
© Microsoft Corporation 1

Windows Kernel Internals
Lightweight Procedure Calls

David B. Probert, Ph.D.
Windows Kernel Development

Microsoft Corporation



© Microsoft Corporation 2

Topics

• LPC overview
• !lpc debugger extension
• Investigation checklist
• Debugging samples



© Microsoft Corporation 3

LPC usage

• LPC is an internal interface for NT 
components.

• Communications between two user 
mode components (csrss and win32, winlogon and 
lsass)

• Communications between a user-mode 
process and a kernel-mode component 
(lsass and Security Reference Monitor)

• Local RPC



© Microsoft Corporation 4

Connection Port 
Handle

Server process Client processKernel Address Space

Connection port
(named / unnamed)

LPC Architecture

Server 
Comm Port

Client 
Comm Port

Client 
Comm 
Handle

Server 
Comm 
Handle

Client View 
of Section

Server View 
of Section

Shared 

Section



© Microsoft Corporation 5

LPC ports
• Connection port (named / unnamed)

– Created by the server side.
– Used to accept connections, receive requests and 

to reply to messages 
• Server communication port

– The server receives a handle to server port each 
time a new connection is created.

– Used to terminate a connection,  to impersonate 
the client or to reply.

• Client communication port
– The client receives a handle to a client port if the 

connection was successfully accepted. 
– Used to request/receive messages



© Microsoft Corporation 6

LPC Data Transfer

• The message is temporary copied to 
kernel ( < 256 bytes*)

• Using shared sections, mapped in both 
client and server address spaces

• The server can directly read from or write 
to a client address space



© Microsoft Corporation 7

Creating an LPC server

• 1. Create a named connection port ( NtCreatePort )

• 2. Create one or more working threads 
listening to requests on that LPC connection 
port (NtReplyWaitReceivePort)



© Microsoft Corporation 8

Creating an LPC server – cont
{ …

If ( NtCreatePort(&SrvConnHandle, “LPCPortName”) ) {
CreateThread ( ProcessLPCRequestProc) 

}
…

}
ProcessLPCRequestProc () 
{

ReplyMsg = NULL;
while ( forever_or_so ){

NtReplyWaitReceivePort( SrvConnHandle, ReplyMsg, ReceiveMsg )
DoStuffWithTheReceivedMessage()
ReplyMsg = PrepareTheReply ( IfAny )*

}
} 
* Some servers launch an worker thread to process the request and reply to the client



© Microsoft Corporation 9

Establishing an LPC connection

• The Client initiates a connection (NtConnectPort) 

• The server receives a connection request 
message

• The server decides to accept/reject the 
connection and calls NtAcceptConnectPort

• The server wakes up the client 
(NtCompleteConnectPort)



© Microsoft Corporation 10

Common issues

• Servers cannot send messages to 
clients that are not waiting for an LPC 
message

• If a server dies, the client is not notified 
unless it has threads waiting for a reply

• No timeout for the LPC wait APIs



© Microsoft Corporation 11

LPC data structures

• LPC Port (paged)
– Port type, connection & connected port, 

owning process, server process, port 
context

• LPC Message (paged)
– MessageID, message type, ClientID

• Thread LPC fields (non-paged)
– Wait state, request messageID, LCP port, 

received message id, port rundown queue
• Global data

– LpcpNextMessageId, LpcpLock



© Microsoft Corporation 12

LPC port object

• Object fields (name, ref count, type)

• Port type (connection, server comm, client comm)

• Connection and connected port
• Creator CID
• Message queue
• Port context
• Thread rundown queue



© Microsoft Corporation 13

LPCP_PORT_OBJECT
typedef struct _LPCP_PORT_OBJECT {

ULONG Flags;
struct _LPCP_PORT_OBJECT *ConnectionPort;
struct _LPCP_PORT_OBJECT *ConnectedPort;
LPCP_PORT_QUEUE MsgQueue;
CLIENT_ID Creator;
PVOID PortContext;
ULONG MaxMessageLength;
LIST_ENTRY LpcReplyChainHead; 
LIST_ENTRY LpcDataInfoChainHead;  

…
}



© Microsoft Corporation 14

LPC ports in EPROCESS

• DebugPort
– Used to send debugger messages

• ExceptionPort
– CsrCreateProcess assigns it to a win32 

process 
• SecurityPort

– Used by lsass



© Microsoft Corporation 15

LPC message format

• Kernel side (Port context, 
messages list)

• User side (PORT_MESSAGE)
– Message type (request, reply, 

connection request, client died, 
port closed)

– Message length, data offset
– Client ID
– Message ID

• Private data

U
se

r m
od

e
K

er
ne

l



© Microsoft Corporation 16

LPCP_MESSAGE
typedef struct _LPCP_MESSAGE {

union {
LIST_ENTRY Entry;

};
PETHREAD RepliedToThread; 
PVOID PortContext;                  

…
PORT_MESSAGE Request;

} LPCP_MESSAGE, *PLPCP_MESSAGE;



© Microsoft Corporation 17

PORT_MESSAGE
typedef struct _PORT_MESSAGE {

CSHORT DataLength;
CSHORT TotalLength;
CSHORT Type;
CSHORT DataInfoOffset;
LPC_CLIENT_ID ClientId;
ULONG MessageId;
ULONG CallbackId; 

…
//  UCHAR Data[];
} PORT_MESSAGE, *PPORT_MESSAGE;



© Microsoft Corporation 18

More about LPC messages

• Where are messages to be found?
– On the caller stack
– In the port queue
– In the thread pending the reply

• Can you tell how old a message is?
• Validating fields to detect corruptions

– MessageID
– Message type
– Client ID



© Microsoft Corporation 19

Typical message
Waiting for reply to LPC MessageId 000016df:

Pending LPC Reply Message:

e1a9d378: [e190e620,e1bd3008]

kd> dd e1a9d378
e1a9d378  e1bd3008 e190e620 00000000 00000000
e1a9d388  00000000 00000033 00cc009c 0000000a
e1a9d398  000007cc 00000784 000056df 00000000
e1a9d3a8  00000000 00000000 00000000 00000000
e1a9d3b8  00000000 00000000 e18e8ce0 00000000

1: kd> dc NT!LpcpNextMessageId l1

8025bafc  000027d8



© Microsoft Corporation 20

The LPC fields in ETHREAD
• LpcReplyChain

– To wake up a client if a server port goes away
• LpcReplySemaphore

– It gets signaled when the reply message is ready
• LpcReplyMessageId

– The message ID at which the client is waiting a reply
• LpcReplyMessage

– The reply message received
• LpcWaitingOnPort

– The port object currently used for a LPC request
• LpcReceivedMessageId

– The last message ID that a server received



© Microsoft Corporation 21

!lpc KD debugger extension

• !lpc message [MessageId]
• !lpc port [PortAddress]
• !lpc scan PortAddress
• !lpc thread [ThreadAddr]
• !lpc PoolSearch



© Microsoft Corporation 22

Analyzing the LPC connection
• Get the information from the client 

thread
– Use !thread to get the messageId and the 

communication port
• Find the server process

– Use !lpc message to find the server 
thread/process working on this message

– Use !lpc port to identify the connection port
• Check the server connection state

– Semaphore state, message queue
• Look at what is doing the server thread 



© Microsoft Corporation 23

Client waiting for reply

• Recognizing the state
– !thread will display:

- WAIT state WrLpcReply
- “Waiting for reply to LPC MessageId x”
- “Current LPC port y”

• What’s next
– Use !lpc to find the server thread / process / port
– See if the server:

• Didn’t receive the request
• The server received but it didn’t reply



© Microsoft Corporation 24

Common server problems
• The server is not servicing the port

– All server threads are busy with some other 
requests (or deadlocked)

– The server is suspended by the debugger
• The server replied to a wrong client
• The reply failed, and the server didn’t 

managed the result
• The server replied/impersonated using a 

wrong port 



© Microsoft Corporation 25

Discussion


	Windows Kernel InternalsLightweight Procedure Calls
	Topics
	LPC usage
	LPC Architecture
	LPC ports
	LPC Data Transfer
	Creating an LPC server
	Creating an LPC server ? cont
	Establishing an LPC connection
	Common issues
	LPC data structures
	LPC port object
	LPCP_PORT_OBJECT
	LPC ports in EPROCESS
	LPC message format
	LPCP_MESSAGE
	PORT_MESSAGE
	More about LPC messages
	Typical message
	The LPC fields in ETHREAD
	!lpc KD debugger extension
	Analyzing the LPC connection
	Client waiting for reply
	Common server problems
	Discussion

