Windows Kernel Internals
Lightweight Procedure Calls

David B. Probert, Ph.D.
Windows Kernel Development
Microsoft Corporation

© Microsoft Corporation

Topics

LPC overview

llpc debugger extension
Investigation checklist
Debugging samples

© Microsoft Corporation

LPC usage

LPC is an internal interface for NT
components.

Communications between two user
mode components (csrss and win32, winlogon and

|sass)

Communications between a user-mode
process and a kernel-mode component

(Isass and Security Reference Monitor)

Local RPC

© Microsoft Corporation

Server process

Connection Port ---..
Handle

Server

LPC Architecture

Kernel Address Space

onnection port
(named / unnamed)

N

Server Client

Comm _— Comm Port * Comm Port

Handle

- Server View ™
- of Section

———————————————————————————————————

© Microsoft Corporation

AN

Client process

Client

\ Comm

Handle

' Client View

, Shared |
i \ , / of Section §
| g Section """"""""""""""""

LPC ports

* Connection port (named / unnamed)
— Created by the server side.
— Used to accept connections, receive requests and
to reply to messages
e Server communication port

— The server receives a handle to server port each
time a new connection is created.

— Used to terminate a connection, to impersonate
the client or to reply.
* Client communication port

— The client receives a handle to a client port if the
connection was successfully accepted.

— Used to request/receive messages

© Microsoft Corporation

LPC Data Transfer

 The message is temporary copied to
kernel (< 256 bytes™)

* Using shared sections, mapped in both
client and server address spaces

* The server can directly read from or write
to a client address space

© Microsoft Corporation

Creating an LPC server

* 1. Create a named connection port (NtCreatePort)

« 2. Create one or more working threads
listening to requests on that LPC connection
pOI’t (NtReplyWaitReceivePort)

© Microsoft Corporation

Creating an LPC server — cont

{ ..
If (NtCreatePort(&SrvConnHandle, “LPCPortName”)) {
CreateThread (ProcessLPCRequestProc)
}
}
ProcessLPCRequestProc ()
{
ReplyMsg = NULL;
while (forever _or_so X
NtReplyWaitReceivePort(SrvConnHandle, ReplyMsg, ReceiveMsg)
DoStuffWithTheReceivedMessage()
ReplyMsg = PrepareTheReply (IfAny)*
}
}

* Some servers launch an worker thread to process the request and reply to the client

© Microsoft Corporation 8

Establishing an LPC connection

The Client initiates a connection (NtConnectPort)

The server receives a connection request
message

The server decides to accept/reject the
connection and calls NtAcceptConnectPort

The server wakes up the client
(NtCompleteConnectPort)

© Microsoft Corporation 9

Common issues

« Servers cannot send messages to
clients that are not waiting for an LPC
message

* If a server dies, the client is not notified
unless it has threads waiting for a reply

 No timeout for the LPC wait APlIs

© Microsoft Corporation 10

LPC data structures

LPC Port (paged)

— Port type, connection & connected port,
owning process, server process, port
context

LPC Message (paged)
— MessagelD, message type, ClientlD

Thread LPC fields (non-paged)

— Wait state, request messagelD, LCP port,
received message id, port rundown queue

Global data
— LpcpNextMessageld, LpcpLock

© Microsoft Corporation

11

LPC port object

Obiject fields (name, ref count, type)

Port type (connection, server comm, client comm)
Connection and connected port
Creator CID

Message queue

Port context

Thread rundown queue

© Microsoft Corporation

12

LPCP_PORT_OBJECT

typedef struct LPCP PORT OBJECT {
ULONG Flags;

struct LPCP PORT OBJECT *ConnectionPort;

struct LPCP PORT OBJECT *ConnectedPort;
LPCP_ PORT QUEUE MsgQueue;

CLIENT ID Creator;

PVOID PortContext;

ULONG MaxMessagelength;

LIST ENTRY LpcReplyChainHead;

LIST ENTRY LpcDataInfoChainHead;

© Microsoft Corporation

13

LPC ports in EPROCESS

* DebugPort
— Used to send debugger messages

* ExceptionPort

— CsrCreateProcess assigns it to a win32
process

» SecurityPort
— Used by Isass

© Microsoft Corporation

14

User mode

LPC message format

« Kernel side (Port context,
___________ messages list)

» User side (PORT_MESSAGE)

— Message type (request, reply,
connection request, client died,
port closed)

— Message length, data offset
— Client ID

— Message ID
Private data

© Microsoft Corporation 15

LPCP MESSAGE

typedef struct LPCP MESSAGE {
union ({
LIST ENTRY Entry;
};
PETHREAD RepliedToThread;
PVOID PortContext;

PORT MESSAGE Request;
} LPCP_MESSAGE, *PLPCP MESSAGE;

© Microsoft Corporation

16

PORT MESSAGE

typedef struct PORT MESSAGE ({
CSHORT Datalength;
CSHORT TotalLength;
CSHORT Type;
CSHORT DataInfoOffset;
LPC_CLIENT ID ClientId;
ULONG Messageld;
ULONG CallbackId;

// TUCHAR Datal];
} PORT MESSAGE, *PPORT MESSAGE;

© Microsoft Corporation

17

More about LPC messages

* Where are messages to be found?
— On the caller stack
— In the port queue
— In the thread pending the reply

» Can you tell how old a message is”?

 Validating fields to detect corruptions
— MessagelD
— Message type
— Client ID

© Microsoft Corporation

18

Typical message

Waiting for reply to LPC MessageId 000016df:

Pending LPC Reply Message:

kd>

ela9d378
ela9d388
ela9d398
ela9d3a8
ela9d3b8

[€e190e620,e1bd3008]

elbd3008 e190e620
00000000 00000033

00000000 00000000
00000000 00000000

1: kd> dc NT!'LpcpNextMessageId 11

8025bafc

© Microsoft Corporation

00000000
00cc009c
000056df
00000000
el8e8cel

00000000

00000000
00000000
00000000

19

The LPC fields in ETHREAD

LpcReplyChain

— To wake up a client if a server port goes away
LpcReplySemaphore

— It gets signaled when the reply message is ready
LpcReplyMessageld

— The message ID at which the client is waiting a reply
LpcReplyMessage

— The reply message received

LpcWaitingOnPort

— The port object currently used for a LPC request

LpcReceivedMessageld
— The last message ID that a server received

© Microsoft Corporation 20

llpc KD debugger extension

pc message [Messageld]
pc port [PortAddress]
pc scan PortAddress

pc thread [ThreadAddr]
pc PoolSearch

© Microsoft Corporation 21

Analyzing the LPC connection

 Get the information from the client
thread

— Use !thread to get the messageld and the
communication port

* Find the server process

— Use llpc message to find the server
thread/process working on this message

— Use llpc port to identify the connection port

* Check the server connection state
— Semaphore state, message queue

* Look at what is doing the server thread

© Microsoft Corporation 22

Client waiting for reply

* Recognizing the state

— Ithread will display:
- WAIT state
- “Waiting for reply to LPC Messageld
- “Current LPC port

« What's next

— Use llpc to find the server thread / process / port

— See if the server:
* Didn’t receive the request
* The server received but it didn’t reply

© Microsoft Corporation

23

Common server problems

The server is not servicing the port

— All server threads are busy with some other
requests (or deadlocked)

— The server is suspended by the debugger
The server replied to a wrong client

The reply failed, and the server didn’t
managed the result

The server replied/impersonated using a
wrong port

© Microsoft Corporation

24

Discussion

© Microsoft Corporation

25

	Windows Kernel InternalsLightweight Procedure Calls
	Topics
	LPC usage
	LPC Architecture
	LPC ports
	LPC Data Transfer
	Creating an LPC server
	Creating an LPC server ? cont
	Establishing an LPC connection
	Common issues
	LPC data structures
	LPC port object
	LPCP_PORT_OBJECT
	LPC ports in EPROCESS
	LPC message format
	LPCP_MESSAGE
	PORT_MESSAGE
	More about LPC messages
	Typical message
	The LPC fields in ETHREAD
	!lpc KD debugger extension
	Analyzing the LPC connection
	Client waiting for reply
	Common server problems
	Discussion

