\ S

C‘r'cuud = I-r'll-fe |

Windows User-Mode
Drivers

Aléx Ib(]escu

Chief ‘Architect

\ \ \'
\ \

\ \ \
\ \

\ \

Recon 2012

@aionescu
alex@crowdstrike.com

Bio

m Reverse engineered Windows kernel since 1999
m Previously lead kernel developer for ReactOS Project

m Interned at Apple for a few years (Core Platform Team)

m Co-author of Windows Internals 5t and 6% Edition

m Also instructor and contributor to Windows Internals seminar for David
Solomon Expert seminars

m Founded Winsider Seminars & Solutions Inc., to provide services
and Windows Internals training for enterprise/government

m Now Chief Architect at CrowdStrike

Outline

m User-Mode Driver Framework (UMDF)

m Architecture
m UMDF 1.1
m Requesting Direct Hardware Access for Fun and Profit

m RAM Attacks in VGA ROM BIOS

m HAL x86 eMulator (XM)

m Initialization
m Exported Interfaces
m Access Rules

m [he Attack
m Conclusion

Motivation

m XP

m Published (along with many others) attacks on \Device\PhysicaII\/lemory
which allowed installation of call gates, system call hooking through
KUSER_SHARED DATA, and more...

m Fixed in Server 2003
m Server 2003

m Published (here at REcon) a bug in NTVDM VGA Frame Buffer mapping
which allowed editing of arbitrary RAM (including kernel-mapped regions)

m Fixed in Vista

m Vista/Windows 7

m Published (at SyScan) issues in ACPI Override Tables and Watchdog Timer
which allowed editing of arbitrary RAM (including kernel-mapped regions)

m Windows 8: UMDF 1.11 Allows access to RAM. One more attack?

Recommended Reading

m UMDF Guide (http://msdn.microsoft.com/en-
us/library/windows/hardware/gg463294.aspx)-- Dev Center -
Hardware > Docs > Drivers > Windows Driver Development >
Windows Driver Frameworks > User-Mode Driver Framework

m IDE Port I/O (http://wiki.osdev.org/IDE)

m Vmware High-Bandwidth Backdoor ROM Overwrite Privilege
Elevation (http://packetstormsecurity.org/files/111404/VMware-
High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-
Elevation.html)

http://msdn.microsoft.com/en-us/library/windows/hardware/gg463294.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/gg463294.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/gg463294.aspx
http://wiki.osdev.org/IDE
http://wiki.osdev.org/IDE
http://wiki.osdev.org/IDE
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html
http://packetstormsecurity.org/files/111404/VMware-High-Bandwidth-Backdoor-ROM-Overwrite-Privilege-Elevation.html

User-Mode Driver Framework (UMDF)

UMDF Introduction

Part of the Windows Driver Foundation (WDF)
m Based on KMDF (Kernel-Mode Driver Framework)

First released in Windows Vista, backported to Windows XP

m KMDF backported all the way to Windows 2000!

Designed for devices connected across a protocol bus (USB, 1394)
m Portable storage devices, cell phones, MP3 players

m Secondary displays over USB (such as Windows SideShow)

m USB bulk devices

m Touchscreens, etc...

No interrupt support, and no access to hardware

m Severely limits many other classes of devices

Drivers are not subject to Code Integrity/Kernel Mode Code Signing

UMDF Architecture

Host Process Driver Host Process

User-mode Manager : User-mode
Driver Driver

Framework

Framework

Run-time
Environment

Run-time
Environment

Applications(s) I

User Mode Win32 AP
Kernel Mode
Reflector . Reflector
(Filter) Windows Kernel (Filter)
Provided by
Kernel-mode Kernel-mode
. IHV Driver
. Microsoft Kernel-mode

Driver
. ISV

Copyright © Microsoft, taken from MSDN

Behavior of a UMDF Driver

m Runs inside a Driver Hosting Process
m WUDFHost.exe
m Uses APIs from the UMDF Framework and Run-Time Environment
s WUDFx.dII
m WUDFPlatform.dll
m Managed by the UMDF Driver Manager running inside a Service
m WUDFsvc.dll [Svchost.exe]
m Communicates with the kernel through...
m ALPC
m IOCTLs
m ... to the UMDF Redirector
m WDFRd.sys

UMDF 1.11

m Adds many new features to the framework, most importantly (for our
purposes).

m The ability to handle interrupts in user-mode, both line-based (both
level and edge triggered) and message-signaled

m The ability to map device registers in user-mode and access them
directly
m /O ports are accessed through a system call
m Memory-mapped I/O registers are accessed through a system call, but can be

overridden to map the memory in user-mode directly!

m At SyScan, using similar access to MMIO registers by pretending to
be a "Watchdog Timer”, was able to obtain Ring 0 persistence and
code execution

Enabling Access to Hardware

m [0 get access to device registers, as well as to bypass the double-
mapping and validation that is usually enabled by default, .INF file
must contain:

m [MyDevice Install. NT.W(df]
UmdfDirectHarwareAccess=AllowDirectHardwareAccess
UmdfRegisterAccessMode=RegisterAccessUsingUserModeMapping

m At this point, IWDFDevice3::MaploSpace can be used

m Check is done in user-mode, so malicious driver could bypass security by
performing ALPC call directly to the WDF Reflector or by flipping internal bit on

m Wrote a small driver and attempted to replicate the SyScan ACPI
attack, using the HAL Heap function table as a target

m However, was unable to map the required memory regions (was not
sure why at the time), so spent time looking for other regions...

Memory Mapping Attempts

m Spent a few days attempting to map Iinteresting regions of
memory...
m Tried almost all kernel/HAL/driver addresses -> FAIL
m Tried low 1MB of memory -> FAIL
m Tried framebuffer -> FAIL
m Tried other device RAM/registers -> FAIL

m Finally decided to debug the failure

m User-mode code in WUDFX.DLL (The Framework Library) ends up in
CWdfCmResourcelList::ValidateRegisterPhysicalAddressRange which
checks if the device has any assigned registers

m Patched code in memory to avoid checks, ALPC call got to the kernel!

m Kernel FAILed too ®
m WUDFRD.SYS RdCmResources::MaploSpaceWorker has the same check

Driver Resource Allocation

m In the Windows I/O and PnP world, devices must reguest
resources, and then go through a resource arbitration, translation,
and assignment state machine

m Kernel ensures that all devices get the resources they requested, if
possible

m If not, kernel attempts to rebalance/arbitrate resources in order to make
space

m Most devices have “alternate” requirements as well, and some even have
default states without any requirements

m If all attempts falil, then the device does not receive resources and will fail to
load
m Device Manager shows exclamation mark

m Our driver is a software driver — no resources are assigned to it ®

Bypassing or Forcing Resource Allocation

m As always, there is always some compatibility hack in Wlndows
that gets you where you want to go..
m .INF Files can have a [LogConf] dlrectlve:

m ‘A LogConfig directive references one or more INF-writer-defined sections, each of which specifies a
logical configuration of hardware resources — the interrupt request lines, memory ranges, /O ports,
and DMA channels that can be used by the device. Each log-config-section specifies an alternative
set of bus-relative hardware resources that can be used by the device”

m Specify MemConfig=YYYYYYYY@XXXXXXXX-ZZ2Z2272777

m Where Y is length, X and Z are ranges to try finding the required length from
m Specify ConfigPriority=FORCECONFIG

m Forces PnP manager to try assigning this configuration no matter what

m Sounds exactly like what we need — let’s just hope the setting is
honored even for UMDF drivers

Results

m \Windows did honor the setting...
m But refused to load the driver to a resource conflict

m Went back and tried different address ranges -> FAIL

m Finally tried MemConfig=1000@0-0xFFFFFFFEF
m The driver loaded!
m What resource did we get?
m O0XxC0000 (aka Video ROM BIOS)
m Tried bumping up MemConfig to avoid this range -> FAIL

m Out of the entire 4GB RAM address space, this was the only page Windows
let the UMDF driver have

m ‘Now what the * am | supposed to do with this?”

RAM Attacks in VGA ROM BIOS

What can we do with RAM Access?

m Find out where kernel memory is mapped, and patch code
m Subject to PatchGuard on 64-bit

m Find out where kernel objects are mapped
(NtQuerySystemInformation or Win32k.sys) and patch those

m One-bit in tagWND structure allows Ring O execution of arbitrary user-code
on systems without SMEP enabled

m Etc...

m How do we translate to RAM?
m In some cases, can leverage KSEGO legacy mapping
mi.e.. 0x80YYYYYY is OXYYYYYY in RAM

m Better approach: use undocumented SuperFetch API to do virtual->physical
translation

m Used by Meminfo and Sysinternals RAMMap

Reqguesting RAM

293 HRESULT
2941 CMyDevice::Initialize(
._in - TWDFE Driy_.rer- £ FKDr"i'-..'Er ,

m Create FX Device Object with S ——
IWDFDriver->CreateDevice Eiiatusesi

m Query IWDFDevice3 out of it iR
with Querylnterface and the
right 11D 71 e e sueryInterfoce(_uuidof (unkneun), (votd ko)

m Setup the register address in a [l
RHISICAL R
structure :

m Use MaploSpace from
IWDFDevice3 to obtain pseudo [l
base address In user-mode. i [el 308, I, (114 S

m GetHardwareRegisterMapped
Address returns “real” address.

ce-"y
Interface(__uuidof(IWDFDevice3), [(void**) &fxDevice3);

VGA ROM BIOS

m Mapped at 0OxC0000
m JMP SHORT to INIT code

m Magic sequence Ox55AA
followed by vendor strings

m Registers Interrupt 10h in
real-mode IVT

m Source code of vgabios used
by most open source VM
products:

vgabios init func:

ry init wga card
call inmit wga card

rr init basic bios wvars
call init bio=s area

$#ifdef VEE

sy init vbe functions
call vbe init

$fendif

rr o 2et intlld wect
SET INT VECTOR (Ox10, #0=xCO0OO0O0,

$ifdef CIRRUS
call cirras_init
¥endif

rr display splash screen
call display splash =creen

rr o init wideo mode and clear the
mov ax,¥0=x0003
int #0x10

#vgabios intl0 handler)

SCIreen

http://cvs.savannah.gnu.org/viewvc/vgabios/vgabios.c?root=vgabios&view=markup
http://cvs.savannah.gnu.org/viewvc/vgabios/vgabios.c?root=vgabios&view=markup
http://cvs.savannah.gnu.org/viewvc/vgabios/vgabios.c?root=vgabios&view=markup

Attacking the VGA ROM BIOS

m Without access to IVT, how do we
find where the INT10 handler 1s?
m One possibility:
m Map the entire ROM

m Scan for instruction sequence that is
setting the IVT entry

000=z00f3 31z=0
= VGA ROM BIOS is running on segment (IISGrERTETT
0xC000:0000
m But IVT is at 0x0000:0000 0000100 &
= Which means that DS (Data Segment) [T

must be switched by the code in order to
access the IVT!

m Here's the VGA ROM BIOS on my
machine...

Q0EC

3535

3581

ax,ax
d=. ax
ax.110h
word ptr

d=:[00000040h]. ax

tr d=: [00000042h] . ax

Triggering the Malicious Code

m VGA ROM BIOS executes in Windows when

m Resolution is switched with a VGA video card driver that uses Video Port’s
INT10 Interface

m Usually only the Standard VGA Driver (Device Manager->Right click on Video Adapter-
>Disable)

m Resolution is switched to full-screen mode in 16-bit application
m But only allowed if Standard VGA Driver Is running

m The kernel crashes and causes a BSOD
m But code execution now requires persistence — no way to “undo” the BSOD

m Shutdown command is issued and the “It is now safe to Power Off your
computer” is displayed (DontPowerOffAfterShutdown set in Registry)

m Shutdown command is issued for a hibernate (to display hibernate Ul)
m How is this code “executed™?

Real-Mode Code Execution on Windows

m Before Vista, Windows uses Virtual 8086 Mode to execute ROM
code

m A few bugs here over the years (Derek Soeder, Tavis Ormandy, myself)
m nt'Ke386CallBios is used

m ‘NTOSKRNL issues an INT 10h from a proper VDM with no interesting
kernel code targets, but the VDM TIB is accessible to VV86-mode code (at
address 0x12000). The malicious INT 10h handler can modify the kernel
stack pointer stored in 'CONTEXT.EsI', Just as described in Tavis Ormandy's
CVE-2010-0232 advisory [...] in order to hijack execution after the cleanup
code at NT!Ki386BiosCallReturnAddress completes.”

m Windows Vista and Windows 7 no longer use V8086 Mode unless
HKLM\System\CurrentControlSet\Control\GraphicsDrivers\DisableE
mulator key Is set

m hal!lx86CallBios is used (TBD)
m Windows 8 always uses hal!x86CallBios

HAL x86 eMulator (XM)

XM Overview

m Originally implemented in MIPS, PPC, ALPHA HAL
m Designed to support PC Video Card ROMs without vendor support

m Emulates x86 Real Mode
m Instruction-level emulator
m Support for 32-bit addressing and operands
m Support for 486 instructions: BWAP, XADD, XMPXCHG
m Support for 586 instruction: RDTSC
m Provides access to 16-bit address space through segmentation,
with access to the low 1MB of memory (RAM)
m Subject to restrictions (TBD)

m Provides access to PCIl Bus and other hardware through 1/O ports
m Subject to emulation (TBD)

XM Initialization (x86BiosInitializeBiosEX)

m Initialized with 4 main addresses

m “Transfer Memory”

m Real-Mode<->Protected Mode Scratch Buffer
m x86BiosTransferMemory

m BIOS “|O Space Memory”

m Base address of I/O addresses
m x86BiosloSpace

m BIOS “10 Memory”

m Base address of BIOS ROM
m X88BiosloMemory

m BIOS “Frame Buffer”

m Base address of VGA ROM
m X86BiosFrameBuffer

XM Initialization (HallnitializeBios)

m During kernel initialization, HallnitializeBios calls
x86BioslnitializeBiosEX

m Creates mapping for low 1MB

m Removes any pages that are not marked as LoaderFirmwarePermanent or
LoaderSpecialMemory by the boot loader

m Creates mapping for 0OXxA0000 to OxC0000

m Creates mapping for 0x00000 to 0x00800
m Copies data into low 1MB mapping, then frees this mapping

XM Memory Access Rules

m Implemented in x86BlosTranslateAddress

m 0x90000 — OX9FFFF and OxC0000 — OxFFFFE |
m Maps to BIOS EDA (Extended Data Area) and ROM, as well as VGA BIOS ROM /
m x86BiosMemory + 16-bit offset

m OXAO0000
m Maps to VGA Frame Buffer
m X86BiosFrameBuffer + 16-bit offset

m 0x00000 — 0x00800

m Maps to real-mode IVT (Interrupt Vector Table)
m x86BiosLowMemory + 16-bit offset

m 0x10000 — Ox1FFFF and 0x30000 — Ox8FFFF
m Returns O

m 0x20000 — OxX2FFFF

m Maps to scratch buffer
m x86BiosTransferMemory + 16-bit offset (limited to x86BiosTransferLength)

XM Port Access Rules

m Implemented in x86BiosRead/WriteloSpace

m OXCF8 — OxCFB

m Maps to PCI Address Ports

m Calls x86BiosRead/WritePciAddressPort, stored in XmPCIlConfigAddress
m OXCFC — OXCFF

m Maps to PCI Data Ports

m Calls x86BiosRead/WritePciDataPort->XmGet/SetPciData->KdGet/SetPciDataByOffset
m Ox70 — Ox71

m Maps to BIOS CMOS Ports

m Calls x86BiosRead/WriteCmosPort, stored in XmCmosAddress
m Remaining 64KB 1/O Space

m Direct Access to I/O Ports

38811948 _¥mdperandDecodeTable dd offset _¥mPushPopSegment@d
29811943

ext: 238811948 3 ¥mPushPopSegment (x)
Se l I a eS ext:8881194C offset _¥mPushPopSegmenti@d ; xmPushPopSeg (x)
ext: 38811958 offset _¥mPushPopSegmenti@d ; xmPushPopSegment(:

28811954 offset _¥mPushPopSegmenti@d ; XmPushPops
38811953 offset _¥mPushPopSegmenti@d ; xm
3881195 offset _¥mPushPopSegmenti@d ; xm
28811968 offset _¥mLoadSegmenti@gd ; Xm
38811964 offset _¥mLoadSegmentigd ;
38811963 offset _¥mLoadSegmentigd
2881196C offset _¥mLoadSegmentigd
38811978 offset _¥mLoadSegmentigd
38811974 offset _¥mLoadSegmenti@d ; x
22011702 _¥mopcodeFunctionTable dd offset _¥mAaa0p@d ext: 28011978 offset memuplEeneral@a X
38811703 ext:8801197C offset Xmﬁraupllmmedlate@4
28811703 x) 38811938 offset _XmGroup2Byl@d ; 3
28811700 offset _X¥mAadopga 28811984 offset _¥mGroup2ByCLEd ; X
2P8117ER offset _¥mAamop@d 808811988 offset _¥mGroup2ByBytegd ;
200117EA offset _¥maasop@a 3881198C offset _XmGroup3General@d ; x
200117ES offset _meaaDp@d 28811998 offset _¥mGroupdSeeneral@gd ; X
I = 2308811994 offset _¥mGroupdsGeneral@d ;
chll’fL offset _XmDasOp@d 36811993 offset _xmGroup7General@d ; x
280117F8 offset _¥mAddopg@d 26@1199C offset _xmGroupgeitoffset@a ;
300117F4 offset _XmOrop@a 808119480 offset Xmﬂpcadeﬂegister@4
9ee117F3 offset _¥mAdcOpmEad

38811944 offset _¥mLonglumpgd ;

288117FC offset _¥mSbbOpaa 28011948 offset _xmshortlumpga ;
20611508 offset _x¥mandop@a 288119AC offset _¥mSetccByte@d ;
20011564 offset _xmCmpopga EffllﬂEf offset _Xmﬂccumlmm?dlate@d
29811908 offset _Xmyorop@a SffllﬂE' offset _¥maccumRegisterga i)
28e1188C offset _XmCmpOp@a 28211988 offset _anaveGener§1@ﬂ Hl

. - - 2388119BC offset _¥mMoveImmediate@d ; X
EffllSlf offset _XmRolOp@s 28811900 offset _xmMoveregImmediategs ; :
88811314 offset _XmRoropgd 38811904 offset _xmSegmentOffset@d : msegmen
22811318 offset _MmRclop@a 388119C8 offset _XmMoveSegmenti@d ; md
2681181C offset _¥mRcropad 18881190 offset _xmMmovexxGeneralga ;
28811328 offset _xmshlopga
20011324 offset _xmShrop@a

28211908 offset _¥mFlagsRegister@d ; X g
38811904 offset _¥mPushImmediate@d ; XmPushI
90811528 offset _xmIllopg@a 3 i ext: 88811908 offset _xmPopeeneral@d ; xmpPo
2p01182C offset _¥msaropgs AmSaron ext:3881190C gﬁiseﬁ _Xmlﬁullmmediatsﬂgﬂ, X
e - ~) 388119E8 set _¥mStringoperands
z:_:_ﬂz;‘, ﬁ:i —:Jm“ﬂigﬁ 368119E4 offset mEffectiveoffsetia ;
i - e 288119E3 offset _xmImmediateJump@s ; X
20211333 offset _XmNotOp@s AHING A ext : 888119EC offset _xmImmediateEnter@d ; »
2881183C offset _xmNegOp@a ¥mNegop(x) ext:888119F8 offset _xmGeneralBitoffset@a ;
182811848 offset _MmMulopgd () ext: 888119F4 offset _xmshiftDouble@d : o sl
28811344 offset _¥mImulxopEa XmImulxop(x) ext:3008119F3 offset _meurtlmmediateﬂd H
388119FC offset _XmPortDx@a x"F:'t“ (
28211488 offset _¥mBitScanGeneralgd ;
208811484 offset XmEyteImmedlate@4
38811483 offset _xmXlatOpcodegd ;
28al1a8C offset XmGeneralReglster@d
88811418 offset _¥mNoOperands@d ;
38811414 offset _¥mOpcodeEscapefd ;
22811418 offset _¥mPrefixOpcodeg@a ;
288114 1L align 1gh

b

B v b b ad e

X
Xn
Xm
Xm
Xm
Xm
Xm
Xm

o

Instruction Stream Emulation Main Loop

-»Eax;
-»ECx;
-»Edx;
-»Ebx;
-»Ebp;
-»Esi;
= -»Edi;
segmentRegister[3] -»5egDs;
SegmentRegister[e] -35epES}
t.SegmentRegister[1] H
¥mContext.anonymous_1.Eip = H
= _setjmp3(&XmContext. JumpBuffer[4], @);
xmstatus = H
while { !)
i
smContext.Datasegment = 3;
LODWORD(¥mContext.u. ControlInformation}

smContext.opcodeControlTable = (POPC 0L YEXmOpcodeControlTablel;
do

r
L

= ¥meetCodeByte(&xmContext);
¥mContext.CurrentOpcode = H
= ¥mCont OpcodeControlTable[1;
¥mContext.OpcodeControl H
¥mContext.FunctionIndex FunctionIndex;
:

while { VmOperandDecodeTable[¥XmContext.OpcodeControl. FormatType] (&¥mContext))
= ¥mStatus;

-»Eax = ¥mContext.Gpr[e].Exx;
-»Ecx
-»Edx
-»Ebx
-»Ebp
-»Es1
-»Edi

XM Interfaces

m Simple BIOS Call: x86BiosCall(interruptVector, biosContext)
m Used by VideoPortInt10 (see MSDN) and HAL for Blue ScreenofDeath

_¥MBe_CONTEXT struc
_Eax ?
_Ecx
_Edx
_Ebx
_Ebp

NTSTATUS _ stdcall HalpBiosDisplayReset(}

_Es1

_Edi

5eghs

S5egEs W c
_XMB&_CONTEXT end

return x3cBioscall(exieu, &

m Complex BIOS Call: x86BiosAllocateBuffer, x86B|osFreeBuffer
x86BiosReadMemory, x86BiosWriteMemaory

m Used by VIDEO PORT INT10 INTERFACE
m Call VideoPortQueryServices(VideoPortServicesint10) to obtain

m Implementations behind Int10AllocateBuffer, Int10FreeBuffer,
Intl0ReadMemory, Int10WriteMemory

m See “Int10 Functions Implemented by the Video Port Driver” (MSDN)

XM Security

m Highly secure implementation from memory-access perspective

m Multiple safeguards in place to ensure mapped memory: is really valid /
BIOS/VGA ROM code and not kernel memory or undefined regions

m However, BIOS memory is not shadowed, instead it Is mapped with
MmMaploSpace
m Writes will really write to BIOS memory
m Changes to BIOS memory after HAL Initialization will be visible
m Soft-reboot will maintain writes

m Compare with Windows 7 NTVDM
m BIOS memory is a read-write copy of real BIOS memory

m Wide-open to attacks from I/O-space access perspective
m Access to PCI devices can allow PIO NIC access, for example
m Also enables disk access through PIO IDE interface, for example

HOWTO

m Write a UMDF 1.11 driver with direct hardware access enabled
m However, only VGA ROM BIOS space seems obtainable

m Write attack/persistence code through mapped I/O addresses

m However, code will be emulated by XM

m Code will only execute if XDDM/Standard VGA Driver is used
m Standard VGA Driver is WDDM driver on Windows 8

m Must force resolution-change or blue screen of death to achieve code
execution

m Probably not going to work on EFI systems
m Must “escape” XM to affect actual machine

m Only port I/O seems likely candidate

m Requires legacy PIO IDE or NIC programming for persistence/backdooring
m While making sure not to affect current use of hardware by the OS!

Sounds easy and reliable... right?

m If that sounded like it would
m Take weeks of effort...
m affect an increasingly smaller number of machines...

m and require almost complete customization for a particular machine to
work...

m [hat's because Microsoft did a good job
m Well played, well played...

Other Possibilities

m Writes to VGA ROM BIOS should persist across soft reboots

m On some VMs, may persist on disk as well (due to bugs)

m At reboot, code is executed natively, no XM present
m Greater access to memory (can corrupt BIOS, ACPI tables)
m EXxclusive use of hardware, no worries about interfering with OS operation

m Untested, but reported by other researchers to work

m However, this means attack is only successful after machine reboot
m Forcing reboot could raise user suspicion -- do the attack on Patch Tuesday? ©

m Scratch buffer is initialized early on by HallnitializeBios and then
used by VideoPort

m x86BiosAllocate/FreeBuffer don’t actually allocate/free anything!

m Possible that some drivers depend on
m VideoPort in Windows XP 64-bit had this issue, but the code is gone now

m Ildea is to corrupt the buffer from the attack code and attempt Ring O exec

Episode “8": A New Hope?

8d5a727a
8d5a727c
8d5a727e
8d5a7280
8d5a7285
8d5a7287
8d5a728a
8d5a728b
8d5a728d

8ads
84db
7466

66837dd8af

755F
8d45d8
50
6ale

c745d803410000

esi {hal!x86BiosCall (817c65d2)

bl,al

bl,bl

BasicDisplay!BiosSetDisplayMode+@xae (8d5a72e6)
word ptr [ebp-28h],4Fh
BasicDisplay!BiosSetDisplayMode+@xae (8d5a72e6)
eax, [ebp-28h]

eax

18h

dword ptr [ebp-28h],4F03h

mov
test
je
cmp
Jjne
lea
push
push
mov

Command - Kernel 'com:port="\\pipehcom_1, baud=115200, pipe reconnect’ - WinDbg:6.2.5400.0 AMDE4
BasicDisplay!BiosSetDisplayMode+0x40:

8d5a7278
1: kd> k
ChildEBP
addatst4
ad4ate6le
ad4atesc
ad4ate7o
ad4at690
addatioc
ad4at8a0
ad4aft8fs
ad4ataac
ad4atboo
addaftc3g
addatc7o
PRRRRRBE

ffde

RetAddr
8d5a4db12
8d5a48e5
8d5a3970
8d4740ch
8d473832
8d4750f0
8d476bd7
8d48136c¢
9bf3d146
9bf3c653
81464275
8132fdd1
aLal% 11155]%)

call esi

BasicDisplay!BiosSetDisplayMode+@x40
BasicDisplay!BASIC DISPLAY DRIVER::SetSourceModeAndPath+@xb8
BasicDisplay!BASIC DISPLAY DRIVER::CommitVidPn+@x279
BasicDisplay!BddDdiCommitVidPn+@x42
dxgkrnl!ﬂDAPTER_DISPLAY::DdiEommitVidPn+Bx44
dxgkrnl!DmmCommitVidPn+0x25c

dxgkrnl ! ADAPTER_DISPLAY: :CommitVidPn+0x227
dxgkrnl!CommitVidPn+9x48

dxgkrnl!DxgkCddEnable+0xae3
cdd!CreateAndEnableDevice+0x18c
cdd!PresentWorkerThread+9x851
nt!PspSystemThreadStartup+0x4a
nt!KiThreadStartup+8x19

Key Takeaways

m UMDF 1.11 vastly increases the usability of the framework and the
range of devices that can leverage it

m Does so by adding user-mode interrupts and direct access to hardware

m Pros:
m Less drivers in the kernel

m Driver bugs become privilege escalation bugs, not Ring 0 bugs
m Easier to mitigate against

m Driver developers can choose to impersonate callers, and can even set maximum
Impersonation levels

m Easier development, testing, debugging
m Faster time to market for developers, faster access by users
m Cons
m No Code Integrity (KMCS) validation of driver code ®
m Enables one kind of highly esoteric attack

Defense-in-depth Suggestions

m XM should make copies of BIOS/Firmware areas instead of
mapping them
m Would preserve compatibility (unless bizarre video card wants modification
to survive across reboot?!)

m Would prevent any kind of similar attack in the future from affecting
VM/machine after reboot, or during resolution change

m Will become nearly moot with Windows 8 and EFI

m XM could protect certain well-known I/O ranges or PCI devices
from being accessed by VGA ROM BIOS

m Potentially a lot of development effort to get right, probably not needed

m User-Mode Driver Framework should enforce KMCS In order to
prevent unsigned drivers from loading!

m Why is PnP letting the UMDF driver map VGA ROM to begin with?

Trying out UMDF Development

m Download WDK 8.0 and Visual Studio 2012

m Obtain code sample (UMDF Driver Skeleton)
http://code.msdn.microsoft. com/W|ndowshardware/SKELETON—
3a06c09e

http://code.msdn.microsoft.com/windowshardware/SKELETON-3a06c09e
http://code.msdn.microsoft.com/windowshardware/SKELETON-3a06c09e
http://code.msdn.microsoft.com/windowshardware/SKELETON-3a06c09e
http://code.msdn.microsoft.com/windowshardware/SKELETON-3a06c09e
http://code.msdn.microsoft.com/windowshardware/SKELETON-3a06c09e

QA

m Greetz/shouts to: Matthieu Suiche, Jason Geffner, Derek Soeder
Tarjel Mandt, Bruce Dang

, .

— : N ~ .
('//I)\.. / agihagih {
066660 e

ooitjw.
ooooooqu
roococo
ooaoooecpu;
.ooooeoooon¢;
0000020006000 (@
.eoc 092009!
? b7

| g

Q J : » ,.
; N \ . - 23
L ¥ " i b

 J
/’g&’

/.

