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LPC overview
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LPC usage

LPC is an internal interface for NT
components.

Communications between two user
mode components (csrss and win32, winlogon and

|sass)

Communications between a user-mode
process and a kernel-mode component

(Isass and Security Reference Monitor)

Local RPC
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LPC ports

* Connection port (named / unnamed)
— Created by the server side.
— Used to accept connections, receive requests and
to reply to messages
e Server communication port

— The server receives a handle to server port each
time a new connection is created.

— Used to terminate a connection, to impersonate
the client or to reply.
* Client communication port

— The client receives a handle to a client port if the
connection was successfully accepted.

— Used to request/receive messages
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LPC Data Transfer

 The message is temporary copied to
kernel ( < 256 bytes™)

* Using shared sections, mapped in both
client and server address spaces

* The server can directly read from or write
to a client address space
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Creating an LPC server

* 1. Create a named connection port ( NtCreatePort )

« 2. Create one or more working threads
listening to requests on that LPC connection
pOI’t (NtReplyWaitReceivePort)
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Creating an LPC server — cont

{ ..
If ( NtCreatePort(&SrvConnHandle, “LPCPortName”) ) {
CreateThread ( ProcessLPCRequestProc)
}
}
ProcessLPCRequestProc ()
{
ReplyMsg = NULL;
while ( forever _or_so X
NtReplyWaitReceivePort( SrvConnHandle, ReplyMsg, ReceiveMsg )
DoStuffWithTheReceivedMessage()
ReplyMsg = PrepareTheReply ( IfAny )*
}
}

* Some servers launch an worker thread to process the request and reply to the client
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Establishing an LPC connection

The Client initiates a connection (NtConnectPort)

The server receives a connection request
message

The server decides to accept/reject the
connection and calls NtAcceptConnectPort

The server wakes up the client
(NtCompleteConnectPort)
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Common issues

« Servers cannot send messages to
clients that are not waiting for an LPC
message

* If a server dies, the client is not notified
unless it has threads waiting for a reply

 No timeout for the LPC wait APlIs
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LPC data structures

LPC Port (paged)

— Port type, connection & connected port,
owning process, server process, port
context

LPC Message (paged)
— MessagelD, message type, ClientlD

Thread LPC fields (non-paged)

— Wait state, request messagelD, LCP port,
received message id, port rundown queue

Global data
— LpcpNextMessageld, LpcpLock
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LPC port object

Obiject fields (name, ref count, type)

Port type (connection, server comm, client comm)
Connection and connected port
Creator CID

Message queue

Port context

Thread rundown queue
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LPCP_PORT_OBJECT

typedef struct LPCP PORT OBJECT {
ULONG Flags;

struct LPCP PORT OBJECT *ConnectionPort;

struct LPCP PORT OBJECT *ConnectedPort;
LPCP_ PORT QUEUE MsgQueue;

CLIENT ID Creator;

PVOID PortContext;

ULONG MaxMessagelength;

LIST ENTRY LpcReplyChainHead;

LIST ENTRY LpcDataInfoChainHead;
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LPC ports in EPROCESS

* DebugPort
— Used to send debugger messages

* ExceptionPort

— CsrCreateProcess assigns it to a win32
process

» SecurityPort
— Used by Isass
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User mode

LPC message format

« Kernel side (Port context,
___________ messages list)

» User side (PORT_MESSAGE)

— Message type (request, reply,
connection request, client died,
port closed)

— Message length, data offset
— Client ID

— Message ID
Private data
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LPCP MESSAGE

typedef struct LPCP MESSAGE {
union ({
LIST ENTRY Entry;
};
PETHREAD RepliedToThread;
PVOID PortContext;

PORT MESSAGE Request;
} LPCP_MESSAGE, *PLPCP MESSAGE;
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PORT MESSAGE

typedef struct PORT MESSAGE ({
CSHORT Datalength;
CSHORT TotalLength;
CSHORT Type;
CSHORT DataInfoOffset;
LPC_CLIENT ID ClientId;
ULONG Messageld;
ULONG CallbackId;

// TUCHAR Datal];
} PORT MESSAGE, *PPORT MESSAGE;
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More about LPC messages

* Where are messages to be found?
— On the caller stack
— In the port queue
— In the thread pending the reply

» Can you tell how old a message is”?

 Validating fields to detect corruptions
— MessagelD
— Message type
— Client ID
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Typical message

Waiting for reply to LPC MessageId 000016df:

Pending LPC Reply Message:

kd>

ela9d378
ela9d388
ela9d398
ela9d3a8
ela9d3b8

[€e190e620,e1bd3008]

elbd3008 e190e620
00000000 00000033

00000000 00000000
00000000 00000000

1: kd> dc NT!'LpcpNextMessageId 11

8025bafc
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00000000
00cc009c
000056df
00000000
el8e8cel

00000000

00000000
00000000
00000000
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The LPC fields in ETHREAD

LpcReplyChain

— To wake up a client if a server port goes away
LpcReplySemaphore

— It gets signaled when the reply message is ready
LpcReplyMessageld

— The message ID at which the client is waiting a reply
LpcReplyMessage

— The reply message received

LpcWaitingOnPort

— The port object currently used for a LPC request

LpcReceivedMessageld
— The last message ID that a server received
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llpc KD debugger extension

pc message [Messageld]
pc port [PortAddress]
pc scan PortAddress

pc thread [ThreadAddr]
pc PoolSearch
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Analyzing the LPC connection

 Get the information from the client
thread

— Use !thread to get the messageld and the
communication port

* Find the server process

— Use llpc message to find the server
thread/process working on this message

— Use llpc port to identify the connection port

* Check the server connection state
— Semaphore state, message queue

* Look at what is doing the server thread
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Client waiting for reply

* Recognizing the state

— Ithread will display:
- WAIT state
- “Waiting for reply to LPC Messageld
- “Current LPC port

« What's next

— Use llpc to find the server thread / process / port

— See if the server:
* Didn’t receive the request
* The server received but it didn’t reply
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Common server problems

The server is not servicing the port

— All server threads are busy with some other
requests (or deadlocked)

— The server is suspended by the debugger
The server replied to a wrong client

The reply failed, and the server didn’t
managed the result

The server replied/impersonated using a
wrong port
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Discussion
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