
Windows Kernel Internals
Overview

*David B. Probert, Ph.D.
Windows Kernel Development

Microsoft Corporation

© Microsoft Corporation 1

Contributors
Neill Clift
Adrian Marinescu
Nar Ganapathy
Jake Oshins
Andrew Ritz
Jonathan Schwartz
Mark Lucovsky
Samer Arafeh
Dan Lovinger

Landy Wang
David Solomon
Ben Leis
Brian Andrew
Jason Zions
Gerardo Bermudez
Dragos Sambotin
Arun Kishan
Adrian Oney

© Microsoft Corporation 2

Windows History

• Team formed in November 1988
• Less than 20 people
• Build from the ground up

– Advanced Operating System
– Designed for desktops and servers
– Secure, scalable SMP design
– All new code

• Rigorous discipline – developers wrote very detailed
design docs, reviewed/discussed each others docs and
wrote unit tests

© Microsoft Corporation 3

Goals of the NT System
• Reliability – Nothing should be able to crash the

OS. Anything that crashes the OS is a bug and
we won’t ship until it is fixed

• Security – Built into the design from day one
• Portability – Support more than one processor,

avoid assembler, abstract HW dependencies.
• Extensibility – Ability to extend the OS over time
• Compatibility – Apps must run
• Performance – All of the above are more

important than raw speed!

© Microsoft Corporation 4

Windows Architecture

© Microsoft Corporation 5

User-mode

Kernel-mode Trap interface / LPC

ntdll / run-time library

Win32 GUIProcs & threads

Kernel run-time / Hardware Adaptation Layer

Virtual memoryIO ManagerSecurity refmon

Cache mgr

File filters
File systems
Volume mgrs
Device stacks

Scheduler

Kernel32 User32 / GDI

DLLs

Applications

System Services

Object Manager / Configuration Management

FS run-time

exec synchr

Subsystem
servers

Login/GINA

Critical services

Windows Kernel Organization

Kernel-mode organized into
NTOS (kernel-mode services)

– Run-time Library, Scheduling, Executive services, object
manager, services for I/O, memory, processes, …

Hal (hardware-adaptation layer)
– Insulates NTOS & drivers from hardware dependencies
– Providers facilities, such as device access, timers, interrupt

servicing, clocks, spinlocks

Drivers
– kernel extensions (primarily for device access)

© Microsoft Corporation 6

Major Kernel Services
Process management

Process/thread creation
Security reference monitor

Access checks, token management
Memory manager

Pagefaults, virtual address, physical frame, and pagefile management
Services for sharing, copy-on-write, mapped files, GC support, large apps

Lightweight Procedure Call (LPC)
Native transport for RPC and user-mode system services.

I/O manager (& plug-and-play & power)
Maps user requests into IRP requests, configures/manages I/O devices,

implements services for drivers
Cache manager

Provides file-based caching for buffer file system I/O
Built over the memory manager

Scheduler (aka ‘kernel’)
Schedules thread execution on each processor

© Microsoft Corporation 7

CPU Control-flow
Thread scheduling occurs at PASSIVE or APC level

(IRQL < 2)
APCs (Asynchronous Procedure Calls) deliver I/O

completions, thread/process termination, etc (IRQL == 1)
Not a general mechanism like unix signals (user-mode code must

explicitly block pending APC delivery)
Interrupt Service Routines run at IRL > 2
ISRs defer most processing to run at IRQL==2 (DISPATCH

level) by queuing a DPC to their current processor
A pool of worker threads available for kernel components to

run in a normal thread context when user-mode thread is
unavailable or inappropriate

Normal thread scheduling is round-robin among priority
levels, with priority adjustments (except for fixed priority
real-time threads)

© Microsoft Corporation 8

Process/Thread structure

Object
Manager

Any Handle
Table

Process
Object

Process’
Handle Table

Virtual
Address

Descriptors

Thread

Thread

Thread

Thread

Thread

Thread

Files

Events

Devices

Drivers

© Microsoft Corporation 9

Process
Container for an address space and threads
Associated User-mode Process Environment Block (PEB)
Primary Access Token
Quota, Debug port, Handle Table etc
Unique process ID
Queued to the Job, global process list and Session list
MM structures like the WorkingSet, VAD tree, AWE etc

© Microsoft Corporation 10

Thread
Fundamental schedulable entity in the system
Represented by ETHREAD that includes a KTHREAD
Queued to the process (both E and K thread)
IRP list
Impersonation Access Token
Unique thread ID
Associated User-mode Thread Environment Block (TEB)
User-mode stack
Kernel-mode stack
Processor Control Block (in KTHREAD) for cpu state when

not running

© Microsoft Corporation 11

Windows Past, Present, Future
PAST: Personal computer, 16->32 bits, MSDOS,

Windows 9x code base, desktop focus
– Features, usability, compatibility, platform
– Windows 98

PRESENT: Enterprise computing, 32/64 bits, NT
code base, solid desktop, datacenter
– Reliability, performance, IT Features
– Windows XP, Windows Server 2003

FUTURE: Managed code (.NET Framework)
– Productivity, innovation, empowerment
– Longhorn

© Microsoft Corporation 12

.Net: Making it Simple

HWND HWND hwndMainhwndMain = = CreateWindowExCreateWindowEx((
0, "0, "MainWClassMainWClass", "Main Window",", "Main Window",
WS_OVERLAPPEDWINDOW | WS_HSCROLL | WS_VSCROLL,WS_OVERLAPPEDWINDOW | WS_HSCROLL | WS_VSCROLL,
CW_USEDEFAULT, CW_USEDEFAULT,CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT,CW_USEDEFAULT, CW_USEDEFAULT,
(HWND)NULL, (HMENU)NULL, (HWND)NULL, (HMENU)NULL, hInstancehInstance, NULL); , NULL);

ShowWindow(hwndMainShowWindow(hwndMain, SW_SHOWDEFAULT); , SW_SHOWDEFAULT);
UpdateWindow(hwndMainUpdateWindow(hwndMain););

Window w = new Window();Window w = new Window();
w.Textw.Text = "Main Window";= "Main Window";
w.Showw.Show();();

Windows API

.Net Framework

© Microsoft Corporation 13

.Net: Unify Programming Models

© Microsoft Corporation 14
Windows API

.NET Framework

Consistent API availability regardless of
language and programming model

ASP

Stateless,
Code embedded
in HTML pages

MFC/ATL

Subclassing,
Power,

Expressiveness

VB Forms

RAD,
Composition,

Delegation

.Net: API Organization

© Microsoft Corporation 15

System

System.Data System.Xml

System.Web

Globalization
Diagnostics
Configuration
Collections

Resources
Reflection
Net
IO

Threading
Text
ServiceProcess
Security

Design
ADO

SQLTypes
SQL

XPath
XSLT

Runtime
InteropServices
Remoting
Serialization

Serialization

Configuration SessionState
Caching Security

Services
Description
Discovery
Protocols

UI
HtmlControls
WebControls

System.Drawing

Imaging
Drawing2D

Text
Printing

System.Windows.Forms
Design ComponentModel

.Net: Languages
The Managed Platform is Language Neutral

All languages are first class players
You can leverage your existing skills

Common Language Specification
Set of features guaranteed to be in all languages
C# enforcement: [assembly:CLSCompliant(true)]

We are providing
VB, C++, C#, J#, JScript

Third-parties are building
APL, COBOL, Pascal, Eiffel, Haskell, ML, Oberon,
Perl, Python, Scheme, Smalltalk…

© Microsoft Corporation 16

Unmanaged vs. Managed

© Microsoft Corporation 17

Unmanaged Code Managed Code
Binary standard Type standardType standard
Type libraries AssembliesAssemblies
Immutable Resilient bindResilient bind
Reference counting Garbage collectionGarbage collection
Type unsafe Type safeType safe
Interface based Object basedObject based
HRESULTs ExceptionsExceptions
GUIDs Strong namesStrong names

University of Tokyo
Windows Kernel Internals

© Microsoft Corporation 18

• Object Manager
• Virtual Memory
• Thread Scheduling
• Synchronization
• I/O Manager
• I/O Security
• Power Management
• NT File System
• Registry
• Lightweight Proc Calls

• Windows Services
• System Bootstrap
• Traps / Ints / Exceptions
• Processes
• Adv. Virtual Memory
• Cache Manager
• User-mode heap
• Win32k.sys
• WoW64
• Common Errors

Lectures

University of Tokyo
Windows Kernel Internals

© Microsoft Corporation 19

Projects
Device Drivers and Registry Hooking

Dragos Sambotin – Polytech. Inst. of Bucharest

Using LPC to build native client/server apps

Adrian Marinescu – University of Bucharest

Threads and Fibers

Arun Kishan – Stanford University

Doing virtual memory experiments from user-mode

Arun Kishan – Stanford University

Discussion

© Microsoft Corporation 20

	Windows Kernel InternalsOverview
	Contributors
	Windows History
	Goals of the NT System
	Windows Architecture
	Windows Kernel Organization
	Major Kernel Services
	CPU Control-flow
	Process/Thread structure
	Process
	Thread
	University of TokyoWindows Kernel Internals
	University of TokyoWindows Kernel Internals
	Discussion

