
Kernel Attacks through User-
Mode Callbacks

Tarjei Mandt

Black Hat USA 2011

11. august 2011

Who am I

• Security Researcher at Norman

• Malware Detection Team (MDT)

• Interests

• Vulnerability research

• Operating system internals

• Past Work

• Kernel Pool Exploitation on Windows 7

• Mitigating NULL Pointer Exploitation on Windows

11. august 2011

About this Talk

• Several vulnerability classes related to
windows hooks and user-mode callbacks

• Null pointer dereferences

• Use-after-frees

• Resulted in 44 patched privilege escalation
vulnerabilities in MS11-034 and MS11-054

• Several unannounced vulnerabilities were also
addressed as part of the variant discovery process

• Requires understanding of several mechanisms
specific to NT and win32k

11. august 2011

Agenda

• Introduction

• Win32k

• Window Manager

• User-Mode Callbacks

• Vulnerabilities

• Exploitability

• Mitigations

• Conclusion

11. august 2011

Introduction

Win32k and User-Mode Callbacks

11. august 2011

Win32k

• The Windows GUI subsystem was traditionally
implemented in user-mode

• Used a client-server process model

• In NT 4.0, a large part of the server component
(in CSRSS) was moved to kernel-mode

• Introduced Win32k.sys

• Today, Win32k manages both the Window
Manager (USER) and the Graphics Device
Interface (GDI)

11. august 2011

User-Mode Callbacks

• Allows win32k to make calls back into user-
mode and operate on user-mode data

• Invoke application defined hooks

• Provide event notifications

• Read and set properties in user-mode structures

• Implemented in the NT executive

• nt!KeUserModeCallback

• Works like a reverse system call

11. august 2011

Win32k vs. User-Mode Callbacks

• Win32k uses a global locking design in creating
a thread-safe environment
• Presumably remnants of the old subsystem design

• Callbacks “interrupt” kernel execution and
allow win32k structures and object properties
to be modified

• Insufficient checks or validation may result in
numerous vulnerabilities
• Use-after-frees

• NULL pointer dereferences

• ++

11. august 2011

Previous Work

• Mxatone - Analyzing local privilege escalations in
win32k (Uninformed vol.10)
• Insufficient validation of data returned from user-mode

callbacks

• Win32k Window Creation Vulnerabilities
• CVE-2010-0484 (MS10-032)

• Window parent not revalidated after callbacks

• CVE-2010-1897 (MS10-048)
• Pseudo handle provided in callback not sufficiently validated

• Stefan Esser - State of the Art Post Exploitation in
Hardened PHP Environments (BlackHat USA 2009)
• Interruption vulnerabilities

11. august 2011

Goals

• Show how user-mode callbacks without very
stringent checks may introduce several subtle
vulnerabilities

• Show how such vulnerabilities may be
exploited using pool and kernel heap
manipulation

• Propose a method to generically mitigate
exploitability of NULL pointer dereference
vulnerabilities

11. august 2011

Win32k

Architecture and Design

11. august 2011

Windows NT 3.51

• Modified microkernel design

• File systems, network protocols, IPC, and drivers are
implemented in kernel mode

• Followed a more pure microkernel approach in
its implementation of the GUI subsystem

• Window Manager and GDI implemented in the
Client-Server Runtime SubSystem (CSRSS)

• Optimized for performance

• Shared memory design

• Paired threads between client and server (FastLPC)

11. august 2011

Windows NT 3.51 Win32 Subsystem

Win32
Subsystem

Console

Window
Manager

Graphics Device Interface

Graphics Device
Drivers

Operating System
Functions

Executive Services

Microkernel

HAL

Kernel

User

Text windowing
support

Client Server Runtime
SubSystem (CSRSS)

Drawing library for
graphics output devices

Hardware dependent
graphics drivers

Handles input and
manages screen I/O

Supports all components
in the subsystem

11. august 2011

Drawbacks of the NT 3.51 Design

• Graphics and windowing subsystem have a very
high rate of interaction with hardware

• Video drivers, mouse, keyboard, etc.

• Client-server interaction involves excessive
thread and context switching

• Greatly affects graphics rendering performance

• High memory requirements

• Uses 64K shared memory buffer to accumulate and
pass parameters between the client and server

11. august 2011

Windows NT 4.0

• Moved the Window Manager, GDI and graphics
device drivers to kernel-mode
• Introduced win32k.sys

• Eliminated the need for shared buffers and
paired threads
• Results in fewer thread and context switches

• Reduces memory requirements

• Some old performance tricks were still
maintained
• E.g. caching of management structures in the user

mode portion of the client’s address space

11. august 2011

Win32k.sys in Windows NT 4.0

Console

Kernel

User

CSR
Subsystem

Window
Manager

Graphics
Device Interface

Microkernel

HAL

Graphics
Device Drivers

Win32k.sys

11. august 2011

Win32k

• Kernel component of the Win32 subsystem

• Implements the kernel side of

• Window Manager (USER)

• Graphics Device Interface (GDI)

• Provides thunks to DirectX interfaces

• Has it’s own system call table

• More than 800 entries on Windows 7

• win32k!W32pServiceTable

11. august 2011

Window Manager (USER)

• Several responsibilities

• Controls window displays

• Manages screen output

• Collects input from keyboard, mouse, etc.

• Calls application-defined hooks

• Passes user messages to applications

• Manages user objects

• The component this talk will focus on

11. august 2011

Graphics Device Interface (GDI)

• Manages the graphics output and rendering

• Library of functions for graphics output devices

• Includes functions for line, text, and figure drawing
and for graphics manipulation

• Manages GDI objects such as brushes, pens, DCs,
paths, regions, etc.

• Provides APIs for video/print drivers

• Slow compared to Direct2D/DirectWrite

• Will probably be replaced at some point

11. august 2011

DirectX Thunks

• Entry point thunks for DirectX support

• NtGdiDd* or NtGdiDDI*

• Calls corresponding functions in the DirectX
driver

• dxg.sys (XDDM) or dxgkrnl.sys (WDDM) depending on
the display driver model used

• Display drivers hook DXG interfaces to
hardware accelerate or punt back to GDI

11. august 2011

Window Manager

User Objects and Thread Safety

11. august 2011

User Objects

• All user handles for entities such as windows and
cursors are backed by their own object
• Allocated in win32k!HMAllocateObject

• Each object type is defined by a unique structure
• win32k!tagWND

• win32k!tagCURSOR

• User objects are indexed into a dedicated handle
table maintained by win32k

• Handle values are translated into object pointers
using the handle manager validation APIs
• win32k!HMValidateHandle(..)

11. august 2011

User Object Header

• Every user object starts with a HEAD structure

• kd> dt win32k!_HEAD
• +0x000 h : Ptr32 Void // handle value

• +0x004 cLockObj : Uint4B // lock count

• The lock count tracks object use
• An object is freed when the lock count reaches zero

• Additional fields are defined if the object is owned
by a thread or process, or associated with a
desktop
• win32k!_THRDESKHEAD

• win32k!_PROCDESKHEAD

11. august 2011

User Handle Table

• All user objects are indexed into a per-session
handle table
• Initialized in win32k!Win32UserInitialize

• Pointer to the user handle table is stored in the
win32k!tagSHAREDINFO structure
• user32!gSharedInfo (Win 7) or win32k!gSharedInfo

• kd> dt win32k!tagSHAREDINFO
• +0x000 psi : Ptr32 tagSERVERINFO

• +0x004 aheList : Ptr32 _HANDLEENTRY

• +0x008 HeEntrySize : Uint4B

• +0x00c pDispInfo : Ptr32 tagDISPLAYINFO

• +0x010 ulSharedDelta : Uint4B

11. august 2011

User Handle Table Entries

• Each entry in the user handle table is represented
by a HANDLEENTRY structure

• kd> dt win32k!_HANDLEENTRY
• +0x000 phead : Ptr32 _HEAD

• +0x004 pOwner : Ptr32 Void

• +0x008 bType : Uchar

• +0x009 bFlags : Uchar

• +0x00a wUniq : Uint2B

• Holds pointers to the object, its owner, type, flags,
and a unique seed for the handle values
• handle = handle_table_index | (wUniq << 0x10)

• wUniq is incremented on object free

11. august 2011

User Handle Table Entries

object owner bType bFlags wUniq

0 0 0 0 0

ff9d1d28 0 c 0 1

ffbbd498 ffb09678 1 40 1

ffb658f0 ffbbc958 3 0 1

ff650618 ffb09678 1 0 1

ffb64918 ffbbc958 3 0 1

Pointer to object
in kernel memory

Pointer to owner
(THREADINFO or
PROCESSINFO)

Object type (e.g.
window, cursor,

menu, etc.)

Object flags (e.g.
being destroyed)

Unique
counter

11. august 2011

User Objects In Memory

• User objects are stored in the session pool, the
desktop heap or the shared heap
• Set in the handle type information table

(win32k!gahti)

• The desktop heap and shared heap are read-
only mapped into user address space
• Used to avoid kernel transitions

• Objects associated with a particular desktop
are stored on the desktop heap

• Remaining objects are stored in the shared
heap or the session pool

11. august 2011

Handle Table & Objects In Memory

Application

Shared Section

User Handle
Table

User Kernel

Shared Section

Desktop Heap

Session
Pool

Desktop Heap

User Handle Table

Shared Heap

Shared Heap

Object

Object

Object Object

Object Object

Read-only
mapped memory

11. august 2011

Shared Section User Mapping

• The shared section is mapped into a GUI process
upon initializing the client Win32 subsystem

• Essentially means loading user32.dll

• Mapping itself is performed by CSRSS in calling
NtUserProcessConnect (InitMapSharedSection)

• The user handle table, at the base of the shared
section, can be obtained in at least two ways

• From user32!gSharedInfo (exported on Windows 7)

• From the connection information buffer returned by
CsrClientConnectToServer upon specifying
USERSRV_SEVERDLL_INDEX (3)

11. august 2011

Handle Table From User-Mode

11. august 2011

Desktop Heap User Mapping

• For each GUI thread, win32k maps the associated
desktop heap into the user-mode process

• Performed by win32k!MapDesktop

• Information on the desktop heap is stored in the
desktop information structure

• Holds the kernel address of the desktop heap

• Accessible from user-mode

• NtCurrentTeb()->Win32ClientInfo.pDeskInfo

• kd> dt win32k!tagDESKTOPINFO

• +0x000 pvDesktopBase : Ptr32 Void

• +0x004 pvDestkopLimit : Ptr32 Void

11. august 2011

Kernel-Mode -> User-Mode Address

• User-space address of desktop heap objects are
computed using ulClientDelta
• NtCurrentTeb()->Win32ClientInfo.ulClientDelta

• User-space address of shared heap objects are
computed using ulSharedDelta
• Defined in win32k!tagSHAREDINFO

Desktop Heap

Window

User Kernel

Cursor

Desktop Heap

Window Cursor

ulClientDelta

11. august 2011

User Object From User-Mode

HEAD structure

Window procedure

11. august 2011

User Object Types

• On Windows 7, there are 21 different user
object types (22 including the ‘free’ type)

• Includes ‘touch’ and ‘gesture’ objects

• Information on each type is stored in the
handle type information table

• win32k!ghti (undocumented structure)

• Defines the destroy routines for each type

• Defines target memory location (desktop/shared
heap, session pool)

11. august 2011

User Object Types #1

ID TYPE OWNER MEMORY

0 Free

1 Window Thread Desktop Heap /
Session Pool *

2 Menu Process Desktop Heap

3 Cursor Process Session Pool

4 SetWindowPos Thread Session Pool

5 Hook Thread Desktop Heap

6 Clipboard Data Session Pool

7 CallProcData Process Desktop Heap

8 Accelerator Process Session Pool

9 DDE Access Thread Session Pool

10 DDE Conversation Thread Session Pool

* Stored on the desktop heap if the window is associated with a desktop

11. august 2011

User Object Types #2

ID TYPE OWNER MEMORY

11 DDE Transaction Thread Session Pool

12 Monitor Shared Heap

13 Keyboard Layout Session Pool

14 Keyboard File Session Pool

15 Event Hook Thread Session Pool

16 Timer Session Pool

17 Input Context Thread Desktop Heap

18 Hid Data Thread Session Pool

19 Device Info Session Pool

20 (Win 7) Touch Thread Session Pool

21 (Win 7) Gesture Thread Session Pool

11. august 2011

User Critical Section

• Unlike NT, the Window Manager does not
exclusively lock each user object
• Implements a global lock per session

• Each kernel routine that operates on win32k
structures or objects must first acquire a lock
on win32k!gpresUser
• Exclusive lock used if write operations are involved

• Otherwise, shared lock is used

• Clearly not designed to be multithreaded
• E.g. two separate applications in the same session

cannot process their message queues simultaneously

11. august 2011

Shared and Exclusive Locks

Acquire exclusive lock

Acquire shared lock

11. august 2011

User-Mode Callbacks

Kernel to User Interaction

11. august 2011

User-Mode Callbacks

• In interacting with user-mode data, win32k is
required to make calls back into user-mode

• Lead to the concept of user-mode callbacks

• Implemented in nt!KeUserModeCallback

• Works like a reverse system call

• Previously researched by Ivanlef0u and mxatone,
among others

• Used extensively in user object handling

• Some user objects store data in user-mode

11. august 2011

KeUserModeCallback

• NTSTATUS KeUserModeCallback (
 IN ULONG ApiNumber,
 IN PVOID InputBuffer,
 IN ULONG InputLength,
 OUT PVOID * OutputBuffer,
 IN PULONG OutputLength);

• ApiNumber is an index into the user-mode callback
function table
• Copied to the Process Environment Block (PEB) during the

initialization of USER32.dll in a given process

• kd> dt nt!_PEB KernelCallbackTable
• +0x02c KernelCallbackTable : Ptr32 Void

11. august 2011

KeUserModeCallback Internals

• In a system call, a trap frame is stored on the
kernel thread stack by KiSystemService or
KiFastCallEntry

• Used to save thread context and restore registers
upon returning to user-mode

• KeUserModeCallback creates a new trap frame
(KTRAP_FRAME) before invoking KiServiceExit

• Sets EIP to ntdll!KiUserCallbackDispatcher

• Replaces TrapFrame pointer of the current thread

• Input buffer is copied to the user-mode stack

11. august 2011

NTOSKRNL

USER32

NTDLL

KeUserModeCallback

user

kernel

KeUserModeCallback

KiUserCallbackDispatcher NtCallbackReturn

Switch to kernel
callback stack

NtCallbackReturn

Create new TRAP_FRAME and set
EIP to KiUserCallbackDispatcher

Restore original
TRAP_FRAME

Restore original
kernel stack

CallbackFunction User application

__ ClientLoadLibrary

__ ClientEventCallback

KernelCallbackTable

kd> dps poi(7ffda000+2c) l69

75ccf620 75cb6443 user32!__fnCOPYDATA

75ccf624 75cff0e4 user32!__fnCOPYGLOBALDATA

75ccf628 75cc736b user32!__fnDWORD

75ccf62c 75cbd603 user32!__fnNCDESTROY

75ccf630 75ce50f9 user32!__fnDWORDOPTINLPMSG

75ccf634 75cff1be user32!__fnINOUTDRAG

75ccf638 75ce6cd0 user32!__fnGETTEXTLENGTHS

75ccf63c 75cff412 user32!__fnINCNTOUTSTRING

11. august 2011

Kernel Callback Stack

• On Vista/Windows 7, the kernel creates a new kernel
thread stack for use during the user-mode callback
• Windows XP would simply grow the existing stack

• The new trap frame is stored on the new kernel stack

• Information on the previous kernel stack is stored in a
KSTACK_AREA structure
• Stored at the base of every kernel thread stack

kd> dt nt!_KSTACK_AREA

 +0x000 FnArea : _FNSAVE_FORMAT

 +0x000 NpxFrame : _FXSAVE_FORMAT

 +0x1e0 StackControl : _KERNEL_STACK_CONTROL

 +0x1fc Cr0NpxState : Uint4B

 +0x200 Padding : [4] Uint4B

kd> dt nt!_KERNEL_STACK_CONTROL -b

 +0x000 PreviousTrapFrame : Ptr32

 +0x000 PreviousExceptionList : Ptr32

 +0x004 StackControlFlags : Uint4B

 +0x004 PreviousLargeStack : Pos 0, 1 Bit

 +0x004 PreviousSegmentsPresent : Pos 1, 1 Bit

 +0x004 ExpandCalloutStack : Pos 2, 1 Bit

 +0x008 Previous : _KERNEL_STACK_SEGMENT

 +0x000 StackBase : Uint4B

 +0x004 StackLimit : Uint4B

 +0x008 KernelStack : Uint4B

 +0x00c InitialStack : Uint4B

 +0x010 ActualLimit : Uint4B

11. august 2011

Kernel Callback Stack Layout

KTRAP_FRAME

KSTACK_AREA

Kernel stack base

Kernel callback stack

New stack pointer
(ESP/RSP)

Information on previous
trap frame and kernel stack

(address, etc.)

Trap frame with EIP =
ntdll!KiUserCallbackDispatcher

11. august 2011

NtCallbackReturn

• NTSTATUS NtCallbackReturn (
 IN PVOID Result OPTIONAL,
 IN ULONG ResultLength,
 IN NTSTATUS Status);

• Used to resume execution in the kernel after a
user-mode callback

• Copies the result of the callback back to the
original kernel stack

• Restores original trap frame and kernel stack by
using the information held in the KSTACK_AREA

• Deletes the kernel callback stack upon completion

11. august 2011

Applications of User-Mode Callbacks

• User-mode callbacks allow win32k to perform a
variety of tasks

• Invoke application-specific windows hooks

• Provide event notification

• Copy data to and from user-mode (e.g. for DDE)

• Hooks allow users to execute code in response
to certain actions performed by win32k

• Calling a window procedure

• Creating or destroying

• Processing keyboard or mouse input

11. august 2011

Windows Hooks

• Set using the SetWindowsHook APIs
• Invoked by the kernel through calls to xxxCallHook

• Typically used to monitor certain system events
and their associated paramters

• May alter function parameters depending on
the type of hook
• E.g. change the z-ordering of a window in a create

window hook

• Processed synchronously
• The user-mode hook is called immediately at the time

when the appropriate conditions are met

11. august 2011

CreateWindow CBT Hook Example

Application calls
CreateWindowEx

Handle returned to
application

Creates window
object

Assigns class to
window object

Invoke CBT hook (if set)

Sends
WM_NCCREATE

message

Sends WM_CREATE
message

User-defined CBT
Hook Function

...

Kernel User

11. august 2011

Event Hooks

• Set using the SetWinEventHook APIs
• Invoked by the kernel through calls to

xxxWindowEvent

• Used to notify a user-mode process that a
certain event occured or is about to occur
• E.g. inform that a new window has been created

• Can be processed both synchronously and
asynchronously (deferred events)
• In the latter case, the kernel calls

xxxFlushDeferredWindowEvents to flush the event
queue

11. august 2011

Kernel Attacks through User-Mode
Callbacks

Vulnerabilities in Win32k

11. august 2011

User Critical Section vs. Callbacks

• Whenever a callback is executed, the kernel
leaves the win32k user critical section

• Allows win32k to perform other tasks while user-
mode code is being executed

• Upon returning from a callback, win32k must
ensure that referenced objects are still in the
expected state

• E.g. a callback could call SetParent() to update the
parent of a window

• Insufficient checks may lead to vulnerabilities

11. august 2011

Function Name Decoration

• Win32k.sys uses function name decoration to keep
track of functions that leave the critical section

• Prefixed “xxx” and “zzz”

• Functions prefixed “xxx” may leave the critical
section and invoke a user-mode callback

• May sometimes require a specific argument or set of
arguments to trigger the actual callback

• Functions prefixed “zzz” typically invoke a deferred
event callback

• However, if win32k!gdwDeferWinEvent is null, an
immediate callback is performed

11. august 2011

Function Name Decoration Issues

• Functions that leave the critical section and invoke
user-mode callbacks are not always prefixed

• Could lead to invalid assumptions by the programmer

• Easy to spot using IDAPython and cross referencing

• Lack of consistency in behavior of “zzz” functions

• Some “zzz” functions seem to increment
gdwDeferWinEvent while others do not

Windows 7 RTM Windows 7 (MS11-034)

MNRecalcTabStrings xxxMNRecalcTabStrings

FreeDDEHandle xxxFreeDDEHandle

ClientFreeDDEHandle xxxClientFreeDDEHandle

11. august 2011

Locating Undecorated Functions

Undecorated functions that
potentially may invoke

callbacks

Search for functions that may
call KeUserModeCallback or

leave the user critical section

11. august 2011

Object Locking

• Objects expected to be valid after the kernel
leaves the user critical section, must be locked

• The cLockObj field of the common object header
stores the object reference count

• Two forms of locking

• Thread locking

• Assignment locking

11. august 2011

Thread Locking

• Used to lock objects or buffers within the context
of a thread
• ThreadLock* (inlined mostly) and ThreadUnlock*

• Each thread locked entry is stored as a TL structure
• kd> dt win32k!_TL
• +0x000 next : Ptr32 _TL
• +0x004 pobj : Ptr32 Void
• +0x008 pfnFree : Ptr32 Void

• Pointer to the thread lock list is stored in the
THREADINFO structure of a thread object

• Upon thread termination, the thread lock list is
processed to release any outstanding entries
• xxxDestroyThreadInfo -> DestroyThreadsObjects

11. august 2011

Thread Locking By Example

xxx function =
possible callback

Object lock count
incremented

Thread lock entry
added to TL list

Thread lock
released

11. august 2011

Assignment Locking

• The handle manager provides functions for
thread independent locking of objects
• HMAssignmentLock(Address,Object)

• HMAssignmentUnlock(Address)

• Assignment locking an object to an address
with an initialized pointer, releases the existing
reference

• Does not provide the safety net thread locking
does
• E.g. if a thread termination occurs in a callback, the

thread cleanup code must release these references

11. august 2011

Object Locking Vulnerabilities

• Any object expected to be valid after a user-
mode callback should be locked

• Similarly, any object that no longer is used by a
particular component should be released

• Mismanagement in the locking and release of
objects could result in the following

• No retention: An object could be freed too early

• No release: An object could never be freed, or the
reference count (e.g. 32-bit on x86) could wrap

11. august 2011

Object Use-After-Free

Kernel User

Get object
pointer

User-mode
callback

User-mode
function

Absent locking

Operate on
object

Use after free

Free object
e.g. DestroyWindow()

11. august 2011

Window Object Use-After-Free

• In creating a window, an application can adjust
its orientation and z-order using a CBT hook

• Z-order is defined by providing the handle to the
window after which the new window is inserted

• win32k!xxxCreateWindowEx failed to properly
lock the provided z-order window

• Only stored a pointer to the object in a local variable

• An attacker could destroy the window in a
subsequent user-mode callback and trigger a
use-after-free

11. august 2011

Window Object Use-After-Free

User-mode callback(s)

DestroyWindow(hwnd)
Operate on freed

object

Get object pointer from handle
(cbt.hwndInsertAfter)

11. august 2011

Keyboard Layout Object Use-After-Free

• In loading a keyboard layout,
win32k!xxxLoadKeyboardLayoutEx did not lock
the keyboard layout object

• Pointer stored in local variable

• An attacker could unload the keyboard layout
in a user-mode callback and thus free the
object

• Subsequently, upon using the object pointer
the kernel would operate on freed memory

11. august 2011

Keyboard Layout Object Use-After-Free

User-mode callback(s)

UnloadKeyboardLayout (hkl)

Pointer to freed
memory Operate on freed

object

Get object pointer
from handle (hkl)

11. august 2011

Object State Validation

• Objects assumed to be in a certain state should
always have their state validated

• Usually involves checking for initialized pointers or
flags

• User-mode callbacks could alter the state and
update properties of objects

• A drop down menu is no longer active

• The parent of a window has changed

• The partner in a DDE conversation terminated

11. august 2011

DDE Conversation State Vulnerabilities

• Dynamic Data Exchange (DDE)

• Legacy protocol using messages and shared memory to
exchange data between applications

• Several functions did not sufficiently validate DDE
conversation objects after user-mode callbacks

• Used to copy data in and out from user-mode

• An attacker could terminate a conversation in a
user-mode callback and thus unlock the partner
conversation object

• Could result in a NULL pointer dereference as the function
did not revalidate the conversation object pointer

11. august 2011

DDE Conversation Message Handling

Client
Window

Conversation
Object
(Client)

Server
Window

Message Transmit

Conversation
Object

(Server)

Data Copy Data Copy

PostMessage /
GetMessage

PostMessage /
GetMessage

DDE
Handling

DDE
Handling

Kernel

User-mode
callback

User-mode
callback

11. august 2011

DDE Conversation Object NULL Dereference

Possible NULL pointer
dereference

User-mode callback(s)

Terminate the conversation
in a user-mode callback

Copy data to be sent in from
user-mode

11. august 2011

Buffer Reallocation

• Many user objects have item arrays or other
forms of buffers associated with them
• E.g. menu items array

• Item arrays where elements are added or
removed are often resized to conserve memory
• Buffer freed if the array is empty

• Buffer reallocated if elements is above or below a
certain threshold

• Any buffer that can be reallocated or freed
during a callback must be checked upon return
• Failure to do so could result in use-after-free

11. august 2011

Buffer Reallocation

Get pointer
to array

Get number
of items in
array (k)

Item =
array[n]

Operate on item
(user-mode

callback)

if (++n <
k)

Resize or
delete array
in callback

Should revalidate
buffer pointer

Kernel User

Should revalidate
number of items

(k)

11. august 2011

Menu Item Array Use-After-Frees

• Menus may hold an arbitrary number of menu
items
• Stored in a dynamically sized array pointed to by the menu

object structure (win32k!tagMENU)

• Win32k did not revalidate the menu items array
pointer after user-mode callbacks
• No way to “lock” a menu item

• Any ‘xxx’ function operating on menu items was
potentially vulnerable

• An attacker could cause the buffer to be
reallocated in a callback and trigger a use-after-
free

11. august 2011

Menu Item Array Reallocation

MENU
Object

CreatePopupMenu() or
CreateMenu()

1st InsertMenuItem(…) creates
menu items array of 8 tagITEM

entries

9th InsertMenuItem(…) expands
array by 8 items and forces

reallocation

11. august 2011

Menu Item Processing Use-After-Free

User-mode
callback

Resize array in
callback

cItems (array count)
is not revalidated

rgItems pointer (ebx) is
not revalidated

11. august 2011

SetWindowPos Array Use-After-Frees

• SMWP objects are used to update the position of
multiple windows at once

• Created in BeginDeferWindowPos(int dwNum)

• Hold a dynamically sized array of multiple window position
structures

• In operating on the SMWP array, win32k did not
revalidate the array pointer after user-mode
callbacks

• An attacker could force the array to be reallocated
by inserting entries using DeferWindowPos(…) and
trigger a use-after-free

11. august 2011

SetWindowPos Array Reallocation

SMWP
Object

BeginDeferWindowPos(
4)

Creates SMWP array of 4
entries

DeferWindowPos(…)
fills SMWP array entries

5th DeferWindowPos(…) expands
array by 4 items and forces

reallocation

11. august 2011

SMWP Item Processing Use-After-Free

User-mode
callback

Resize array in
callback

EBX may point to
freed memory!

Get next item in
array

11. august 2011

Time-of-Check-to-Time-of-Use

• The user critical section is generally used to
prevent TOCTTOU issues in user object
handling
• User-mode callbacks may allow an attacker to

manipulate an object or global value before it is used

• Can be particularly dangerous in clean up
routines
• May invoke callbacks after checks have been made

• Could result in stale references to objects or buffers

• Values that may have changed must always be
(re)checked after a callback has taken place

11. august 2011

Time-of-Check-to-Time-of-Use

Checks pointer to
alt-tab window

User-mode callback
if event hook is set

Attempts to destroy
window without

rechecking object
pointer

Assignment locked
pointer

Null

11. august 2011

Handle Validation

• Required to validate handles, their type, and
retrieve the corresponding object pointers
• HMValidateHandle() and friends

• Generic handle validation should be avoided
unless the structure of the object is irrelevant
• Only checks handle table entry and ignores type

• Functions that revalidate handles after
callbacks, may no longer be operating on the
same object
• The uniqueness counter designed to provide handle

entropy is only 16-bit

11. august 2011

Insufficient Handle Validation

Function did not check that
object was an image

(icon/cursor)

Function did not check
handle type nor validate

index in handle table

11. august 2011

Exploitability

Use-After-Frees and NULL Pointer
Dereferences

11. august 2011

Vulnerability Primitives

• Mainly dealing with two vulnerability
primitives

• Use-After-Frees

• Null-Pointer Dereferences

• Exploitability may depend on the attacker’s
ability to manipulate heap and pool memory

• Kernel Pool Exploitation on Windows 7 (BH DC ‘11)

• Not much public information on the kernel heap

• Hooking user-mode callbacks is easy

• NtCurrentPeb()->KernelCallbackTable

11. august 2011

Kernel Heap

• The kernel has a stripped down version of the
user-mode heap allocator

• nt!RtlAllocateHeap, nt!RtlFreeHeap, etc.

• Used by the shared and desktop heaps

• Neither heaps employ any front end allocators

• ExtendedLookup == NULL

• No low fragmentation heap or lookaside lists

• Neither heaps encode or obfuscate heap
management structures

• HEAP.EncodeFlagMask == 0

11. august 2011

Desktop Heap Base

Free list

EncodingFlagMask
and PointerKey

No front end
allocators

Commit routine to
extend the heap

11. august 2011

Kernel Heap Management

• Freed memory is indexed into a single free list

• Ordered by block size

• ListHints used to optimize list lookup

• Requested memory is always pulled from the front
of an oversized heap chunk

• Remaining fragment is put back into the free list

• If the heap runs out of committed memory, win32k
calls the CommitRoutine to extend the heap

• Attempts to commit memory from the reserved range

• E.g. win32k reserves 0xC00000 bytes by default
(adjustable by user) for desktop heaps

11. august 2011

Use-After-Free Exploitation

• Unicode strings can be used to reallocate freed
memory from within user-mode callbacks
• Allows control of the contents and size of the heap

block

• Caveat: Cannot use WORD NULLs and last two bytes
must be NULL to terminate the string

• Desktop heap
• SetWindowTextW(hWnd,String);

• Session pool
• SetClassLongPtr(hWnd,GCLP_MENUNAME,(

LONG)String);

11. august 2011

Strings As User Objects

Unicode string
allocated in place of

freed object

Arbitrary memory
corruption

11. august 2011

Exploiting Object Locking Behavior

• Embedded object pointers in the freed object
may allow an attacker to increment (lock) or
decrement (unlock) an arbitrary address

• Common behavior of locking routines

• Some targets

• HANDLEENTRY.bType
• Decrement the type of a window handle table entry (1)

• Destroy routine for free type (0) is null (mappable by user)

• KAPC.ApcMode
• Execute code with kernel-mode privileges by decrementing

UserMode (1) to KernelMode (0)

11. august 2011

Exploiting Object Locking Behavior

Unlocking user-controlled
pointer (0xdeadbeef)

HMAssignmentLock
unlocks the existing user-

controlled pointer

11. august 2011

NULL Pointer Vulnerabilities

• Potentially exploitable on the Windows
platform

• Non-privileged users can map the null page, e.g. via
NtAllocateVirtualMemory or NtMapViewOfFile

• Many NULL pointer vulnerabilities are
concerned with window object pointers

• An attacker could map the null page and set up
a fake window object

• E.g. define a server-side window procedure and
handle messages with kernel level privileges

11. august 2011

NULL Pointer Object Exploitation

Server-side window
procedure pointer

Fake null page
window object

Message sent to
null pointer object

11. august 2011

Demo

• Window Object Use-After-Free (CVE-2011-
1237)

• Arbitrary kernel code execution via HANDLEENTRY
corruption

11. august 2011

Mitigations

Protecting Against Privilege Escalation
Vulnerabilities

11. august 2011

Mitigating Use-After-Free Exploitation

• Need to address an attacker’s ability to
reallocate the freed memory before use

• Some approaches

• Delayed frees while processing a callback

• Dedicated free lists for user objects

• Isolate strings used in reallocating memory

• Track allocations between ring transitions, e.g.
pointers on the stack before a callback

• Generally hard to mitigate without significantly
impacting performance

11. august 2011

Mitigating NULL Pointer Exploitation

• We can address null pointer exploitation by
denying users the ability to map the null page

• Some potential ways of addressing null page
mappings

• System call hooking

• Page Table Entry (PTE) modification

• VAD manipulation

• System call hooking not supported on x64

• PTE modification requires page to be mapped

11. august 2011

VAD Manipulation

• User mode process space is described using
Virtual Address Descriptors (VADs)

• Structured in self-balanced AVL trees

• VADs are always checked before PTEs are
created

• E.g. used to implement the NO_ACCESS protection

• VADs are used to secure memory, e.g. made
non-deletable

• PEBs and TEBs

• KUSER_SHARED_DATA section

11. august 2011

VAD Tree

VAD: 85a52db0
77cb0 – 77deb

EXECUTE_WCOPY
Mapped

VAD: 871f1418
1f0 – 2ef

READWRITE
Private

VAD: 85985008
7ffb0 – 7ffd2
READONLY

Mapped

Process
Object

(EPROCESS)

VadRoot
(MM_AVL_TABLE)

Control Area
Flags: Accessed,
File, Image, ...

File Object
Name:

[...]\ntdll.dll

VAD: 85a52ce8
30 – 33

READONLY
Mapped

VAD: 85a551a0
dc0 – de2

EXECUTE_WCOPY
Mapped

VAD: 859850d8
7ffd6 – 7ffd6
READWRITE

Private

VAD: 859f9a28
77ef0 – 77ef0

EXECUTE_WCOPY
Mapped

11. august 2011

Restricting Null Page Access

• We insert a crafted VAD entry to restrict null
page access
• Ring3 code cannot modify the VAD entry

• Avoid deletion using the same method
employed by PEBs and TEBs
• Secure address range from 0 up to 0xFFFF

• Set protection to NO_ACCESS

• Use a special VAD flag to prevent memory
commits
• Protection cannot be changed on uncommitted

memory!

11. august 2011

VAD Tree /w Crafted Entry

VAD: 85a52ad8
10 – 1f

READWRITE
Mapped

VAD: 876c26c0
0 – f

NO_ACCESS
Private

VAD: 85985128
20 – 2f

READWRITE
Mapped

Crafted NO_ACCESS
VAD inserted at

leftmost branch in
VAD tree

11. august 2011

Manipulated Process VAD Tree

Invalid memory

Crafted NO_ACCESS Vad

11. august 2011

Mitigation Results

Function Addr Type Protection Result

NtAllocateVirtualMemory 1 MEM_RESERVE READONLY 0xC0000018

NtAllocateVirtualMemory 1 MEM_COMMIT READONLY 0xC0000018

NtMapViewOfSection 1 MEM_DOS_LIM* READONLY 0xC0000018

NtProtectVirtualMemory 0 READWRITE 0xC000002D

NtProtectVirtualmemory 0 READONLY 0xC0000045

NtFreeVirtualMemory 0 MEM_RELEASE 0xC0000045

*Allows section mapping on page boundary on x86 platforms

0xC0000018 STATUS_CONFLICTING_ADDRESSES

0xC000002D STATUS_NOT_COMMITTED

0xC0000045 STATUS_INVALID_PAGE_PROTECTION

11. august 2011

Demo

• Null page mapping mitigation

11. august 2011

Conclusion

Remarks and Conclusion

11. august 2011

Future of the Win32k Subsystem

• Win32k needs a much more consistent and
security oriented design

• It should not be necessary for the kernel to make
direct calls back into user-mode

• Reconsider performance benefit of shared user and
kernel-mode memory mappings

• The Window Manager should provide mutual
exclusion on a per-object basis

• Better suited towards multicore architectures

• Similar to what is done in GDI and the NT executive

11. august 2011

Conclusion

• Legacy components constitute the most
vulnerable parts of an operating system

• Security is not usually part of the original design

• Win32k is built around very old GUI subsystem code

• Kernel exploitation requires knowledge about
the kernel address space

• Limiting access to such information is important

• Although hard, mitigating Windows kernel
exploitation is possible

11. august 2011

References

• Windows Kernel Internals: Win32K.sys
• David B. Probert, Microsoft

• Analyzing Local Privilege Escalations in win32k
• mxatone (Uninformed Vol. 10)

• Windows Creation Vulnerability (MS10-048)
• Nicolás Economou

• Pointers and Handles: A Story of Unchecked
Assumptions in the Windows Kernel
• Alex Ionescu

• Understanding the Low Fragmentation Heap
• Chris Valasek

11. august 2011

Questions ?

• Email: kernelpool@gmail.com

• Blog: http://mista.nu/blog

• Twitter: @kernelpool

• Norman MDT Blog:
http://blogs.norman.com/category/malware-
detection-team

mailto:kernelpool@gmail.com
http://mista.nu/blog
http://blogs.norman.com/category/malware-detection-team
http://blogs.norman.com/category/malware-detection-team
http://blogs.norman.com/category/malware-detection-team
http://blogs.norman.com/category/malware-detection-team
http://blogs.norman.com/category/malware-detection-team
http://blogs.norman.com/category/malware-detection-team

