
December 10, 2003

JEFF HUANG (huang6@uiuc.edu)

Windows Assembly Programming Tutorial

Version 1.02

Copyright © 2003, Jeff Huang. All rights reserved.

Windows Assembly Programming Tutorial
by Jeff Huang

 i

Table of Contents
Introduction.. 2

Why Assembly? .. 2
Why Windows? ... 2

I. Getting Started ... 3
Assemblers ... 3
Editors... 3

II. Your First Program.. 4
Console Version.. 4
Windows Version .. 6

ADDR vs OFFSET.. 6
III. Basic Assembly .. 7

CPU Registers .. 7
Basic Instruction Set ... 8

Push and Pop ... 8
Invoke ... 9

Example Program ... 9
IV. Basic Windows... 10

Preliminaries ... 10
Macros .. 10
Functions .. 10
Variables ... 10

A Simple Window.. 11
V. More Assembly and Windows... 13

String Manipulation ... 13
File Management .. 13

Memory ... 14
Example Program ... 14

Controls... 15
Additional Resources .. 16

WWW.. 16
Books .. 16
MASM32 ... 16
MSDN Library ... 16
Newsgroups .. 16
IRC.. 16

Windows Assembly Programming Tutorial
By Jeff Huang

 2

"This is for all you folks out there, who want to learn the magic art of Assembly programming."
- MAD

Introduction
I have just started learning Windows assembly programming yesterday, and this tutorial
is being written while I'm learning the language. I am learning assembly from reading
various tutorials online, reading books, and ask questions in newsgroups and IRC.
There are a lot of assembly programming tutorials online, but this tutorial will focus on
Windows programming in x86 assembly. Knowledge of higher level programming
languages and basic knowledge of computer architecture is assumed.

Why Assembly?
Assembly has several features that make it a good choice many some situations.

1. It's fast – Assembly programs are generally faster than programs created in
higher level languages. Often, programmers write speed-essential functions in
assembly.

2. It's powerful – You are given unlimited power over your assembly programs.
Sometimes, higher level languages have restrictions that make implementing
certain things difficult.

3. It's small – Assembly programs are often much smaller than programs
written in other languages. This can be very useful if space is an issue.

Why Windows?
Assembly language programs can be written for any operating system and CPU model.
Most people at this point are using Windows on x86 CPUs, so we will start off with
programs that run in this environment. Once a basic grasp of the assembly language is
obtained, it should be easy to write programs for different environments.

Introduction

Windows Assembly Programming Tutorial
By Jeff Huang

 3

I. Getting Started
To program in assembly, you will need some software, namely an assembler and an
editor. There is quite a good selection of Windows programs out there that can do
these jobs.

Assemblers
An assembler takes the written assembly code and converts it into machine code.
Often, it will come with a linker that links the assembled files and produces an
executable from it. Windows executables have the .exe extension. Here are some of the
popular ones:

1. MASM – This is the assembler this tutorial is geared towards, and you should
use this while going through this tutorial. Originally by Microsoft, it's now
included in the MASM32v8 package, which includes other tools as well. You
can get it from http://www.masm32.com/.

2. TASM – Another popular assembler. Made by Borland but is still a
commercial product, so you can not get it for free.

3. NASM – A free, open source assembler, which is also available for other
platforms. It is available at http://sourceforge.net/projects/nasm/. Note that
NASM can't assemble most MASM programs and vice versa.

Editors
An editor is where you write your code before it is assembled. Editors are personal
preferences; there are a LOT of editors around, so try them and pick the one you like.

1. Notepad – Comes with Windows; although it lacks many features, it's quick
and simple to use.

2. Visual Studio – Although it's not a free editor, it has excellent syntax
highlighting features to make your code much more readable.

3. Other – There are so many Windows editors around that it would be pointless
to name all of them. Some of the more popular ones are:

a. Ultraedit (my personal favorite) http://www.ultraedit.com/
b. Textpad http://www.textpad.com/
c. VIM http://www.vim.org/
d. Emacs http://www.gnu.org/software/emacs/emacs.html
e. jEdit http://www.jedit.org/

Chapter 1

Note:
There will be several
directives and macros
used in this tutorial that
are only available in
MASM, so it's highly
encouraged that you
start with this first

Windows Assembly Programming Tutorial
By Jeff Huang

 4

II. Your First Program
Now that we have our tools, let's begin programming! Open up your text editor and
following the instructions below. This is the most commonly written program in the
world, the "Hello World!" program.

Console Version
The console version is run from the Windows console (also known as the command
line). To create this program, first paste the following code into your text editor and
save the file as "hello.asm".

.386

.model flat, stdcall
option casemap :none

include \masm32\include\windows.inc
include \masm32\include\kernel32.inc
include \masm32\include\masm32.inc

includelib \masm32\lib\kernel32.lib
includelib \masm32\lib\masm32.lib

.data
 HelloWorld db "Hello World!", 0

.code
start:
 invoke StdOut, addr HelloWorld
 invoke ExitProcess, 0

end start

Now, open up the command line by going into the Start Menu, clicking on the Run…
menu item, and typing in "cmd" without the quotes. Navigate to the directory
"hello.asm" is saved in, and type "\masm32\bin\ml /c /Zd /coff hello.asm".
Hopefully, there are no errors and your program has been assembled correctly! Then
we need to link it, so type "\masm32\bin\Link /SUBSYSTEM:CONSOLE
hello.obj". Congratulations! You have successfully created your first assembly
program. There should be a file in the folder called Hello.exe. Type "hello" from the
command line to run your program. It should output "Hello World!".

So that was quite a bit of code needed to just display Hello World! What does all that
stuff do? Let's go through it line by line.

.386

This is the assembler directive which tells the assembler to use the 386 instruction set.
There are hardly any processors out there that are older than the 386 nowadays.
Alternatively, you can use .486 or .586, but .386 will be the most compatible
instruction set.

Chapter 2

Windows Assembly Programming Tutorial
By Jeff Huang

 5

.model flat, stdcall

.MODEL is an assembler directive that specifies the memory model of your program.
flat is the model for Windows programs, which is convenient because there is no
longer a distinction between 'far' and 'near' pointers. stdcall is the parameter passing
method used by Windows functions, which means you need to push your parameters
from right-to-left.

option casemap :none

Forces your labels to be case sensitive, which means Hello and hello are treated
differently. Most high level programming languages are also case sensitive, so this is a
good habit to learn.

include \masm32\include\windows.inc
include \masm32\include\kernel32.inc
include \masm32\include\masm32.inc

Include files required for Windows programs. windows.inc is always included, since it
contains the declarations for the Win32 API constants and definitions. kernel32.inc
contains the ExitProcess function we use; masm32.inc contains the StdOut function,
which although is not a built in Win32 function, is added in MASM32v8.

includelib \masm32\lib\kernel32.lib
includelib \masm32\lib\masm32.lib

Functions need libraries in order to function (no pun intended), so these libraries are
included for that purpose.

.data

All initialized data in your program follow this directive. There are other directives such
as .data? and .const that precede uninitialized data and constants respectively. We
don't need to use those in our Hello World! program though.

HelloWorld db "Hello World!", 0

db stands for 'define byte' and defines HelloWorld to be the string "Hello World!"
followed by a NUL character, since ANSI strings have to end in NULL.

.code

This is the starting point for the program code.

start:

All your code must be after this label, but before end start.

invoke StdOut, addr HelloWorld

invoke calls a function and the parameter, addr HelloWorld follows it. What this
line does is call StdOut, passing in addr HelloWorld, the address of "Hello World!".
Note that StdOut is a function that's only available in MASM32 and is simply a macro
that calls another function to output text. For other assemblers, you will need to use
write more code and use the win32 function, WriteConsole.

invoke ExitProcess, 0

This should be fairly obvious. It passes in 0 to the ExitProcess function, exiting the
process.

Windows Assembly Programming Tutorial
By Jeff Huang

 6

Windows Version
We can also make a Windows version of the Hello World! program. Paste this text into
your text editor and save the file as "hellow.asm".

.386

.model flat, stdcall
option casemap :none

include \masm32\include\windows.inc
include \masm32\include\kernel32.inc
include \masm32\include\user32.inc

includelib \masm32\lib\kernel32.lib
includelib \masm32\lib\user32.lib

.data
 HelloWorld db "Hello World!", 0

.code
start:
 invoke MessageBox, NULL, addr HelloWorld, addr HelloWorld, MB_OK
 invoke ExitProcess, 0

end start

Now, open up the command line again and navigate to the directory "hellow.asm" is
saved in. Type "\masm32\bin\ml /c /Zd /coff hellow.asm", then
"\masm32\bin\Link /SUBSYSTEM:WINDOWS hellow.obj". Note that the
subsystem is WINDOWS instead of CONSOLE. This program should pop up a message
box showing "Hello World!".

There only 3 lines of code that are different between the Windows and Console
version. The first 2 have to do with changing the masm32 include and library files to
user32 include and library files since we're using the MessageBox function instead of
StdOut now. The 3rd change is to replace the StdOut function with the MessageBox
function. That's all!

ADDR vs OFFSET
In our Hello World! examples, we used 'addr' to get the address of the string "Hello
World!". There is also another similar directive, 'offset', although the purpose of both is
to get the memory address of variables during execution. The main difference is that
'offset' can only get the address of global variables, while addr can get the address of
both global variables and local variables. We haven't discussed local variables yet, so
don't worry about it. Just keep this in mind.

Windows Assembly Programming Tutorial
By Jeff Huang

 7

III. Basic Assembly
So now we are able to get a simple program up and running. Let's move to the core of
the tutorial – basic assembly syntax. These are the fundamentals you need to know in
order to write your own assembly programs.

CPU Registers
Registers are special memory locations on the CPU. At this point, we'll assume the
reader is programming for computers using 386 or later processors. Older processors
are very rare at this time, so it would be a waste of time to learn about them. One
important difference between older and later processors is that the pre-386 processors
are 16-bit instead of 32-bit.

There are 8 32-bit general purpose registers. The first 4, eax, ebx, ecx, and edx can also
be accessed using 16 or 8-bit names. ax gets the first 16 bits of eax, al gets the first 8
bits, and ah gets bits 9-16. The other registers can be accessed in a similar fashion.
Supposedly, these registers can be used for anything, although most have a special use:

Address Name Description
EAX* Accumulator Register calculations for operations and results data
EBX Base Register pointer to data in the DS segment
ECX* Count Register counter for string and loop operations
EDX* Data Register input/output pointer
ESI Source Index source pointer for string operations
EDI Destination Index destination pointer for string operations
ESP Stack Pointer stack pointer, should not be used
EBP Base Pointer pointer to data on the stack

There are 6 16-bit segment registers. They define segments in memory:

Address Name Description
CS Code Segment where instructions being executed are stored
DS, ES, FS, GS Data Segment data segment
SS Stack Segment where the stack for the current program is stored

Lastly, there are 2 32-bit registers that don't fit into any category:

Address Name Description
EFLAGS Code Segment status, control, and system flags
EIP Instruction Pointer offset for the next instruction to be executed

Chapter 3

Note:
Although they are called
general purpose
registers, only the ones
marked with a * should
be used in Windows
programming

Windows Assembly Programming Tutorial
By Jeff Huang

 8

Basic Instruction Set
The x86 instruction set is extremely huge, but we usually don't need to use them all.
Here are some simple instructions you should know to get you started:

Instruction Description
ADD* reg/memory, reg/memory/constant Adds the two operands and stores the result into the first

operand. If there is a result with carry, it will be set in CF.
SUB* reg/memory, reg/memory/constant Subtracts the second operand from the first and stores the

result in the first operand.
AND* reg/memory, reg/memory/constant Performs the bitwise logical AND operation on the operands

and stores the result in the first operand.
OR* reg/memory, reg/memory/constant Performs the bitwise logical OR operation on the operands and

stores the result in the first operand.
XOR* reg/memory, reg/memory/constant Performs the bitwise logical XOR operation on the operands

and stores the result in the first operand. Note that you can not
XOR two memory operands.

MUL reg/memory Multiplies the operand with the Accumulator Register and
stores the result in the Accumulator Register.

DIV reg/memory Divides the Accumulator Register by the operand and stores
the result in the Accumulator Register.

INC reg/memory Increases the value of the operand by 1 and stores the result in
the operand.

DEC reg/memory Decreases the value of the operand by 1 and stores the result
in the operand.

NEG reg/memory Negates the operand and stores the result in the operand.
NOT reg/memory Performs the bitwise logical NOT operation on the operand and

stores the result in the operand.
PUSH reg/memory/constant Pushes the value of the operand on to the top of the stack.
POP reg/memory Pops the value of the top item of the stack in to the operand.
MOV* reg/memory, reg/memory/constant Stores the second operand's value in the first operand.
CMP* reg/memory, reg/memory/constant Subtracts the second operand from the first operand and sets

the respective flags. Usually used in conjunction with a JMP,
REP, etc.

JMP** label Jumps to label.
LEA reg, memory Takes the offset part of the address of the second operand and

stores the result in the first operand.
CALL subroutine Calls another procedure and leaves control to it until it returns.
RET Returns to the caller.
INT constant Calls the interrupt specified by the operand.

* Instructions can not have memory as both operands

** This instruction can be used in conjunction with conditions. For example, JNB (not
below) jumps only when CF = 0.

The latest complete instruction set reference can be obtained at:
http://www.intel.com/design/pentium4/manuals/index.htm.

Push and Pop
Push and pop are operations that manipulate the stack. Push takes a value and adds it
on top of the stack. Pop takes the value at the top of the stack, removes it, and stores it
in the operand. Thus, the stack uses a last in first out (LIFO) approach. Stacks are
common data structures in computers, so I recommend you learn about them if you
are not comfortable with working with stacks.

Windows Assembly Programming Tutorial
By Jeff Huang

 9

Invoke
The Invoke function is specific to MASM, and can be used to call functions without
having to push the parameters beforehand. This saves us a lot of typing.

For example:
 invoke SendMessage, [hWnd], WM_CLOSE, 0, 0
Becomes:
 push 0
 push 0
 push WM_CLOSE
 push [hWnd]
 call [SendMessage]

Example Program
Here is a fully function program that shows how to use some of the instructions and
registers. See if you can figure it out.

.386

.model flat, stdcall
option casemap :none
include \masm32\include\windows.inc
include \masm32\include\kernel32.inc
include \masm32\include\masm32.inc
includelib \masm32\lib\kernel32.lib
includelib \masm32\lib\masm32.lib

.data
 ProgramText db "Hello World!", 0
 BadText db "Error: Sum is incorrect value", 0
 GoodText db "Excellent! Sum is 6", 0
 Sum sdword 0

.code
start:
 ; eax
 mov ecx, 6 ; set the counter to 6 ?
 xor eax, eax ; set eax to 0 0
_label: add eax, ecx ; add the numbers ?
 dec ecx ; from 0 to 6 ?
 jnz _label ; 21
 mov edx, 7 ; 21
 mul edx ; multiply by 7 147
 push eax ; pushes eax into the stack
 pop Sum ; pops eax and places it in Sum
 cmp Sum, 147 ; compares Sum to 147
 jz _good ; if they are equal, go to _good
_bad: invoke StdOut, addr BadText
 jmp _quit
_good: invoke StdOut, addr GoodText
_quit: invoke ExitProcess, 0

end start

Note:
The ';' character denotes
comments. Anything
following that character
does not get assembled.
It's a good idea to put
hints and notes in
comments to make your
code easier to read.

Windows Assembly Programming Tutorial
By Jeff Huang

 10

IV. Basic Windows
Windows programs are usually composed of one or more windows. Thus, to be a real
Windows programmer, one must at least know how to make a simple window.
Unfortunately, it's not that easy, but this will guide you through it.

Preliminaries
There are a few more topics in assembly we should discuss before diving into
Windows programming. Let's take a moment to go over these prerequisites.

Macros
MASM has a handful of macros that make assembly programming much easier. We've
already seen 'invoke', which simplifies function calls. Here are a few others; their usage
should be obvious in you've programmed in a high level language before:

o .if, .else, .endif
o .while, .break, .endw

Functions
Similarly to high level languages, MASM let's you define functions to make your code
much easier to read. Their syntax looks like this:
 <name> proc <var1>:<var1 type>, <var2>:<var2 type>, ...
 <function code>
 ret
 <name> endp
The return value is stored in the eax register, and so the function is called using:
 invoke <name>, param1, param2, ...
And the return can be obtained using the instruction:
 mov RetVal, eax

Variables
Variables are allocated in the memory and let you store data. They can be very useful if
you don't have enough registers. There are two types of variables – global variables and
local variables. Global variables are placed in the .data section if they are initialized, the
.data? section if they are uninitialized, or in the .const section if they are initialized and
won't be changed. The syntax to declare global variables is:
 <name> <type> <value, or ? if uninitialized>
Local variables are placed inside a function, and are temporary storage for use inside
the function. They can not be initialized when created. Their syntax is:
 local <name>:<type>
There are several variable types you will come across. Some good ones to know are
'byte', 'word' (4 bytes), and 'dword' (8 bytes). There are more, but they are usually just
the same as one of these three types but with a different name

Chapter 4

Windows Assembly Programming Tutorial
By Jeff Huang

 11

A Simple Window
Windows programs have two main parts –WinMain creates the window and contains
something called the message loop. The message loop watches for messages and
dispatches them. The second part is the callback function, WndProc, which is where
the messages are sent to. This is where you handle your mouse events, repainting, etc.

 .386
 .model flat, stdcall
 option casemap :none
 include \masm32\include\windows.inc
 include \masm32\include\user32.inc
 include \masm32\include\kernel32.inc
 includelib \masm32\lib\user32.lib
 includelib \masm32\lib\kernel32.lib

Our usual necessities.

 WinMain proto :DWORD, :DWORD, :DWORD, :DWORD

This is a function prototype. It let's us call the WinMain function later in the program.
It can be compared to a C/C++ function declaration.

 .data
 ClassName db "WinClass", 0
 AppName db "Simple Window", 0

We declare our string variables.

 .data?
 hInstance HINSTANCE ?

hInstance stores the handle to the instance of the module to be associated with the
window. We will need to pass it into the CreateWindow function later.

 .code
 start:
 invoke GetModuleHandle, NULL
 mov hInstance, eax
 invoke WinMain, hInstance, NULL, NULL, 0
 invoke ExitProcess, eax

Gets the module handle and stores it into hInstance. Then it calls WinMain and exits.
WinMain is the core of our program, so we will look into it more.

 WinMain proc hInst:HINSTANCE, hPrevInst:HINSTANCE, CmdLine:LPSTR,
CmdShow:DWORD
 local wc:WNDCLASSEX
 local msg:MSG
 local hwnd:HWND

This is the beginning of our WinMain function. We declare three local variables: wc,
msg, and hwnd. wc stores the window class we make; a window class is a template for
creating windows. msg stores the messages that the message loop retrieves. hwnd
stores the handle to the window.

 mov wc.cbSize, SIZEOF WNDCLASSEX
 mov wc.style, CS_HREDRAW or CS_VREDRAW
 mov wc.lpfnWndProc, offset WndProc
 mov wc.cbClsExtra, NULL
 mov wc.cbWndExtra, NULL
 push hInstance
 pop wc.hInstance
 mov wc.hbrBackground, COLOR_WINDOW+1

Note:
From this point, we'll
assume you can look up
Windows functions in the
MSDN Library. It has
information on function
parameters, return
values, and anything
else you may need to
know. Take a look at the
Additional Resources
section for more
information about the
MSDN Library.

Note:
In Windows, the 'or'
operator is often used to
combine flags in
parameters.

Windows Assembly Programming Tutorial
By Jeff Huang

 12

 mov wc.lpszMenuName, NULL
 mov wc.lpszClassName, offset ClassName
 invoke LoadIcon, NULL, IDI_APPLICATION
 mov wc.hIcon, eax
 mov wc.hIconSm, eax
 invoke LoadCursor, NULL, IDC_ARROW
 mov wc.hCursor, eax
 invoke RegisterClassEx, addr wc

All this does is fill in the wc struct we declared earlier on. RegisterClassEx is then
called, taking in wc as the parameter. For more information and each member is wc,
take a look at the WNDCLASSEX structure in the MSDN Library.

 invoke CreateWindowEx, 0, addr ClassName, addr AppName, WS_OVERLAPPEDWINDOW
or WS_VISIBLE, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, NULL,
NULL, hInst, NULL
 mov hwnd, eax

Calls the CreateWindowEx function that actually creates the window. Many parameters
are passed in to specify how to make the window. The handle of the window is
returned and stored in hwnd.

 .while TRUE
 invoke GetMessage, addr msg, NULL, 0, 0
 .break .if (!eax)
 invoke TranslateMessage, addr msg
 invoke DispatchMessage, addr msg
 .endw

This is a while loop which is the message loop mentioned earlier. When an input event
occurs, Windows translates the event into a message and passes the message into the
program's message queue. GetMessage retrieves these messages and stores them in
msg. Then, TranslateMessage changes key messages into character messages. Finally,
DispatchMessage sends the message to WndProc where it is processed.

 mov eax, msg.wParam
 ret
 WinMain endp

The return value is stored into msg.wParam and WinMain is ended.

 WndProc proc hWnd:HWND, uMsg:UINT, wParam:WPARAM, lParam:LPARAM
 .if uMsg == WM_DESTROY
 invoke PostQuitMessage, 0
 .else
 invoke DefWindowProc, hWnd, uMsg, wParam, lParam
 ret
 .endif
 xor eax, eax
 ret
 WndProc endp

The WndProc function is where messages are processed. The only message that must
be processed is WM_DESTROY, which calls PostQuitMessage to quit. If there are
other events you want processed, you would add them here. Common messages to
process are WM_CREATE (when the window is created), WM_PAINT (when the
window needs repainting), and WM_CLOSE (when the window is closed). Anything
that isn't handled is passed on to the DefWindowProc function which is the default
handler.

 end start

That's all! You now know how to create a window!

Windows Assembly Programming Tutorial
By Jeff Huang

 13

V. More Assembly and Windows
Here are some more resources to expand your knowledge of assembly and Windows
programming: string manipulation, working with files, and controls for your Windows
forms.

String Manipulation
Strings, arrays of characters, are an essential part to any program. They are usually
helpful if you want to display text or ask for input from the user. They use the
following registers: esi, edi, ecx, eax, eflag's direction flag. The direction flag is to specify
which direction to move along the string. Some common string instructions are
movsb, cmpsb, stasb, and stosb. To manipulate strings, you use some form of rep? on
a string instruction. Here is a table of which rep? prefix to use with the string
instructions:

prefix string instruction description
rep movsb copies a string
repe cmpsb compares a string
repne scasb scans a string for a character
rep stosb sets a character in a string

Here's an example of how to copy a string:

 cld ; sets the direction flag to forward
 mov esi, source ; move the source address in to esi
 mov edi, dest ; move the destination address in to edi
 mov ecx, length ; move the length to copy in to ecx
 rep movsb ; copy length bytes from esi to edi

File Management
In the old DOS world, files would be manipulated using interrupts. In Windows, we
use Windows functions in order to access files. These are the 4 functions we can use:

CreateFile – Creates or opens a file, and returns its handle.

ReadFile – Reads data from a file.

WriteFile – You guessed it! Writes data to a file.

CloseHandle – Closes the handle that you obtained using CreateFile.

Chapter 5

Windows Assembly Programming Tutorial
By Jeff Huang

 14

Memory
In order to read the contents of a file, you will need to allocate some memory to store
the data. Memory has to be allocated, locked, used however you want, unlocked, and
freed. The functions that do this are GlobalAlloc, GlobalLock, GlobalUnlock, and
GlobalFree. Pretty easy, huh?

Example Program
This program reads the contents of "c:\test.txt" and outputs it to a MessageBox.

 .386
 .model flat, stdcall
 option casemap :none
 include \masm32\include\windows.inc
 include \masm32\include\user32.inc
 include \masm32\include\kernel32.inc
 includelib \masm32\lib\user32.lib
 includelib \masm32\lib\kernel32.lib

The usual suspects.

 .data
 FileName db "c:\test.txt", 0
 .data?
 hFile HANDLE ?
 hMemory HANDLE ?
 pMemory DWORD ?
 ReadSize DWORD ?

We define our string and declare 4 variables to be used later on.

 .const
 MEMORYSIZE equ 65535

This is how much memory we'll allocate, so we will have a lot of space to store our file.

 .code
 start:
 invoke CreateFile, addr FileName, GENERIC_READ, FILE_SHARE_READ,
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL
 mov hFile, eax

Call CreateFile and store the handle of the file in hFile. It's customary to place an 'h' in
front of handles and 'p' in front of pointers.

 invoke GlobalAlloc, GMEM_MOVEABLE or GMEM_ZEROINIT, MEMORYSIZE
 mov hMemory, eax
 invoke GlobalLock, hMemory
 mov pMemory, eax

Allocate and lock our memory.

 invoke ReadFile, hFile, pMemory, MEMORYSIZE-1, addr ReadSize, NULL
 invoke MessageBox, NULL, pMemory, addr FileName, MB_OK

These lines read the file into pMemory and output that. Voila!

 invoke GlobalUnlock, pMemory
 invoke GlobalFree, hMemory
 invoke CloseHandle, hFile
 invoke ExitProcess, NULL
 end start

Don't forget to clean up.

Windows Assembly Programming Tutorial
By Jeff Huang

 15

Controls
Once we make a window, we'll want to put some buttons and textboxes on it.
Fortunately, this is easy! The syntax is very similar to creating a window, except we
won't have to call RegisterClassEx because our class will be predefined for us.

To do this, edit your WndProc from Chapter 4 by reacting to the WM_CREATE
message:

.elseif uMsg == WM_CREATE
 invoke CreateWindowEx, NULL, addr ButtonClassName, addr ButtonText, WS_CHILD
or WS_VISIBLE or BS_DEFPUSHBUTTON, 10, 50, 80, 30, hWnd, ButtonID, hInstance, NULL
 mov hButton, eax
 invoke CreateWindowEx, WS_EX_CLIENTEDGE, addr EditClassName, NULL, WS_CHILD
or WS_VISIBLE, 10, 10, 100, 20, hWnd, EditID, hInstance, NULL
 mov hEdit, eax

Under the .data section, you will need to add some variables. Define EditClassName as
"edit" and ButtonClassName as "button". Also, you need to have EditID and
ButtonID defined to be constants. It doesn't matter what they are as long as they don't
have the same ID as any other control. Also, you will need uninitialized variables, hEdit
and hButton, which are of type HWND. And lastly, ButtonText needs to be a string,
which will be displayed on the button.

Now we also want to know when our button has been pressed. This can be done by
watching the WM_COMMAND message, which is the message a button will send if
clicked.

 .elseif uMsg == WM_COMMAND
 mov eax, wParam
 .if ax == ButtonID
 shr eax, 16

wParam contains information about the message. We should check it to see if it is the
button that sent the message, since we don't want to process the message of other
controls yet. shr is the shift right operator, which shifts wParam 16 bits to the right.
This is a useful method to get the high 16 bits of a 32-bit register so that they can be
easily accessed by ax.

 .if ax == BN_CLICKED
 <code for what happens if the button is pressed>
 .endif
 .endif

So now that we know the button has been clicked, we can do something about it.

If you are interested in learning more about windows, take a look at the Additional
Resources section, which lists some great books and websites for Windows
programming in general.

Windows Assembly Programming Tutorial
By Jeff Huang

 16

Additional Resources
WWW
http://www.xs4all.nl/~smit/ - useful x86 assembly programming tutorials.

http://win32asm.cjb.net/ - excellent set of tutorials for Windows assembly
programming.

http://board.win32asmcommunity.net/ - active online forum for asking questions
related to Windows assembly programming.

Books
Programming Windows, Fifth Edition by Charles Petzold is an excellent book on
Windows programming. It contains sample code for many Windows programs and
covers a large range of topics on Windows programming.

Intel Pentium 4 Processors Manuals, available from
http://www.intel.com/design/pentium4/manuals/ is the complete reference guide for
x86 assembly programming.

The Art of Assembly Programming, by Randall Hyde, is available at
http://webster.cs.ucr.edu/AoA.html and is the best and most comprehensive x86
assembly language programming book I've found

MASM32
In your \masm32\HELP\ folder, there is a file called masm32.hlp which contains the
MASM32 manual. It has all the macros, registers, flags, Pentium optimization
information, etc. This is a very good reference to go to on things specific to MASM32.

MSDN Library
The MSDN Library usually comes with Visual Studio, can also be viewed online at
http://msdn.microsoft.com/. It contains all the Windows functions, constants, and
every piece of information imaginable regarding Windows.

Newsgroups
There are currently two newsgroups that deal with x86 assembly. They are
comp.lang.asm.x86 and alt.lang.asm. Both are fairly high in traffic and have a
knowledgeable readership.

IRC
There is an IRC (internet relay chat) channel that deals with Windows assembly
programming, #win32asm on EFNet [http://www.efnet.org/]

