
Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Windows and Some Differences

from Linux

Brian Railing

1st Year PhD Student

Previously of

Windows Server Performance Team

2

Copyright Notice
© 2000-2005 David A. Solomon and Mark Russinovich

These materials are part of the Windows Operating

System Internals Curriculum Development Kit,

developed by David A. Solomon and Mark E.

Russinovich with Andreas Polze

Microsoft has licensed these materials from David

Solomon Expert Seminars, Inc. for distribution to

academic organizations solely for use in academic

environments (and not for commercial use)

3

Further Notices

Original slide deck has modified to reflect updates to

Windows since 2005

Mark Russinovich’s 2009 TechEd Talk WCL402: “Windows 7

and Windows Server 2008 R2 Kernel Changes”

Further updates to reflect particular APIs of interest

Being a performance engineer, I only know certain

components in great detail

Storage / Networking Stack

Kernel Debugging / Performance Tools

“Fast” Synchronization

4

Final Notices

This slide deck is

To provide some specific details for developing applications

and drivers with Windows

To see some of the implementation decisions and consider

trade-offs

To show that Windows, Linux, etc make many similar design

choices

This slide deck is not

Meant to judge one between OSes

5

Takeaways

This slide deck is

Long

What should you look for?

IRQLs

Schedulers are similar. Priorities are different.

Paged vs NonPaged Memory

Wait for objects

6

Outline

Overview of Windows

IO Processing

Thread Scheduling

Synchronization

Memory

Performance and Debugging

Where to go from here

7

A Rose by any other Name

Most Operating System decisions are defined by

fundamentals of computer science, performance

considerations, etc

Virtual Memory Abstraction

Monolithic Kernels

So many of the OS internals reflect two different

implementations of similar approaches

read() vs ReadFile()

DLLs vs SharedObjects

8

Windows Architecture

HAL (Hardware Abstraction Layer):

support for x86 (initial), MIPS (initial), Alpha AXP, PowerPC
(NT 3.51), Itanium (Windows XP/2003)

Machine-specific functions located in HAL

Additional functionality found in pci.sys, acpi.sys, etc

At present, two main architectures: x64 and IA64

Allows a degree of focus in implementation

But, cedes certain fields to other OSes

9

Windows Kernel

Windows is a monolithic but modular system

No protection among pieces of kernel code and drivers

Support for Modularity is somewhat weak:

Windows Drivers allow for dynamic extension of kernel
functionality

Windows XP Embedded has special tools / packaging rules that
allow coarse-grained configuration of the OS

Windows Drivers are dynamically loadable kernel modules

Significant amount of code run as drivers (including network
stacks such as TCP/IP and many services)

Built independently from the kernel

Can be loaded on-demand

Dependencies among drivers can be specified

10

Comparing Layering, APIs, Complexity

Windows

Kernel exports about 250 system calls (accessed via ntdll.dll)

Layered Windows/POSIX subsystems

Rich Windows API (17 500 functions on top of native APIs)

Linux

Kernel supports about 200 different system calls

Layered BSD, Unix Sys V, POSIX shared system libraries

Compact APIs (1742 functions in Single Unix Specification

Version 3; not including X Window APIs)

11

Outline

Overview of Windows

IO Processing

Thread Scheduling

Synchronization

Memory

Performance and Debugging

Where to go from here

12

I/O Processing

Environment

subsystem or

DLL

Services

I/O manager

IRP header

WRITE

parameters
File

object

Device

object

Driver

object

IRP stack

location

Dispatch

routine(s)
Start I/O ISR

DPC

routine

Device Driver

1)An application writes

a file to the printer,

passing a handle to

the file object

2)The I/O manager

creates an IRP and

initializes first stack

location

3)The I/O manager uses

the driver object to locate

the WRITE dispatch

routine and calls it,

passing the IRP

User mode

Kernel mode

13

IRP data

IRP consists of two parts:

Fixed portion (header):

Type and size of the request

Whether request is synchronous or asynchronous

Pointer to buffer for buffered I/O

State information (changes with progress of the request)

One or more stack locations:

Function code

Function-specific parameters

Pointer to caller‘s file object

While active, IRPs are stored in a thread-specific queue

I/O system may free any outstanding IRPs if thread terminates

14

Completing an I/O request

Servicing an interrupt:

ISR schedules Deferred Procedure Call (DPC); dismisses int.

DPC routine starts next I/O request and completes interrupt servicing

May call completion routine of higher-level driver

I/O completion:

Record the outcome of the operation in an I/O status block

Return data to the calling thread – by queuing a kernel-mode
Asynchronous Procedure Call (APC)

APC executes in context of calling thread; copies data; frees IRP;
sets calling thread to signaled state

I/O is now considered complete; waiting threads are released

15

Flow of Interrupts

Peripheral Device

Controller

CPU Interrupt

Controller

CPU Interrupt
Service Table

0

2

3

n

16

IRQLs on 64-bit Systems

Passive/Low

APC

Dispatch/DPC

Device 1

.

.

Device n

Synch (Srv 2003)

Clock

Interprocessor Interrupt/Power

High/Profile

0

1

2

14

13

15

3

4

Passive/Low

APC

Dispatch/DPC & Synch (UP only)

Correctable Machine Check

Device 1

.

Device n

Synch (MP only)

Clock

Interprocessor Interrupt

High/Profile/Power

x64 IA64

12

17

IRQLs on 64-bit Systems

When writing kernel code, five IRQLs matter:

HIGH – Mask all interrupts

DIRQL – IRQL for a particular device

DISPATCH / DPC –

No thread scheduling

No page faults

APC – Run code in a specific thread’s context

PASSIVE – Default

18

Flow of Interrupts

Peripheral Device

Controller

CPU Interrupt

Controller

CPU Interrupt
Service Table

0

2

3

n

ISR Address

Spin Lock

Dispatch

Code

Interrupt

Object

Read from device

Acknowledge-

Interrupt

Request DPC

Driver ISR

Raise IRQL

Lower IRQL

KiInterruptDispatch

Grab Spinlock

Drop Spinlock

19

DPC

Delivering a DPC

DPC routines can call kernel functions

but can‘t call system services, generate

page faults, or create or wait on objects

DPC routines can‘t

assume what

process address

space is currently

mapped

Interrupt

dispatch table

high

Power failure

Dispatch/DPC

APC

Low

DPC

1. Timer expires, kernel

queues DPC that will

release all waiting threads

Kernel requests SW int.

DPCDPC

DPC queue

2. DPC interrupt occurs

when IRQL drops below

dispatch/DPC level

dispatcher

3. After DPC interrupt,

control transfers to

thread dispatcher

4. Dispatcher executes each DPC

routine in DPC queue

20

I/O Processing

Linux 2.2 had the notion of bottom halves (BH) for low-

priority interrupt processing

Fixed number of BHs

Only one BH of a given type could be active on a SMP

Linux 2.4 introduced tasklets, which are non-preemptible

procedures called with interrupts enabled

Tasklets are the equivalent of Windows Deferred

Procedure Calls (DPCs)

21

Outline

Overview of Windows

IO Processing

Thread Scheduling

Synchronization

Memory

Performance and Debugging

Where to go from here

22

Linux Scheduling

Linux 2.6 has a revamped scheduler that’s O(1) from Ingo Molnar

that:

Calculates a task’s priority at the time it makes scheduling decision

Has per-CPU ready queues where the tasks are pre-sorted by priority

112 112

101

103

Highest-priority

Non-empty Queue

23

Scheduling

Windows NT has always had an O(1) scheduler based

on pre-sorted thread priority queues

Server 2003 introduced per-CPU ready queues

Linux load balances queues

Windows does not

Not seen as an issue in performance testing by Microsoft

Applications where it might be an issue are expected to use affinity

24

Scheduling Priorities
Windows

Two scheduling classes

“Real time” (fixed) -
priority 16-31

Dynamic - priority 1-15

Higher priorities are
favored

Priorities of dynamic
threads get boosted on
wakeups

Thread priorities are
never lowered

31

15

16

0

Fixed

Dynamic
I/O

Windows

25

Windows Scheduling Details

Most threads run in variable priority levels

Priorities 1-15;

A newly created thread starts with a base priority

Threads that complete I/O operations experience priority
boosts (but never higher than 15)

A thread’s priority will never be below base priority

The Windows API function SetThreadPriority() sets the

priority value for a specified thread

This value, together with the priority class of the thread's

process, determines the thread's base priority level

Windows will dynamically adjust priorities for non-realtime

threads

26

Process Management
Windows

Process

Address space, handle
table, statistics and at least
one thread

No inherent parent/child
relationship

Threads

Basic scheduling unit

Fibers - cooperative user-
mode threads

Win7: User-Mode
Scheduling(UMS)

User scheduled

Kernel supported

Linux

Process is called a Task

Basic Address space,

handle table, statistics

Parent/child relationship

Basic scheduling unit

Threads

No threads per-se

Tasks can act like Windows

threads by sharing handle

table, PID and address

space

PThreads – cooperative

user-mode threads

27

Scheduling Timeslices
Windows

The thread timeslice

(quantum) is 10ms-120ms

When quanta can vary,

has one of 2 values

Reentrant and

preemptible

Fixed: 120ms

20ms

Foreground: 60ms

Background

Linux

The thread quantum is

10ms-200ms

Default is 100ms

Varies across entire

range based on priority,

which is based on

interactivity level

Reentrant and
preemptible

100ms

200ms10ms

28

Outline

Overview of Windows

IO Processing

Thread Scheduling

Synchronization

Memory

Performance and Debugging

Where to go from here

29

Windows Synchronization

Two types of Synchronization:

“Fast”

Protect small amounts of data

Busy waits

“Slow”

Producer / consumer, etc

Scheduler event

Notification of system events

E.G. wait for thread to exit

30

Windows Synchronization

Uses interrupt masks to protect access to global

resources on uniprocessor systems.

Uses spinlocks on multiprocessor systems.

Provides dispatcher objects which may act as mutexes

and semaphores.

Dispatcher objects may also provide events. An event

acts much like a condition variable.

31

Queued Spinlocks

Problem: Checking status of spinlock via test-and-set

operation creates bus contention

Queued spinlocks maintain queue of waiting processors

First processor acquires lock; other processors wait on

processor-local flag

Thus, busy-wait loop requires no access to the memory bus

When releasing lock, the first processor’s flag is modified

Exactly one processor is being signaled

Pre-determined wait order

32

Other High-Perf Synchronization

Problem: If the data under synchronization is small, is

an interlocked operation sufficient or is a “lock” required

Semaphores: The count can be the data

Test and Set, Swap, etc – Exchange small sets of flags

or other simple data

How about a linked list?

Windows SLists or Interlocked Singly Linked Lists

Push Entry

Pop Entry

Flush List

33

Synchronizing Threads with

Kernel Objects

The following kernel objects can be used

to synchronize threads:

Processes

Threads

Files

Console input

File change notifications

Mutexes

Events (auto-reset + manual-reset)

Waitable timers

DWORD WaitForSingleObject(HANDLE hObject, DWORD dwTimeout);

DWORD WaitForMultipleObjects(DWORD cObjects,

LPHANDLE lpHandles, BOOL bWaitAll,

DWORD dwTimeout);

34

Wait Functions - Details

WaitForSingleObject():

hObject specifies kernel object

dwTimeout specifies wait time in msec

dwTimeout == 0 - no wait, check whether object is signaled

dwTimeout == INFINITE - wait forever

WaitForMultipleObjects():

cObjects <= MAXIMUM_WAIT_OBJECTS (64)

lpHandles - pointer to array identifying these objects

bWaitAll - whether to wait for first signaled object or all objects

Function returns index of first signaled object

Side effects:

Mutexes, auto-reset events and waitable timers will be reset to
non-signaled state after completing wait functions

35

Outline

Overview of Windows

IO Processing

Thread Scheduling

Synchronization

Memory

Performance and Debugging

Where to go from here

36

Virtual Memory Management
Windows

32-bit versions split user-
mode/kernel-mode from 2GB/2GB
to 3GB/1GB

Demand-paged virtual memory

32 or 64-bits

Copy-on-write

Shared memory

Memory mapped files

User

System

0

2GB

4GB

Linux

Splits user-mode/kernel-mode
from 1GB/3GB to 3GB/1GB

2.6 has “4/4 split” option where
kernel has its own address
space

Demand-paged virtual memory

32-bits and/or 64-bits

Copy-on-write

Shared memory

Memory mapped files

User

System

0

3GB

4GB

37

File Caching
Windows

Single global common cache

Virtual file cache

Caching is at file vs. disk block
level

Files are memory mapped into
kernel memory

Cache allows for zero-copy file
serving

File Cache

File System Driver

Disk Driver

Linux

Single global common cache

Virtual file cache

Caching is at file vs. disk block
level

Files are memory mapped into
kernel memory

Cache allows for zero-copy file
serving

File Cache

File System Driver

Disk Driver

38

Kernel Memory Allocation

Pool Allocations

ExAllocatePoolWithTag(type, size, tag)

Paged vs NonPaged

Size in bytes

Tag identifies allocations for debugging purposes

Allocations for device operations

MmAllocateNonCachedMemory,

MmAllocateContiguousMemorySpecifyCache,

AllocateCommonBuffer

http://msdn.microsoft.com/en-us/library/aa489507.aspx

http://msdn.microsoft.com/en-us/library/ms802009.aspx
http://msdn.microsoft.com/en-us/library/ms802003.aspx
http://msdn.microsoft.com/en-us/library/ms806255.aspx
http://msdn.microsoft.com/en-us/library/aa489507.aspx

39

Kernel Memory Allocation cont.

When drivers need to work with many kernel

allocations

ExXxxLookasideList

Initialize / Allocate / Free

Paged vs NonPaged

System managed list of allocations of specified size

Heuristics for availability of system memory

Frequency of allocation

Faster allocation / free times

Can be per-processor / per-Node

40

Per-CPU Memory Allocation

Keeping accesses to memory localized to a CPU

minimizes CPU cache thrashing

Hurts performance on enterprise SMP workloads

Linux 2.4 introduced per-CPU kernel memory buffers

Windows introduced per-CPU buffers in an NT 4 Service

Pack in 1997

0 1

Buffer Cache 0 Buffer Cache 1

CPUs

41

Outline

Overview of Windows

IO Processing

Thread Scheduling

Synchronization

Memory

Performance and Debugging

Where to go from here

Performance Testing

Windows Performance Instrumentation

Support for profiling

XPerf – common interface for most

instrumentation

Take CPU profiles

Collect instrumented events

Collect stacktraces for (almost) any profile source

Let’s see an example

http://msdn.microsoft.com/en-us/performance/default.aspx

42

http://msdn.microsoft.com/en-us/performance/default.aspx

What is CPU Time Spent On?

CPU Summary Table

CPU Summary Table

46

Kernel Debugging

Useful for investigating internal system state not
available from other tools

Requires 2 computers (host and target)

Target would be halted while host debugger in use

XP & Server 2003 support live local kernel debugging

kd -kl

Technically requires system to be booted /DEBUG to work
correctly

You can edit kernel memory on the live system (!)

But, not all commands work

http://www.microsoft.com/whdc/devtools/debugging/default.mspx

47

Outline

Overview of Windows

IO Processing

Thread Scheduling

Synchronization

Memory

Performance and Debugging

Where to go from here

48

Where to go from here

Windows Driver Kit:

http://www.microsoft.com/whdc/devtools/WDK/default.mspx

Msdn.microsoft.com

Every function is documented

Many have example code

http://www.microsoft.com/whdc/devtools/WDK/default.mspx

The Big Picture

Control/Status

Control/Status

Control/Status

Control/Status

Post Processing

Action

