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Windows History

• Team formed in November 1988
• Less than 20 people
• Build from the ground up

– Advanced Operating System
– Designed for desktops and servers
– Secure, scalable SMP design
– All new code

• Rigorous discipline – developers wrote very detailed 
design docs, reviewed/discussed each others docs and 
wrote unit tests
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Goals of the NT System
• Reliability – Nothing should be able to crash the 

OS. Anything that crashes the OS is a bug and 
we won’t ship until it is fixed 

• Security – Built into the design from day one
• Portability – Support more than one processor, 

avoid assembler, abstract HW dependencies. 
• Extensibility – Ability to extend the OS over time
• Compatibility – Apps must run
• Performance – All of the above are more 

important than raw speed!
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Windows Architecture
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Windows Kernel Organization

Kernel-mode organized into
NTOS (kernel-mode services)

– Run-time Library, Scheduling, Executive services, object 
manager, services for I/O, memory, processes, …

Hal (hardware-adaptation layer)
– Insulates NTOS & drivers from hardware dependencies
– Providers facilities, such as device access, timers, interrupt 

servicing, clocks, spinlocks

Drivers
– kernel extensions (primarily for device access)
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Major Kernel Services
Process management

Process/thread creation
Security reference monitor

Access checks, token management
Memory manager

Pagefaults, virtual address, physical frame, and pagefile management
Services for sharing, copy-on-write, mapped files, GC support, large apps

Lightweight Procedure Call (LPC)
Native transport for RPC and user-mode system services. 

I/O manager (& plug-and-play & power)
Maps user requests into IRP requests, configures/manages I/O devices, 

implements services for drivers
Cache manager

Provides file-based caching for buffer file system I/O
Built over the memory manager

Scheduler (aka ‘kernel’)
Schedules thread execution on each processor
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CPU Control-flow
Thread scheduling occurs at PASSIVE or APC level

(IRQL < 2)
APCs (Asynchronous Procedure Calls) deliver I/O 

completions, thread/process termination, etc (IRQL == 1)
Not a general mechanism like unix signals (user-mode code must 

explicitly block pending APC delivery)
Interrupt Service Routines run at IRL > 2
ISRs defer most processing to run at IRQL==2 (DISPATCH 

level) by queuing a DPC to their current processor
A pool of worker threads available for kernel components to 

run in a normal thread context when user-mode thread is 
unavailable or inappropriate

Normal thread scheduling is round-robin among priority 
levels, with priority adjustments (except for fixed priority 
real-time threads)
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Process/Thread structure
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Process
Container for an address space and threads
Associated User-mode Process Environment Block (PEB)
Primary Access Token
Quota, Debug port, Handle Table etc
Unique process ID
Queued to the Job, global process list and Session list
MM structures like the WorkingSet, VAD tree, AWE etc
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Thread
Fundamental schedulable entity in the system
Represented by ETHREAD that includes a KTHREAD
Queued to the process (both E and K thread)
IRP list
Impersonation Access Token
Unique thread ID
Associated User-mode Thread Environment Block (TEB)
User-mode stack
Kernel-mode stack
Processor Control Block (in KTHREAD) for cpu state when 

not running
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Windows Past, Present, Future
PAST: Personal computer, 16->32 bits, MSDOS, 

Windows 9x code base, desktop focus
– Features, usability, compatibility, platform
– Windows 98

PRESENT: Enterprise computing, 32/64 bits, NT 
code base, solid desktop, datacenter
– Reliability, performance, IT Features
– Windows XP, Windows Server 2003

FUTURE: Managed code (.NET Framework)
– Productivity, innovation, empowerment
– Longhorn
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.Net: Making it Simple

HWND HWND hwndMainhwndMain = = CreateWindowExCreateWindowEx((
0, "0, "MainWClassMainWClass", "Main Window",", "Main Window",
WS_OVERLAPPEDWINDOW | WS_HSCROLL | WS_VSCROLL,WS_OVERLAPPEDWINDOW | WS_HSCROLL | WS_VSCROLL,
CW_USEDEFAULT, CW_USEDEFAULT,CW_USEDEFAULT, CW_USEDEFAULT,
CW_USEDEFAULT, CW_USEDEFAULT,CW_USEDEFAULT, CW_USEDEFAULT,
(HWND)NULL, (HMENU)NULL, (HWND)NULL, (HMENU)NULL, hInstancehInstance, NULL); , NULL); 

ShowWindow(hwndMainShowWindow(hwndMain, SW_SHOWDEFAULT); , SW_SHOWDEFAULT); 
UpdateWindow(hwndMainUpdateWindow(hwndMain););

Window w = new Window();Window w = new Window();
w.Textw.Text = "Main Window";= "Main Window";
w.Showw.Show();();

Windows API

.Net Framework
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.Net: Unify Programming Models
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Windows API

.NET Framework

Consistent API availability regardless of
language and programming model

ASP

Stateless,
Code embedded
in HTML pages

MFC/ATL

Subclassing,
Power,

Expressiveness

VB Forms

RAD,
Composition,

Delegation



.Net: API Organization
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System   
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.Net: Languages
The Managed Platform is Language Neutral

All languages are first class players
You can leverage your existing skills

Common Language Specification
Set of features guaranteed to be in all languages
C# enforcement: [assembly:CLSCompliant(true)]

We are providing
VB, C++, C#, J#, JScript

Third-parties are building
APL, COBOL, Pascal, Eiffel, Haskell, ML, Oberon, 
Perl, Python, Scheme, Smalltalk…
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Unmanaged vs. Managed
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Unmanaged Code Managed Code
Binary standard Type standardType standard
Type libraries AssembliesAssemblies
Immutable Resilient bindResilient bind
Reference counting Garbage collectionGarbage collection
Type unsafe Type safeType safe
Interface based Object basedObject based
HRESULTs ExceptionsExceptions
GUIDs Strong namesStrong names



University of Tokyo
Windows Kernel Internals
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• Object Manager
• Virtual Memory
• Thread Scheduling
• Synchronization
• I/O Manager
• I/O Security
• Power Management
• NT File System
• Registry
• Lightweight Proc Calls

• Windows Services
• System Bootstrap
• Traps / Ints / Exceptions
• Processes
• Adv. Virtual Memory
• Cache Manager
• User-mode heap
• Win32k.sys
• WoW64
• Common Errors

Lectures



University of Tokyo
Windows Kernel Internals
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Projects
Device Drivers and Registry Hooking

Dragos Sambotin – Polytech. Inst. of Bucharest

Using LPC to build native client/server apps

Adrian Marinescu – University of Bucharest

Threads and Fibers

Arun Kishan – Stanford University

Doing virtual memory experiments from user-mode

Arun Kishan – Stanford University



Discussion
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