
Windows User-Mode

Drivers

Alex Ionescu

Chief Architect

Recon 2012

@aionescu

alex@crowdstrike.com

Bio

■ Reverse engineered Windows kernel since 1999

■ Previously lead kernel developer for ReactOS Project

■ Interned at Apple for a few years (Core Platform Team)

■ Co-author of Windows Internals 5th and 6th Edition

■ Also instructor and contributor to Windows Internals seminar for David
Solomon Expert seminars

■ Founded Winsider Seminars & Solutions Inc., to provide services
and Windows Internals training for enterprise/government

■ Now Chief Architect at CrowdStrike

Introduction

Outline

■ User-Mode Driver Framework (UMDF)

■ Architecture

■ UMDF 1.1

■ Requesting Direct Hardware Access for Fun and Profit

■ RAM Attacks in VGA ROM BIOS

■ HAL x86 eMulator (XM)

■ Initialization

■ Exported Interfaces

■ Access Rules

■ The Attack

■ Conclusion

Motivation

■ XP

■ Published (along with many others) attacks on \Device\PhysicalMemory
which allowed installation of call gates, system call hooking through
KUSER_SHARED_DATA, and more…

■ Fixed in Server 2003

■ Server 2003

■ Published (here at REcon) a bug in NTVDM VGA Frame Buffer mapping
which allowed editing of arbitrary RAM (including kernel-mapped regions)

■ Fixed in Vista

■ Vista/Windows 7

■ Published (at SyScan) issues in ACPI Override Tables and Watchdog Timer
which allowed editing of arbitrary RAM (including kernel-mapped regions)

■ Windows 8: UMDF 1.11 Allows access to RAM. One more attack?

Recommended Reading

■ UMDF Guide (http://msdn.microsoft.com/en-
us/library/windows/hardware/gg463294.aspx) -- Dev Center -
Hardware > Docs > Drivers > Windows Driver Development >
Windows Driver Frameworks > User-Mode Driver Framework

■ IDE Port I/O (http://wiki.osdev.org/IDE)

■ Vmware High-Bandwidth Backdoor ROM Overwrite Privilege
Elevation (http://packetstormsecurity.org/files/111404/VMware-
High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-
Elevation.html)

http://msdn.microsoft.com/en-us/library/windows/hardware/gg463294.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/gg463294.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/gg463294.aspx
http://wiki.osdev.org/IDE
http://wiki.osdev.org/IDE
http://wiki.osdev.org/IDE
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html

User-Mode Driver Framework (UMDF)

UMDF Introduction

■ Part of the Windows Driver Foundation (WDF)

■ Based on KMDF (Kernel-Mode Driver Framework)

■ First released in Windows Vista, backported to Windows XP

■ KMDF backported all the way to Windows 2000!

■ Designed for devices connected across a protocol bus (USB, 1394)

■ Portable storage devices, cell phones, MP3 players

■ Secondary displays over USB (such as Windows SideShow)

■ USB bulk devices

■ Touchscreens, etc…

■ No interrupt support, and no access to hardware

■ Severely limits many other classes of devices

■ Drivers are not subject to Code Integrity/Kernel Mode Code Signing

UMDF Architecture

Driver

Manager

Windows Kernel

Kernel Mode

User Mode

Provided by :

Microsoft

ISV

IHV

Reflector

(Filter)

Kernel - mode

Driver

Kernel - mode

Driver

Device Stack

Reflector

(Filter)

Device Stack

Applications (s)

Win 32 API

Host Process

User - mode

Driver

Framework

Run - time

Environment

Host Process

User - mode

Driver

Framework

Run - time

Environment

Kernel - mode

Driver

Copyright © Microsoft, taken from MSDN

Behavior of a UMDF Driver

■ Runs inside a Driver Hosting Process

■ WUDFHost.exe

■ Uses APIs from the UMDF Framework and Run-Time Environment

■ WUDFx.dll

■ WUDFPlatform.dll

■ Managed by the UMDF Driver Manager running inside a Service

■ WUDFsvc.dll [Svchost.exe]

■ Communicates with the kernel through…

■ ALPC

■ IOCTLs

■ … to the UMDF Redirector

■ WDFRd.sys

UMDF 1.11

■ Adds many new features to the framework, most importantly (for our
purposes):

■ The ability to handle interrupts in user-mode, both line-based (both
level and edge triggered) and message-signaled

■ The ability to map device registers in user-mode and access them
directly

■ I/O ports are accessed through a system call

■ Memory-mapped I/O registers are accessed through a system call, but can be
overridden to map the memory in user-mode directly!

■ At SyScan, using similar access to MMIO registers by pretending to
be a “Watchdog Timer”, was able to obtain Ring 0 persistence and
code execution

Enabling Access to Hardware

■ To get access to device registers, as well as to bypass the double-
mapping and validation that is usually enabled by default, .INF file
must contain:

■ [MyDevice_Install.NT.Wdf]
UmdfDirectHarwareAccess=AllowDirectHardwareAccess
UmdfRegisterAccessMode=RegisterAccessUsingUserModeMapping

■ At this point, IWDFDevice3::MapIoSpace can be used

■ Check is done in user-mode, so malicious driver could bypass security by
performing ALPC call directly to the WDF Reflector or by flipping internal bit on

■ Wrote a small driver and attempted to replicate the SyScan ACPI
attack, using the HAL Heap function table as a target

■ However, was unable to map the required memory regions (was not
sure why at the time), so spent time looking for other regions…

Memory Mapping Attempts

■ Spent a few days attempting to map interesting regions of
memory…

■ Tried almost all kernel/HAL/driver addresses -> FAIL

■ Tried low 1MB of memory -> FAIL

■ Tried framebuffer -> FAIL

■ Tried other device RAM/registers -> FAIL

■ Finally decided to debug the failure

■ User-mode code in WUDFX.DLL (The Framework Library) ends up in
CWdfCmResourceList::ValidateRegisterPhysicalAddressRange which
checks if the device has any assigned registers

■ Patched code in memory to avoid checks, ALPC call got to the kernel!

■ Kernel FAILed too 

■ WUDFRD.SYS RdCmResources::MapIoSpaceWorker has the same check

Driver Resource Allocation

■ In the Windows I/O and PnP world, devices must request
resources, and then go through a resource arbitration, translation,
and assignment state machine

■ Kernel ensures that all devices get the resources they requested, if
possible

■ If not, kernel attempts to rebalance/arbitrate resources in order to make
space

■ Most devices have “alternate” requirements as well, and some even have
default states without any requirements

■ If all attempts fail, then the device does not receive resources and will fail to
load

■ Device Manager shows exclamation mark

■ Our driver is a software driver – no resources are assigned to it 

Bypassing or Forcing Resource Allocation

■ As always, there is always some compatibility hack in Windows
that gets you where you want to go…

■ .INF Files can have a [LogConf] directive:
■ “A LogConfig directive references one or more INF-writer-defined sections, each of which specifies a

logical configuration of hardware resources − the interrupt request lines, memory ranges, I/O ports,
and DMA channels that can be used by the device. Each log-config-section specifies an alternative
set of bus-relative hardware resources that can be used by the device”

■ Specify MemConfig=YYYYYYYY@XXXXXXXX-ZZZZZZZZ

■ Where Y is length, X and Z are ranges to try finding the required length from

■ Specify ConfigPriority=FORCECONFIG

■ Forces PnP manager to try assigning this configuration no matter what

■ Sounds exactly like what we need – let’s just hope the setting is
honored even for UMDF drivers

Results

■ Windows did honor the setting…

■ But refused to load the driver to a resource conflict

■ Went back and tried different address ranges -> FAIL

■ Finally tried MemConfig=1000@0-0xFFFFFFFF

■ The driver loaded!

■ What resource did we get?

■ 0xC0000 (aka Video ROM BIOS)

■ Tried bumping up MemConfig to avoid this range -> FAIL

■ Out of the entire 4GB RAM address space, this was the only page Windows
let the UMDF driver have

■ “Now what the * am I supposed to do with this?”

RAM Attacks in VGA ROM BIOS

What can we do with RAM Access?

■ Find out where kernel memory is mapped, and patch code

■ Subject to PatchGuard on 64-bit

■ Find out where kernel objects are mapped
(NtQuerySystemInformation or Win32k.sys) and patch those

■ One-bit in tagWND structure allows Ring 0 execution of arbitrary user-code
on systems without SMEP enabled

■ Etc…

■ How do we translate to RAM?

■ In some cases, can leverage KSEG0 legacy mapping

■ i.e.: 0x80YYYYYY is 0xYYYYYY in RAM

■ Better approach: use undocumented SuperFetch API to do virtual->physical
translation

■ Used by MemInfo and SysInternals RAMMap

Requesting RAM

■ Create FX Device Object with
IWDFDriver->CreateDevice

■ Query IWDFDevice3 out of it
with QueryInterface and the
right IID

■ Setup the register address in a
PHYSICAL_ADDRESS
structure

■ Use MapIoSpace from
IWDFDevice3 to obtain pseudo
base address in user-mode.

■ GetHardwareRegisterMapped
Address returns “real” address.

VGA ROM BIOS

■ Mapped at 0xC0000

■ JMP SHORT to INIT code

■ Magic sequence 0x55AA
followed by vendor strings

■ Registers Interrupt 10h in
real-mode IVT

■ Source code of vgabios used
by most open source VM
products:

■ http://cvs.savannah.gnu.org/view
vc/vgabios/vgabios.c?root=vgabi
os&view=markup

http://cvs.savannah.gnu.org/viewvc/vgabios/vgabios.c?root=vgabios&view=markup
http://cvs.savannah.gnu.org/viewvc/vgabios/vgabios.c?root=vgabios&view=markup
http://cvs.savannah.gnu.org/viewvc/vgabios/vgabios.c?root=vgabios&view=markup

Attacking the VGA ROM BIOS

■ Without access to IVT, how do we
find where the INT10 handler is?

■ One possibility:

■ Map the entire ROM

■ Scan for instruction sequence that is
setting the IVT entry

■ VGA ROM BIOS is running on segment
0xC000:0000

■ But IVT is at 0x0000:0000

■ Which means that DS (Data Segment)
must be switched by the code in order to
access the IVT!

■ Here’s the VGA ROM BIOS on my
machine…

Triggering the Malicious Code

■ VGA ROM BIOS executes in Windows when

■ Resolution is switched with a VGA video card driver that uses Video Port’s
INT10 interface

■ Usually only the Standard VGA Driver (Device Manager->Right click on Video Adapter-
>Disable)

■ Resolution is switched to full-screen mode in 16-bit application

■ But only allowed if Standard VGA Driver is running

■ The kernel crashes and causes a BSOD

■ But code execution now requires persistence – no way to “undo” the BSOD

■ Shutdown command is issued and the “It is now safe to Power Off your
computer” is displayed (DontPowerOffAfterShutdown set in Registry)

■ Shutdown command is issued for a hibernate (to display hibernate UI)

■ How is this code “executed”?

Real-Mode Code Execution on Windows

■ Before Vista, Windows uses Virtual 8086 Mode to execute ROM
code

■ A few bugs here over the years (Derek Soeder, Tavis Ormandy, myself)

■ nt!Ke386CallBios is used

■ “NTOSKRNL issues an INT 10h from a proper VDM with no interesting
kernel code targets, but the VDM TIB is accessible to V86-mode code (at
address 0x12000). The malicious INT 10h handler can modify the kernel
stack pointer stored in 'CONTEXT.Esi', just as described in Tavis Ormandy's
CVE-2010-0232 advisory […] in order to hijack execution after the cleanup
code at NT!Ki386BiosCallReturnAddress completes.”

■ Windows Vista and Windows 7 no longer use V8086 Mode unless
HKLM\System\CurrentControlSet\Control\GraphicsDrivers\DisableE
mulator key is set

■ hal!x86CallBios is used (TBD)

■ Windows 8 always uses hal!x86CallBios

HAL x86 eMulator (XM)

XM Overview

■ Originally implemented in MIPS, PPC, ALPHA HAL

■ Designed to support PC Video Card ROMs without vendor support

■ Emulates x86 Real Mode

■ Instruction-level emulator

■ Support for 32-bit addressing and operands

■ Support for 486 instructions: BWAP, XADD, XMPXCHG

■ Support for 586 instruction: RDTSC

■ Provides access to 16-bit address space through segmentation,
with access to the low 1MB of memory (RAM)

■ Subject to restrictions (TBD)

■ Provides access to PCI Bus and other hardware through I/O ports

■ Subject to emulation (TBD)

XM Initialization (x86BiosInitializeBiosEx)

■ Initialized with 4 main addresses

■ “Transfer Memory”

■ Real-Mode<->Protected Mode Scratch Buffer

■ x86BiosTransferMemory

■ BIOS “IO Space Memory”

■ Base address of I/O addresses

■ x86BiosIoSpace

■ BIOS “IO Memory”

■ Base address of BIOS ROM

■ x88BiosIoMemory

■ BIOS “Frame Buffer”

■ Base address of VGA ROM

■ x86BiosFrameBuffer

XM Initialization (HalInitializeBios)

■ During kernel initialization, HalInitializeBios calls
x86BiosInitializeBiosEx

■ Creates mapping for low 1MB

■ Removes any pages that are not marked as LoaderFirmwarePermanent or
LoaderSpecialMemory by the boot loader

■ Creates mapping for 0xA0000 to 0xC0000

■ Creates mapping for 0x00000 to 0x00800

■ Copies data into low 1MB mapping, then frees this mapping

XM Memory Access Rules

■ Implemented in x86BiosTranslateAddress

■ 0x90000 – 0x9FFFF and 0xC0000 – 0xFFFFF

■ Maps to BIOS EDA (Extended Data Area) and ROM, as well as VGA BIOS ROM

■ x86BiosMemory + 16-bit offset

■ 0xA0000

■ Maps to VGA Frame Buffer

■ x86BiosFrameBuffer + 16-bit offset

■ 0x00000 – 0x00800

■ Maps to real-mode IVT (Interrupt Vector Table)

■ x86BiosLowMemory + 16-bit offset

■ 0x10000 – 0x1FFFF and 0x30000 – 0x8FFFF

■ Returns 0

■ 0x20000 – 0x2FFFF

■ Maps to scratch buffer

■ x86BiosTransferMemory + 16-bit offset (limited to x86BiosTransferLength)

XM Port Access Rules

■ Implemented in x86BiosRead/WriteIoSpace

■ 0xCF8 – 0xCFB

■ Maps to PCI Address Ports

■ Calls x86BiosRead/WritePciAddressPort, stored in XmPCIConfigAddress

■ 0xCFC – 0xCFF

■ Maps to PCI Data Ports

■ Calls x86BiosRead/WritePciDataPort->XmGet/SetPciData->KdGet/SetPciDataByOffset

■ 0x70 – 0x71

■ Maps to BIOS CMOS Ports

■ Calls x86BiosRead/WriteCmosPort, stored in XmCmosAddress

■ Remaining 64KB I/O Space

■ Direct Access to I/O Ports

Useful XM Tables

Instruction Stream Emulation Main Loop

XM Interfaces

■ Simple BIOS Call: x86BiosCall(interruptVector, biosContext)

■ Used by VideoPortInt10 (see MSDN) and HAL for Blue Screen of Death

■ Complex BIOS Call: x86BiosAllocateBuffer, x86BiosFreeBuffer,
x86BiosReadMemory, x86BiosWriteMemory

■ Used by VIDEO_PORT_INT10_INTERFACE

■ Call VideoPortQueryServices(VideoPortServicesInt10) to obtain

■ Implementations behind Int10AllocateBuffer, Int10FreeBuffer,
Int10ReadMemory, Int10WriteMemory

■ See “Int10 Functions Implemented by the Video Port Driver” (MSDN)

XM Security

■ Highly secure implementation from memory-access perspective

■ Multiple safeguards in place to ensure mapped memory is really valid
BIOS/VGA ROM code and not kernel memory or undefined regions

■ However, BIOS memory is not shadowed, instead it is mapped with
MmMapIoSpace

■ Writes will really write to BIOS memory

■ Changes to BIOS memory after HAL Initialization will be visible

■ Soft-reboot will maintain writes

■ Compare with Windows 7 NTVDM

■ BIOS memory is a read-write copy of real BIOS memory

■ Wide-open to attacks from I/O-space access perspective

■ Access to PCI devices can allow PIO NIC access, for example

■ Also enables disk access through PIO IDE interface, for example

The Attack

HOWTO

■ Write a UMDF 1.11 driver with direct hardware access enabled

■ However, only VGA ROM BIOS space seems obtainable

■ Write attack/persistence code through mapped I/O addresses

■ However, code will be emulated by XM

■ Code will only execute if XDDM/Standard VGA Driver is used

■ Standard VGA Driver is WDDM driver on Windows 8

■ Must force resolution-change or blue screen of death to achieve code
execution

■ Probably not going to work on EFI systems

■ Must “escape” XM to affect actual machine

■ Only port I/O seems likely candidate

■ Requires legacy PIO IDE or NIC programming for persistence/backdooring

■ While making sure not to affect current use of hardware by the OS!

Sounds easy and reliable… right?

■ If that sounded like it would

■ Take weeks of effort…

■ affect an increasingly smaller number of machines…

■ and require almost complete customization for a particular machine to
work…

■ That’s because Microsoft did a good job

■ Well played, well played…

Other Possibilities

■ Writes to VGA ROM BIOS should persist across soft reboots

■ On some VMs, may persist on disk as well (due to bugs)

■ At reboot, code is executed natively, no XM present

■ Greater access to memory (can corrupt BIOS, ACPI tables)

■ Exclusive use of hardware, no worries about interfering with OS operation

■ Untested, but reported by other researchers to work

■ However, this means attack is only successful after machine reboot

■ Forcing reboot could raise user suspicion -- do the attack on Patch Tuesday? 

■ Scratch buffer is initialized early on by HalInitializeBios and then
used by VideoPort

■ x86BiosAllocate/FreeBuffer don’t actually allocate/free anything!

■ Possible that some drivers depend on

■ VideoPort in Windows XP 64-bit had this issue, but the code is gone now

■ Idea is to corrupt the buffer from the attack code and attempt Ring 0 exec

Episode “8”: A New Hope?

DEMO

Conclusion

Key Takeaways

■ UMDF 1.11 vastly increases the usability of the framework and the
range of devices that can leverage it

■ Does so by adding user-mode interrupts and direct access to hardware

■ Pros:

■ Less drivers in the kernel

■ Driver bugs become privilege escalation bugs, not Ring 0 bugs

■ Easier to mitigate against

■ Driver developers can choose to impersonate callers, and can even set maximum
impersonation levels

■ Easier development, testing, debugging

■ Faster time to market for developers, faster access by users

■ Cons
■ No Code Integrity (KMCS) validation of driver code 

■ Enables one kind of highly esoteric attack

Defense-in-depth Suggestions

■ XM should make copies of BIOS/Firmware areas instead of
mapping them

■ Would preserve compatibility (unless bizarre video card wants modification
to survive across reboot?!)

■ Would prevent any kind of similar attack in the future from affecting
VM/machine after reboot, or during resolution change

■ Will become nearly moot with Windows 8 and EFI

■ XM could protect certain well-known I/O ranges or PCI devices
from being accessed by VGA ROM BIOS

■ Potentially a lot of development effort to get right, probably not needed

■ User-Mode Driver Framework should enforce KMCS in order to
prevent unsigned drivers from loading!

■ Why is PnP letting the UMDF driver map VGA ROM to begin with?

Trying out UMDF Development

■ Download WDK 8.0 and Visual Studio 2012

■ Obtain code sample (UMDF Driver Skeleton)
http://code.msdn.microsoft.com/windowshardware/SKELETON-
3a06c09e

http://code.msdn.microsoft.com/windowshardware/SKELETON-3a06c09e
http://code.msdn.microsoft.com/windowshardware/SKELETON-3a06c09e
http://code.msdn.microsoft.com/windowshardware/SKELETON-3a06c09e
http://code.msdn.microsoft.com/windowshardware/SKELETON-3a06c09e
http://code.msdn.microsoft.com/windowshardware/SKELETON-3a06c09e

QA

■ Greetz/shouts to: Matthieu Suiche, Jason Geffner, Derek Soeder,
Tarjei Mandt, Bruce Dang

