=y Filter Manager

Rajeev Nagar

Lead Program Manager
Core File Services
rajeevn@microsoft.com



- Filter Manager Overview
= | egacy Filtering Mechanisms & Issues
= Filter Manager Benefits
= Filter Manager Architecture
= Features / Functionality
= Project Status & Release Plans

- Question and Answer



- Many products use a file system filter
= Historically, caused much customer pain
» |ssues include stability, performance, & interoperability

- Examples of products with filter drivers:
= Antivirus products
= Filter watches I/O to and from certain file types (.exe, .doc, etc.) looking for virus signatures

= File replication products
» File-system-level mirroring

= System Restore

= Backs up system files when changes are about to be made so that the user can return to the
original state

= Many more...
= Quota products, backup agents, undelete, encryption products, etc.

- We’ve come a long way in addressing issues with filter drivers:
= |mproved documentation
= Plug-fests
= AV certification program
= However, 7% of OCA crashes are still attributed directly to 3" party filter drivers



NtReadFile() / NtWriteFile(), ...

/O Manager

IRP + Fast-I/O Interfaces

P Filter Driver (e.g. Anti-Virus) J

v
P Filter Driver (e.g. Replication) J
v

Cache Manager

HHer Filter Drivers (e.g. Quotas, Encryption, O




= Kernel-mode drivers

- Attach to locally mounted volumes (e.g. C: )and/or to redirectors
(e.g. RDR/WebDAV)

= Attach to file system driver control device objects

= “Walk” list of mounted volumes in an unsafe manner
= |ntercept mount volume requests

= Poll for redirector load

- Intercept IRPs and fast-i/o requests issued by I/O Manager to File
System Driver (FSD)

- Perform filter-specific processing prior to dispatching request to FSD
and/or post-completion of request processing by FSD

= Often impact control flow
= Often massage returned data/metadata

- May generate new I/O Request Packets (IRPs) as part of processing



- Reliability
= A bug in your driver will cause a blue-screen or deadlock

- Performance
= You're on the path of all I/O

- Development and maintenance cost
= Complex code
= Hard to develop, test, debug, maintain
= Must revise with each OS version and/or service packs

-> Not your core competency

-> Not your core value add to the customer



- Many problems with current model (legacy filters)
= Poor control over stack ordering (load order groups)
No unload support
Stack limit issues
Complex interfaces (“fast-io” and IRPs)
Reentrancy issues
Inefficiencies due to redundant work in filters
Ad-hoc (reinvented) methods for common tasks
= Attach to mounted volumes and redirectors
= Generate IRPs
= Obtain file/path name
= Maintain filter contexts per object (volume, stream, other)
= Manage buffers
Substantial Performance Degradation

- Expect even more problems with new functionality e.g. TxF (Transactional
NTFS) support



N

N I R

v oV

Callback based rather than chained dispatch routines
» Helps solve many stack overflow issues
= Ability for system to add new operation types w/o breaking existing filters

Uniform interface for all operations
= Fast I/O, IRP, callbacks are all intercepted in the same manner

Isolation from gnarly IRP processing rules
= Filter Manager does this processing on behalf of the filters

Dynamic load/unload (Ability to unload)

Non re-entrant filter initiated 1/0

Efficient pass through

Deterministic Load Order (ease interoperability/testing)
Efficient context management

A library of value-add APIs
= File name management
= |O cancellation and queuing
= Buffer Management

Efficient and secure user/kernel communication

Support for TxF



NtReadFile() / NtWriteFile(),

|/O Man ag er Consistent Invocation
(packet/call-back mechanism)

i Other legacy & filter manager instances... IRP + Fast-1/O Interfaces

()]

o

C ‘ =

©

=

O |

2 REEE

&)

©

O

Filter Manager Instance

Other Legacy Filters AND Filter Manager Instances... @
NTFS



- Legacy file system filter

- Manages the complexity of I/0O system through new interfaces and
library routines

- Has kernel and user-mode interfaces
- Supports multiple loaded mini-filters and multiple instances per volume

- Coexists with other legacy filter drivers (until they are all phased out)

10



) 2 R 2

N

N

11

Just another kernel mode driver
Register with filter manager in DriverEntry()
Leverage filter manager to attach to volumes (local and remote)

Utilize filter manager to process only I/O operations of interest (specify
appropriate callbacks)

Determine control flow easily and efficiently

Utilize available library functions for commonly required functionality such as:
= obtaining file name/path
= synchronize post-processing of I1/O operations
* queue and manage per-object context
= other ...

Be able to unload/upgrade driver in field w/o requiring reboot

Leverage filter manager provided efficient user/kernel
communication mechanism

Interoperate correctly with transactional file system support



- Mini-filter registers only for operations in which it is interested through
FLT REGISTRATION structure

= Register pre-operation callback and/or post-operation callback

- FLT_CALLBACK DATA eplaces the IRP

» FLT _CALLBACK DATA->lopb contains parameters for this operation, similar
to IO_STACK LOCATION

= No management of FLT _CALLBACK DATA needed, i.e., no more
loSkipCurrentirpStackLocation(), loSetCompletionRoutine()

= Common structure for all types of operations:
Irp, Fastlo, and FsFilter

12



13

Conceptual 10 Flow

h 4
AntiVirus Filter
(Altitude: _“300”)

-

Encryption Filter
(Altitude: “1007)

/}_\
e

Volume,
e.g., “c\V

- Instance: Instantiation of a filter on a

Conceptual IO Flow

volume at a particular altitude

v - Support multiple instances of a mini-

MiniSpy Filter
(Altitude: “400”)

AntiVirus Filter
(Altitude: “300”)

h 4
MiniSpy Filter
(Altitude: “2007)

v
Encryption Filter
(Altitude: “1007)

/i\
e

Volume,

e.g.,
“LanmanRedirector”

S—

filter on a volume

v - Altitude determines relative stack

position



- FltReqgisterFilter()
= Register with Filter Manager
= All callback information in FLT REGISTRATION structure

- FltStartFiltering()

= Begin enumeration of existing volumes in system
» InstanceSetup() callback is called for mini-filter to see if it wants to attach

14



- Through FilterUnload() callback, mini-filter is allowed to accept or deny
the unload request

- To unload, Filter Manager synchronizes the safe removal of all mini-filter
Instances through a series of notifications

= InstanceQueryTeardown() — allows filter to fail the teardown request for given
Instance

» InstanceTeardownStart() — Notifies filter that teardown process is beginning
for given instance

» InstanceTeardownComplete() — Naotifies filter teardown process has finished
for given instance

15



- Mini-filter communicates control flow choice through callback
return value

= In pre-operation, filter can:
= Pass through the operation —-FLT_PREOP_SUCCESS NO_CALLBACK

= Ask to see operation completion —
FLT _PREOP_SUCCESS WITH_CALLBACK

= Pend the operation — FLT_PREOP_PENDING

= Ask to have completion synchronized to current thread —
FLT PREOP_SYNCHRONIZE

= Complete the operation — FLT_PREOP_COMPLETE

16



- In postOperation, mini-filter can:

= Do its work and continue completion processing —
FLT POSTOP_FINISHED PROCESSING

= Pend the completion processing —
FLT POSTOP_MORE_PROCESSING_REQUIRED

- For pended 10s, continue processing with
FltCompletePendedPreOperation() or
FltCompletePendedPostOperation()

17



- Queuing Support

- Buffer Manipulation (locking/swapping)
- Context Management

- File Name Management

- 1/O Generation

18



- Provides common functionality for user-mode applications that work with
filter drivers

- Application must link with filterlib.dll
- Include header files fltUser.h and fltUserStructures.h

- Load and unload mini-filters
= FilterLoad(), FilterUnload()

-» Open handles to filters or instances to get information
= FilterCreate(), FilterinstanceCreate()
= FilterGetInformation(), FilterinstanceGetinformation()

19



- Enumerate filters, instances, and volumes
» FilterFindFirst(), FilterFindNext()
» FilterVolumeFindFirst(), FilterVolumeFindNext()
» FilterInstanceFindFirst(), FilterinstanceFindNext()
» FilterVolumelnstanceFindFirst(), FilterVolumelnstanceFindNext()

- Open handle to communication port
» FilterConnectCommunicationPort()

- Add and remove mini-filter instances
= FilterAttach(), FilterAttachAtAltitude()
» FilterDetach()

20



- Command line utility for common filter management operations
» Load and unload mini-filters
= Attach/detach mini-filters to/from volumes
= Enumerate mini-filters, instances, volumes

- “fltmc help”
= Displays help information for utility

21



- Fltkd.dll debugger extension
= Ifltkd.help will list all the available commands

= For more specific help on a single command, issue that command with no
parameters

= Ichd: Filter Manager equivalent to lirp

= lvolumes, !ilters: List all volumes/filters in system

= lvolume, !filter, linstance: Give detail on a specific object

= |gnore version warning, turn off with “.noversion” command

- Run with debug fltmgr.sys
= | ots of ASSERT to catch common errors

22



- Enable through verifying mini-filter via Driver Verifier with “I/O
Verification® option

- Verification starts when a filter registers with the Filter Manager

- Validates all Filter Manager API calls by mini-filter
» Validates parameters and calling context

- Verifies all the special return values from mini-filter’s pre/post
callback routines

- Ensures mini-filter changed the parameters in the callback data in a
coherent/consistent manner

- More to come In future

23



- All existing Microsoft filters converted to minifilter model for Longhorn

- Minifilters and Legacy filters will coexist — however, goal is to strongly
encourage all filters to be converted to minifilter model

- Filter Manager to be released in
= Longhorn
= Windows Storage Server
= Windows Server 2003 SP1
= WinXP SP2
= Support for Windows 2000 (release plans being finalized)

- IFS Kit update for Windows Server 2003 SP1, Windows XP Service
Pack 2 and the Longhorn driver kit will contain filter manager libraries,
headers, and samples

- For more information, contact rajeevn@ microsoft.com

24



- Port your legacy filter to the mini-filter model

- Send us feedback on the filter manager including any additional support
that may benefit your product/mini-filter

25



26

© 2003 Microsoft Corporation. All rights reserved.

This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.



27



