allocation
size is committed from the initially reserved memory, leaving the last guard page still in the reserved state.

After allocating the block, the block’s metadata fields are set and the large allocation bitmap
(RtlpHpLargeAllocationBitmap) is updated to mark the block’s address (actually, UserAddress >> 16) as a
large block allocation.

Finally, the block’s metadata is inserted to the large blocks metadata tree (HeapBase.LargeAllocMetadata) using
the block’s address as the key, then, the block’s address (UserAddress) is returned to the caller.

Below is an illustration of different structures and global variables that support large blocks allocation:
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Large Block Freeing

Large block freeing is performed via Rt1pHpLargeFree() which has the following function signature:

BOOLEAN RtlpHpLargeFree(_SEGMENT_HEAP* HeapBase, PVOID UserAddress, ULONG Flags)

Similar to large block allocation, freeing a large block is a straightforward process. First, the metadata of the large

block is retrieved via RtlpHpLargeAllocGetMetadata() and then removed from the large blocks metadata tree

afterwards.

Next, the large allocation bitmap is updated to unmark the block’s address as a large block allocation. Then, the

virtual memory of the block is freed and the block’s metadata is freed.

2.6. BLOCK PADDING

In applications that are not opted-in by default to use the Segment Heap (i.e.: not a Windows app and not a system

executable as discussed in 2.1), an additional 16 (0x10) bytes padding is added to the block. The padding increases

the total block size required for the allocation and changes the layout of backend blocks, VS blocks and LFH blocks.

Below are the layout of a backend, VS and LFH block when padding is added:
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VS Block LFH Block
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Padding 8x18

User Data
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The padding should be taken into consideration when analyzing allocated blocks, especially if the application under
observation is neither a Windows app nor a system process.

2.7. SUMMARY AND ANALYSIS: INTERNALS

The implementation of the Segment Heap and the NT Heap are very different. The major differences can be
observed in the data structures used, the use of free trees instead of free lists to track free blocks, and the use of a
best-fit search algorithm with preference to the most committed block when searching for a free block.

Also, although the LFH in the Segment Heap and the NT Heap have the same purpose of reducing fragmentation
and have the same general design, the implementation of the LFH in the Segment Heap had been overhauled. The
major differences can be observed in the data structures used, the block bitmap representing the LFH blocks, and
the absence of a block header at the beginning of each LFH block.
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3. SECURITY MECHANISMS

This section discusses the different mechanisms added in the Segment Heap to make it difficult or unreliable to
attack heap metadata, and in certain cases, make it unreliable to perform precise heap layout manipulation.

3.1. FAST FAIL ON LINKED LIST NODE CORRUPTION

The Segment Heap uses linked lists for tracking segments and subsegments. Similar to the NT Heap, checks were
added in the linked list node insertion and removal operations to prevent classic arbitrary writes due to corrupted
linked list nodes. If a corrupted node is detected, the process immediately terminates via the FastFail [7]
mechanism:

Node Insertion Validation MNode Removal Validation

RtlFailFast({FAST_FAIL_CORRUPT_LIST_ENTRY)
int 29h (@rcx = @x3)

RtlFailFast(FAST_FAIL_CORRUPT_LIST_ENTRY)
int 29h (@rcx = Bx3)

|
|
New Node |
| _LIST_ENTRY | |
e ! | TMNode to T
Node 4 L Node | Node ? r‘_emo_ve____; Node
_LIST_ENTRY [—alink _LIST_ENTRY || LIST ENTRY («8link— LIST ENTRY —Flink-»| LIST ENTRY
| L 1
Flink {Clheckedj : Flink {Checked) BElink {Checked)
Invalid | Invalid Invalid
v | ¥ ¥
|
|
1

3.2. FAST FAILON RB TREE NODE CORRUPTION

The Segment Heap uses RB trees for tracking free backend blocks and free VS blocks. It is also used for tracking
large blocks metadata. The NTDLL-exported functions Rt1RbInsertNodeEx() and Rt1lRbRemoveNode() perform
the node insertion and removal respectively in addition to making sure that the RB tree is balanced. To prevent
arbitrary writes due to corrupted tree nodes, the aforementioned functions perform validation when manipulating
RB tree nodes. Similar to linked list nodes validation, failure in the validation of RB tree nodes will cause invocation
of the FastFail mechanism.

In the example validation below, the parent of the left child will be manipulated, which in turn, may lead to an
arbitrary write if the left child’s ParentValue pointer is controlled by an attacker. To prevent an arbitrary write,
the parent’s child nodes are checked if one of them is indeed the left child.
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Example: ParentValue Verification Before Parent Manipulation
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Rt1FailFast(FAST FAIL INVALID BALANCED TREE)

int 29h (frcx =

@x1D)

3.3. HEAP ADDRESS RANDOMIZATION

To make guessing of the heap address unreliable, randomness is added to where the heap will be located in virtual

memory.

Heap address randomization is performed by Rt1pHpSegHeapAllocate(), a function used for the creation of the

heap. It is done by first reserving virtual memory with a size equal to the computed size of the heap plus a

randomly generated size (the random size is a multiple of 64KB). After reserving virtual memory, the beginning of

the reserved virtual memory up to a size equal to the initially generated random size is released. Then, HeapBase is

pointed to beginning of the unreleased portion of the initially reserved virtual memory.

HeapBase

¥

Virtual Memory

Virtual Memory Allocation

Free Virtual Memory
{MEM_FREE)

i Random Size
i (Multiple of 64KB)

_SEGMENT_HEAP

LFH Context Extension
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3.4. GUARD PAGES

When VS subsegments, LFH subsegments and large blocks are allocated, a guard page is added at the end of the
subsegment/block. For VS and LFH subsegments, the subsegment size should be >=64KB for a guard page to be
added.

The guard page prevents a sequential overflow from VS blocks, LFH blocks and large blocks from corrupting

adjacent data outside the subsegment (for LFH/VS blocks) or outside the block (for large blocks).

Segment

Segment

Virtual Memory

Segment Header

W

V5 Subsegment
(Vs Blocks)

Guard Page
{MEM_RESERVE )

Backend Block
{Backend Block/Subsegment)

Backend blocks, on the other hand, do not have a guard page after them, allowing an overflow to corrupt adjacent

data outside the block.

Segment Header

LFH Subsegment
{LFH Blocks)

Guard Page
{MEM_RESERVE }

Backend Block
{Backend Block/Subsegment)

Large Block

Guard Page
{MEM_RESERVE)

Virtual Memory Allocation

Segment

Segment Header

k8

Backend Block

Backend Block
(Backend Block/Subsegment)
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3.5. FUNCTION POINTER ENCODING

In cases where the attacker is able to determine the address of the heap and assuming that the attacker has a
Control Flow Guard (CFG) bypass, the attacker can target the function pointers stored in the HeapBase as a way to
directly control execution flow. To protect these function pointers from trivial modification, the functions pointers
are encoded using the heap key and the LFH/VS context address.

- - T - - - —— = — = = — — = — — — — — — — — = — — — — —— -

- " windbg> dt ntdll!_SEGMENT_HEAP -r

HeapBase . | :
. o
| +8xBbd VsContext : _HEAP VS CONTEXT |
_SEGMENT_HEAP | +8x048 Callbacks ¢ _HEAP_SUBALLOCATOR_CALLBACKS |
| +BxB88 Allocate : Uint8B |
| +BuBal Free : Uint8B |
) | +3xB18 Commit : Uint8B :
n Y | +BxB18 Decommit : HntEB
LFH Context Extension I +BxB28 ExtendContext @ UintBB :
5 ...
% | +8x128 LfhContext : HEAP_LFH_CONTEXT :
Voo +@x0B8 Callbacks : _HEAP SUBALLOCATOR_CALLBACKS |
I +Bx088 Allocate : UintsB |
I +BXBE8 Free : UANtEE |
: +BxB18 Commit . UinteB |
1_1 | +BxE18 Decommit 1 UintBB |
L‘I +Bx828 ExtendConmtext 1 Hnt8B |
b oot |
!
VsContext Callbacks Encoding @~~~ ~ -~~~ "~~~ T T T T T T T T T T T T T T T T OC
Function Pointer = Function Pointer G RtlpHeapKey & VsContext Address
LfhContext Callbacks Encoding
Function Pointer = Function Pointer 6 RtlpHeapKey = LfhContext Address

3.6. VS BLock HEADER ENCODING

Unlike backend/LFH/large blocks, VS blocks have a header at the beginning of each block which makes VS block
headers a likely target in a buffer overflow. To protect important parts of the VS block header from trivial
modification, they are encoded using the LFH key and the VS block address.
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VS Subsegment

_HEAP_VS_SUBSEGMENT

_HEAP_VS_CHUNK_HEADER

User Data

_HEAP_VS_CHUNK_HEADER

r

+AwERE S5izes
+BxB68 MemoryCost
+2x208 UnsafeSize
+@8xBBd4 UnsafePrevsize
+@xBEd Allocated
+BxB68 KeyUshort
+2xB8 KeyUlong

|
|
|
|
|
f |
|
|
| +@8xBB3 HeaderBits
|
|

+8x888 EncodedsSegmentPage0ffset @

fwindbg> dt ntdl1)_HEAP_VS_CHUNK_HEADER -r
: _HEAP_VS_CHUNK_HEADER_SIZE

: Pos @, 16 Bits

1 Pos 16, 16 Bits

{ Pos B, 16 Bits

» Pos 16, 8 Bits

: Uint2B

1 UintdB

: IMntEB

Pos @8, 8 Bits

+@8x808 Header

+windbg> dt ntdl1)! HEAP_VS_CHUNK_FREE_HEADER -r

40

|
|
User Data A : _HEAP_VS_CHUMK_HEADER :
) 4 | +8xBPR Sizes : _HEAP_VS_CHUNK_HEADER_SIZE i
4 | +EBE8 MemoryCost : Pos 8, 16 Bits i
Hm vs cm"‘ FREE HEmER | +Bx888 UnsafeSize : Pos 15, 16 Bits |
= - T = = | +8x@884 UnsafePrevsize : Pos 8, 16 Bits |
| +Bx8a4 Allocated : Pos 16, 8 Bits |
(FREE) . +Bxeds KeyUshort : Uintze I
L +BxB88 KeyUlLong r Uint4p |
' s +Bx888 HeaderBits : UintBB |
| |
e e |
V5 Block Header Encoding
Sires. Sires.
HeadarBits = HeaderBits ~ RtlpLFHKey ~ Block Address
LOW 8 BITS LOW 8 BITS
EncodedSegmentPage0ffset = SegmentPage0ffset o = t - =
em € em € [(RtlpLFHEeY ) (Block Address)

3.7. LFH SUBSEGMENT BLOCKOFFSETS ENCODING

To protect important LFH subsegment header fields from trivial modification, the block size field and the first block

offset field in the LFH subsegment header are encoded using the LFH key and the LFH subsegment address.

LFH Subsegment

“lwindbg> dt ntdll!_HEAP_LFH_SUBSEGMENT -r

_HEAP_LFH_SUBSEGMENT : wee :
| +@x828 BlockOffsets : _HEAP_LFH_SUBSEGMENT_ENCODED_OFFSETS |
i +8x888 BlockSize ¢ Uint2B
BlockBitmap Y : +@x882 FirstBlockOffset : Uint2B :
3 +8x088 EncodedData ¢ Uint4B
CommitState \J :
LFH Blocks
LFH Subsegment BlockOffsets Encoding
BlockOffsets. _ BlockOffsets. N LOW_32 BITS N (LFH SuLb?s".‘e_amze_nBtn:ddress)
EncodedData - EncodedData (RTtlpLFHKey) }‘E oxc

3.8. LFH ALLOCATION RANDOMIZATION

To make exploitation of LFH-based buffer overflows and use-after-frees unreliable, the LFH component randomly

selects which free LFH block to use in an allocation request. The allocation randomization makes it unreliable to

place a target LFH block adjacent to an LFH block that can be overflowed, and it also makes it unreliable to reuse a
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recently freed LFH block. The allocation randomization algorithm is discussed in the “LFH Allocation” subsection in
2.4,

Below is an illustration where 8 LFH blocks are sequentially allocated from a new LFH subsegment:

>
FREE FREE FREE FREE || ypooe s || FREE FREE FREE
Mloc#a | FEE | PR llnocer | attoews| FE | PR |l aiioe ue
FREE FREE FREE || yyooc 4y || FREE FREE FREE FREE
Alggi\r#ﬁ FREE FREE FREE FREE Al?giv#z FREE FREE

Notice the first allocation is on the 20™ LFH block, the second allocation is on the 30" block, the third allocation is
on the 5™ block, and so on.

3.9. SUMMARY AND ANALYSIS: SECURITY MECHANISMS

The applied security mechanisms in the Segment Heap are mostly a carryover of the security mechanisms from the
NT Heap, notable of which are the guard pages and the LFH allocation randomization which was new when
Windows 8 was released [5, 8]. Based on this, and how important fields of the new data structures are protected,
the Segment Heap is comparable with the NT Heap in terms of applied security mechanisms. However, it is yet to
be seen how the new Segment Heap data structures will fare when metadata attack research of the Segment Heap
becomes popular.

With regards to heap layout manipulation, the best-fit search algorithm and the free block splitting mechanism of
the backend and the VS component are more welcoming to heap layout manipulation compared to the LFH

component which uses allocation randomization.
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4. CASE STUDY

This section examines how the layout of a heap managed by the Segment Heap can be manipulated by discussing a
way to leverage a memory corruption vulnerability for a reliable arbitrary write in the context of the Edge content
process.

4.1. CVE-2016-0117 VULNERABILITY DETAILS

The vulnerability (CVE-2016-0117 [9], MS16-028 [10]) is in WinRT PDF’s [11] PostScript interpreter for Type 4
(PostScript Calculator) functions [12]. PostScript Calculator functions use a subset of the PostScript language
operators and these PostScript operators use the PostScript operand stack when performing their functions.

The PostScript operand stack is a vector containing @x65 CType4Operand pointers. Each CType40Operand, on the
other hand, is a data structure consisting of one DWORD that represents the type and one DWORD representing
the value in the PostScript operand stack.

The PostScript operand stack and the CType40Operands are allocated from the MSVCRT heap which is managed by
the Segment Heap if WinRT PDF is loaded in the context of the Edge content process:

Edge Content Process

Windows_Data_Pdf!
CPostScriptEvaluator: :CPreAllocatedRelsablestack
<Builder::CTypedOperands>::
CPreAllocatedRelsableStack
<Builder: :CTypedOperands>()

!

MSVCRT heap (msvcrt!crtheap) - managed by the Segment Heap

PostScript Operand Stack CTyped0Operand
Windows_Data_Pdf! -
std: :vector<CTypedOperand*>: :resize(8x65) oxee | [exea] CTypedOperand* Type (DWORD)
‘ 'l' ‘ @x88 | [@x81] CTypedOperand™ Value (DWORD)

‘ Windows_Data_Pdf!operator new(8x328) ‘

v

‘ msvert!malloc(@x328) ‘ ox320 | [8x64] CTypedOperand* Value (DWORD)

i oo F— EEEEEEEEEEEN

‘ ntdll!RtlAllocateHeap(msvert!lcrtheap, @, @x328) )—

Type (DWORD)

|
|
L
|
|
|
|
|
|
|

¢ : 8x1e | [ex82] CTypedOperand* CTypedOperand
|
|
|
|
|
|
|

The issue is that the PostScript interpreter fails to validate if the PostScript operand stack index is past the end of
the PostScript operand stack (PostScript operand stack index is @x65), allowing a dereference of a CType40Operand
pointer located right after the end of the PostScript operand stack.

If an attacker is able to implant a target address right after the end of the PostScript operand stack, the attacker
will be able to perform a memory write to the target address via a PostScript operation that pushes a value in the
PostScript operand stack.

In the illustration below, multiple integers (1094795585 or ©x41414141) are pushed to the PostScript operand
stack with the last 0x41414141 pushed to invalid index @x65 of the PostScript operand stack:
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PostScript Calculator Function

{in PDF}

1894795585
| 1894795585
L1
11894795585
118247355

|% Postse

11894795585

Push last @x41414141 to
PastSeript operand stack [8x65]

axeea

axes

axla

ax32e

P Bx328

PostScript Operand Stack

B

43

CTypedOperand

[exee] CTypedOperand*

I

[BxB1] CTypedOperand*

[ex82] CTypedOperand®*

.
o

Type = 8 (Integer)

8x41414141

Attacker-Controlled Address

[ex64] CTyped4Operand*

Arbitrary
Write

Attacker-Controlled
Address

4.2. PLAN FOR IMPLANTING THE TARGET ADDRESS

Type = @ (Integer)

8x41414141

After understanding the vulnerability, the following plan is used to implant the target address after the end of the

PostScript operand stack:

1. Allocate a controlled buffer and set offset ©x328 of the controlled buffer to the target address
(0x4242424242424242). For reliability, the controlled buffer and the PostScript operand stack will be VS-
allocated instead of being LFH-allocated.

2. Free the controlled buffer.

3. The PostScript operand stack will be allocated in the free VS block of the freed controlled buffer.

Below is an illustration of the plan:

1: Allocate Controlled
Buffer

Controlled Buffer: BUSY

exee

Bx328 | @x42424242'42424242

2: Free Controlled Buffer

Controlled Buffer: FREE

Bxee

3: PostScript Operand
Stack is allocated

PostScript Operand Stack

Bxaa

[exe8] CTypedOperand*

[8x81] CTypedOperand*

Bx3i28

Bx42424242'42424242

[8x64] CTypedOperand*

Bx328

Bx42424242"42424242

Executing the above plan requires the ability to manipulate the MSVCRT heap in order to reliably implant the

target address after the PostScript operand stack, this includes the ability to allocate a controlled block from the
MSVCRT heap and the ability to free the controlled block. In addition, there will be some issues that will affect
reliability (such as free blocks coalescing) which need to be dealt with. The next subsections will discuss the

solutions to these requirements/issues.
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4.3. MANIPULATING THE MSVCRT HeAaP WITH CHAKRA’S ARRAYBUFFER

JavaScript embedded in the PDF can potentially fulfill the requirement of MSVCRT heap manipulation, but
unfortunately, as of writing, WinRT PDF still does not support embedded JavaScript.

Fortunately, a solution can be found in the Chakra’s (Edge’s JavaScript engine) ArrayBuffer implementation.
Similar to WinRT PDF’s PostScript operand stack, the data buffer of Chakra’s ArrayBuffer is also allocated from
the MSVCRT heap via msvcrt!malloc() [13, 14] if the ArrayBuffer is of a certain size (i.e.: size is less than 64KB,
or for sizes >=64KB, additional checks are performed).

This means that a JavaScript code in an HTML file can allocate and free the controlled buffer from the MSVCRT
heap (step 1 and step 2 of the plan). Then, the JavaScript code can inject an <embed> element in the page which
causes the PDF file containing the vulnerability trigger to be loaded by WinRT PDF. Upon loading the PDF file,
WinRT PDF will allocate the PostScript operand stack from the MSVCRT heap, and the free VS block of the freed
controlled buffer would then be returned by the heap manager to WinRT PDF to fulfill the allocation request (step
3 of the plan).

Allocation and Setting Controlled Values

In the illustration below, a JavaScript code in an HTML file instantiated an ArrayBuffer with a size of @x340 which
in turn leads to an allocation of a @x340 bytes block from the MSVCRT heap; offset ©x328 of the block is then set
with the target address:

Edge Content Proces
JavaScript code (in HTML} & ess

|L __________________________________________________________ 1' Toons 5 oy o MSVCRT heap (msvecrt!crtheap) -
i chakralls::JavascriptArrayBuffer: : 4 <
= — by the Hea

|var controlledBuffer - new ArrayBuffer(ex340); =P avascriptarrayBuffer(exsde,...) | ool y e ceenem e
:\rar‘ int32Array = new Int32Array( | : Controlled Buffer
| controlledBuffer, @x328); H >

1752+ e t >
| int32Array[0] = @x42424242; | chakra!Jls::ArrayBuffer::
1% | ArrayBuffer(8x34a,...) 6x08
jint32Array[1] = @x42424242; | e

e | ‘ msvertimalloc(8x34@) ‘

'

|
|

|

|

|

|

|

I
ntdll!RtlAllocateHeap(msvert!crtheap, I
e, ex340) l
l

|

|

|

|

|

|

|

|

Pl Ox328 | Ox42424242'42424242

LFH Bucket Activation

Activating the LFH bucket for a particular allocation size is also an important capability and its use in the plan will
be later discussed. To activate the LFH bucket for a specific allocation size, 17 ArrayBuffer objects with the same
size need to be instantiated:

[
| 1fhBucketActivators = []; |
| for (var i = @; i < 17; i++) { :
|
|

: lfhBucketActivators.push{new ArrayBuffer(blockSize));
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Freeing and Garbage Collection

Freeing blocks involves removing references to the ArrayBuffer object and then triggering a garbage collection.
Note that Chakra’s CollectGarbage() is still callable but its functionality is disabled in Edge [15], therefore,
another mechanism to trigger garbage collection is needed.

Looking again at the ArrayBuffer functionality, every time an ArrayBuffer is created, the size passed to the
ArrayBuffer constructor is added to an internal Chakra heap manager counter [16]. If that particular counter
reaches >=192MB in machines with >1GB memory (threshold is lower for machines with lower memory), a
concurrent garbage collection is triggered.

Therefore, to perform garbage collection, an ArrayBuffer with a size of 192MB is created, then a delay is
introduced to let the concurrent garbage collection to finish, and afterwards, a succeeding JavaScript code is
executed:

r., .. .. 7 7 "

| /# trigger concurrent garbage collection

| gcTrigger = new ArrayBuffer(192 * 1824 * 1824);

l s/ then call afterGcCallback after some delay (adjust if needed)

[
| setTimeout(afterGcCallback, 188@);

4.4, PREVENTING TARGET ADDRESS CORRUPTION

Since VS allocations are performed using a best-fit policy, the first idea that comes to mind is to VS-allocate the
controlled buffer using 8x330 as the size. However, this first idea has a problem in that the highest 16 bits of the
target address will be overwritten with unused bytes value which is stored in the last two bytes of a VS block:

Controlled Buffer: BUSY Controlled Buffer: FREE PostScript Operand Stack
Block Size : @x348 bytes Block Size : @x348 bytes Block Size : @x348 bytes
User Size ! Bx338 bytes User Size i Bx328 bytes
Unused Bytes: @x8 byte Unused Bytes: @x8 bytes
Pxee %68 exee| [exed] CTypedOperand*

[8x81] CTypedOperand*

[@x64] CTypedOperand*

Bx328|42 42 42 42 42 42 42 42 Ox328 (42 42 42 42 42 42 42 42 Ox328|42 42 42 42 42 42 @8 @8
r3

| Highest 16 bits of target address is
: overwritten with unused bytes value [
| {(stored in the last 2 bytes of a VS block) :

To solve the issue, a property of VS chunk splitting can be leveraged. Specifically, as previously mentioned in the
“VS Allocation” subsection in 2.3, large free blocks are split unless the block size of the resulting remaining block
will be less than @x20 bytes.

Therefore, if a ©x340 bytes controlled buffer (total block size including header: @x350) is used, and that a 0x328
bytes PostScript operand stack (total block size including header: ©x340) will be allocated in the freed controlled
buffer’s free VS block, the size of the remaining block after the split will only be 0x10 bytes, thereby preventing
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the split of the @x350 bytes free VS block. And if that is the case, the unused bytes value will be stored at offset

0x33E of the VS block, leaving the target address unmodified:

Controlled Buffer: BUSY Controlled Buffer: FREE
Block Size : @x350 bytes Block Size : @x358 bytes
User Size © Bx348 bytes
Unused Bytes: @x@ byte
exee Bxea
Bx328 | 42 42 42 42 42 42 42 42 Bx328 (42 42 42 42 42 42 42 42
8x338 Bx338

4.5. PREVENTING FREE BLOCKS COALESCING

axae

8x328

ax338

PostScript Operand Stack

Block Size : @x350 bytes
User S5ize © Bx32B bytes

Unused Bytes: @x18 bytes

[8x@8] CTypedOperand*

[8x64] CTypedOperand*

42 42 42 42 42 42 42 42

ve ows owe ax o« s 18 B0

To prevent the free VS block of the freed controlled buffer from being coalesced with neighboring free VS blocks,

15 (instead of one) controlled buffers are created sequentially, then, in an alternating manner, eight are kept busy

and seven are freed.

The illustration below shows a favorable allocation pattern that prevents the free VS blocks of the freed controlled

buffers from being coalesced:

VS Subsegment

_HEAP_VS_SUBSEGMENT

[éxee] Controlled Buffer: BUSY (@x358)

[éx@1] Controlled Buffer: FREE (@x358)

[ex@2] Controlled Buffer: BUSY (@8x358)

[éx@3] Controlled Buffer: FREE (@x358)

[8x84] Controlled Buffer: BUSY (@x358)

[ex@5] Controlled Buffer: FREE (@x358)

[ex@6] Controlled Buffer: BUSY (@8x358)

[8x87] Controlled Buffer: FREE (8x358)

[éx@8] Controlled Buffer: BUSY (@8x358)

[exeA] Controlled Buffer: BUSY (8x358)

[éxeB] Controlled Buffer: FREE (8x358)

[8x@C] Controlled Buffer: BUSY (8x358)

[8xeD] Controlled Buffer: FREE (8x358)

]
]
]
]
[éxe9] Controlled Buffer: FREE (@x358)
]
]
]
]
]

[exe@E] Controlled Buffer: BUSY (@x358)
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Actual allocation patterns will not always exactly match the above illustration, such as when some of the

controlled buffers are allocated from a different VS subsegment. However, the multiple freed and busy controlled

buffers increase the chance that at least one or more free VS blocks of the freed controlled buffers will not be

coalesced.

4.6. PREVENTING UNINTENDED USE OF FREE BLOCKS

After the controlled buffers are freed in step 2, their corresponding free VS blocks might be split and used for small

allocations that might occur before step 3. In order to prevent the unintended use of these free VS blocks, the

corresponding LFH buckets for allocation sizes @x1 to ©x320 are activated so that allocation for those sizes will be

serviced by the LFH instead of the VS allocation component:

Allocation Size

VS Subsegment

" | _HEAP_VS_SUBSEGMENT

[exe8
[@x@1
[8xB2

Controlled Buffer: BUSY (@x35@)
Controlled Buffer: FREE (@x358)
Controlled Buffer: BUSY (@8x358)

2xa1l

.. @x1e » LFH Bucket # 1 (Activated) [6x83] Controlled Buffer: FREE (@x358)

Controlled Buffer: BUSY (@x35@)

- [@xed
F———————D|LFH Bucket #... (Activated)
[@xe5] Controlled Buffer: FREE (@x35e)

8x311 ..

8x328 » LFH Bucket # 58 (Activated) [exe6] Controlled Buffer: BUSY (@x358)

ax321 ..

8x338

[@xe8] Controlled Buffer: BUSY (@x358)

[8x@9] Controlled Buffer: FREE (@x358)
[exeA] Controlled Buffer: BUSY (@x35e)
[exeB] Controlled Buffer: FREE (@x358)
[exeC] Controlled Buffer: BUSY (@x3i5e)
[exeD] Controlled Buffer: FREE (@x358)
[exeE] Controlled Buffer: BUSY (@x3i5e)

]
]
]
]
]
]
]
[@x@7] Controlled Buffer: FREE (@x358)
]
]
]
]
]
]
]

4.7. ADJUSTED PLAN FOR IMPLANTING THE TARGET ADDRESS

Now that the solutions to the issues were identified, the initial plan for implanting the target address is adjusted to

the following:

HTML/JavaScript: Create 15 controlled buffers by instantiating ArrayBuffer objects with ©x340 as the
size.

HTML/JavaScript: Activate the LFH buckets corresponding to allocation sizes 0x1 to 0x320.
HTML/JavaScript: In an alternating manner, free seven controlled buffers and leave eight controlled
buffers busy.

HTML/JavaScript: Inject an <embed> element to the page in order for WinRT PDF to load the PDF file that
triggers the vulnerability.

PDF: WinRT PDF will allocate the PostScript operand stack and the block by returned by the heap manager
will be the free VS block of one of the freed controlled buffers.
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2: Activate LFH Buckets 4: Load PDF
____________ .
LFH Bucket #1..#58 :—<embed sre = |
(Activated) | “poc.pdf” ... > J|
I L —
| |
| |
1: Allocate Controlled | 3: Free Controlled Buffers I 5: PostScript Operand
Buffers (HTML/1S) | (HTML/1S) I Stack is allocated (PDF)
| |
Controlled Buffer: BUSY R 4 Controlled Buffer: FREE v PostScript Operand Stack
Bxee axee Bx88 | [Bxee] CTypedOperand*
[exel] CTypedOperand*
[8x64] CTypedOperand*
8x328 | px42424242' 42424242 Ax328| Ox42424242'42424242 9x328| Bx42424242'42424242
Bx338 ax338 ax338

4.8. SUCCESSFUL ARBITRARY WRITE

Once the target address is successfully implanted after the end of the PostScript operand stack and the

vulnerability is triggered, arbitrary write is achieved:

B 192.168.0.10 x4+ - a X
@) 192.168.0.10 bAe = 4 O

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse ac ipsum et ante
egestas elementum id quis libero. Aenean tincidunt neque et egestas condimentum.
Donec id laoreet nibh. Maecenas sit amet lectus arcu. Donec iaculis odio lectus, sed
feugiat mi faucibus vl A . £ = ialacal alicaaas Dhacall

ligula at magna accu ;J Pid 4560 - WinDbg:10.0.14281.933 AMD64
gravida. Curabitur elf g
a ante in, suscipit ting

quis lorem. Pellentes|
pretium maximus id

“Windows systemn3d2 windovscodecs . dll
ModLoad: 00007f££f° 7dfc0000 0DO007f£ff° 7dfd5000 “WindowssSystend2sthreadpoolwinrt .dll
ModLoad: 00007fff  7d0=0000 00007fff" 7d12a000 “HindowssSYSTEM325WindowsCodecsExt .dl11
ModLoad: 00007£££° 70870000 00007£££° 70901000 “Windows\SYSTEM3I2“mscns . d1l

ModLoad: 00007f££f° 7cel0000 00007f£ff° 7ceS52000 C:Windows SYSTEM32-icm32.d1l

[slslnly!

X
Edit View Debug Window Help
finibus at. Nunc vel | & | EEHARIBEE O EREEDREEO0DE|EN] A
Command Eﬂ
ModLoad: 00007f££f° 82420000 00007££f° 82541000

Ln0, Col0 Sys(i<Local> Proc000:11d0 Thrd 035:12f8 ASM

(11d0.12£8): Access violation — code c0000005 (!!! second chance 1!

Windows_Data_Pdf |CPostScriptEvaluator: :_Evaluate+0xa9:

00007£££° 6a5d7925 488902 mov quord ptr [rdx].rax ds:42424242°42424242=7777777777777777

0:035> r.

Ed}ﬂ:;éﬂ?ﬂﬂ‘ 42424242 rax=41414141° 00000000

: »
0 id: 11d0 attach name: C:“\Windows Systemdpps-Microsoft . Microsof tEdge_8wekyb3d8bbwesmnicrosof tedgecp.exe

< >
j0:035>

4.9. ANALYSIS AND SUMMARY: CASE STUDY

The case study showed that precise layout manipulation is achievable in heaps managed by the Segment Heap.
Specifically, it showed how the layout of VS allocations can be controlled, and how the LFH can be used to preserve

the controlled layout of VS allocations by redirecting unwanted allocation requests to activated LFH buckets.

The two main elements that allowed the precise heap layout manipulation in the case study are the scripting
capability provided by the Chakra JavaScript engine and a common heap used by both Chakra’s ArrayBuffer and
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WinRT PDF’s PostScript interpreter. Without these two elements, precise layout manipulation of the MSVCRT heap
using WinRT PDF’s internal allocation and freeing of objects would likely be more difficult.

Finally, when developing proof-of-concepts, one might encounter issues that seem to be unresolvable, such as the
target address corruption described in the case study. In cases such as those, understanding the internals of the
heap implementation will sometimes provide the solution.
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5. CONCLUSION

The internals of the Segment Heap and the NT Heap are largely different. Although some components of the
Segment Heap and the NT Heap have the same purpose, the data structures supporting the Segment Heap are
mostly unlike their counterpart in the NT Heap. Consequently, these new Segment Heap data structures are
interesting for metadata attack research.

Also, the security mechanisms in the initial release of the Segment Heap in Windows 10 show that previous attacks
and their corresponding mitigations in the NT Heap had been taken into consideration when the Segment Heap
was developed.

In terms of heap layout manipulation, the case study showed that, given a capability to perform arbitrary
allocations and frees, precise layout manipulation of heaps managed by the Segment Heap is achievable. The case
study also showed that in-depth knowledge of the Segment Heap can help resolve seemingly unresolvable proof-
of-concept reliability/functionality issues.

Finally, I hope that this paper helped you understand Windows 10’s Segment Heap.
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6. APPENDIX: WINDBG !HEAP EXTENSION COMMANDS FOR SEGMENT HEAP

Below are some useful WinDbg !heap extension commands that work with the Segment Heap.

lheap -x <address>

This command is useful if the heap where a block was allocated from is unknown since this command only requires
the block’s address. This command will show the corresponding heap, segment, subsegment, subsegment’s “first”
page range descriptor, type and total size of the block.

Example output for a busy VS block (user-requested size is ©x328 bytes):

windbg> 'heap -x 00000203 6b2b6200

[100 Percent Complete]

[33 Percent Complete]

Search was performed for the following Address: ©x000002036b2b6200
Below is a detailed information about this address.

Heap Address . 0x000002036b140000
The address was found in backend heap.
Segment Address 0x000002036b200000

Page range index (©- 255) 120
Page descriptor address : 0x000002036b200f00

Subsegment address : 0x000002036b278000

Subsegment Size : 266240 Bytes

Allocation status : Variable size allocated chunk.
Chunk header address 1 000002036b2b6110

Chunk size (bytes) . 848

Chunk unused bytes : 24

lheap -i <address> -h <heap>
Once the corresponding heap of the block is known, this command can be used to display additional information
about the block such as its user-requested size and the decoded RangeFlags field of the corresponding

subsegment’s “first” page range descriptor.

Example output for a busy VS block (user-requested size is 9x328 bytes, same block as the previous example):

windbg> 'heap -i 00000203 6b2b6200 -h 000002036b140000

The address 000002036b2b6200 is in Segment ©00002036b200000
Page range descriptor address: 000002036b200f00

Page range start address: 000002036b273000

Range flags (2e): First Allocated Committed VS

UserAddress: 0x000002036b2b6200
Block is : Busy

Total Block Size (Bytes): 0x350

User Size (bytes): 0x328

UnusedBytes (bytes): 0x18

lheap -s -a -h <heap>
The 'heap -s command with the -a option (dump all heap blocks option) can be used for examining the layout of
a heap since it displays information about each block for each Segment Heap component in sequence.

Example output:

windbg> 'heap -s -a -h 000002036b140000

Large Allocation X-RAY.
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[...]

[...]

Block Address Metadata Address

20c7fc020co 20c7fc020co
20c71c02080 20c7fc02080
Backend Heap X-RAY.
Page Range Page Range
Segment Descriptor Descriptor
Address Address Index
2036b200000  2036b200040 2
2036b200000  2036b200260 19
2036b200000  2036b200a80 84

Variable size allocation X-RAY

Virtual Address

20300df0000
20300ee0000

Subsegment
Address

2036b202000
2036b213000
2036b254000

Segment Subsegment Chunk Header
Address Address Address
2036b200000 2036b202000 2036b202030
2036b200000 2036b202000 2036b202320
2036b200000 2036b202000 2036b202a30
fooo]
LFH X-RAY
Segment Subsegment Block Block
Address Address Address Size
2036b200000  2036b254000  2036b254040 256
2036b200000  2036b254000  2036b254140 256
2036b200000  2036b254000  2036b254240 256

Pages Ununsed Size
Allocated (Bytes)
227 2383
137 1912
Range Subsegment Pages
Flags Type Allocated
2e Variable Alloc 17
2e Variable Alloc 65
f LFH Subsegment 1
Chunk  Bucket Status  Unused
Size Index Bytes
752 47 Allocated 8
1808 77 Allocated (%]
272 17 Allocated (%]
Bucket Commit Busy Free
Index Status Bytes Bytes
16 Committed 256 0
16 Committed 256 0
16 Committed 256 (7]

Unused
Bytes

4096

4096
0

Unused
Bytes

0
0
0

52
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