
Department of Informatics

Technical University of Munich

TECHNICAL UNIVERSITY OF MUNICH

DEPARTMENT OF INFORMATICS

BACHELOR’S THESIS IN INFORMATICS

Writing Network Drivers in Rust

Simon Ellmann

Abstract

Many developers consider writing network drivers an unpleasant task. There are mainly
three reasons for this aversion: The di�culties of working in kernel space, the complexity
of most drivers and a general reluctance to C programming.

Fortunately, there are alternatives nowadays. Kernel modules no longer necessarily have
to be written in C, an increasing number of hardware o�oading features in modern
network cards allows for far less complex drivers and the upswing of user space network
drivers obviates the need for writing kernel code altogether.

We show that driver development can be challenging but rewarding by presenting a
state-of-the-art user space network driver written in Rust, designed for simplicity, safety
and performance. With 1,306 lines of code in total and less than 10% unsafe code, the
driver focuses on the bare essentials of packet processing while still beating the kernel
and several other user space drivers with a forwarding capability of more than 26 million
packets per second on a single 3.3 GHz CPU core.

We discuss our implementation and evaluate it from di�erent points of view. From our
results, we conclude whether Rust is a good programming language for writing network
drivers.

Contents

1 Introduction 1

2 Network Communication in Linux 3

2.1 Kernel Space . 4
2.2 User Space . 5

3 Choosing Rust for Drivers 7

3.1 Syntax . 8
3.2 Type System . 8
3.3 Memory Management and Safety . 9
3.4 Ownership . 10
3.5 Unsafe Code . 12

4 Ixy 15

5 Implementation 17

5.1 Design . 17
5.2 Architecture . 18
5.3 Security Considerations . 18
5.4 Initialization . 19
5.5 DMA . 21
5.6 Memory Pools . 22
5.7 Receiving Packets . 25
5.8 Transmitting Packets . 26

6 Evaluation 27

6.1 Throughput . 27
6.2 Batching . 29
6.3 Profiling . 30
6.4 Unsafe Code . 31

7 Background and Related Work 33

7.1 Redox . 33

8 Conclusion 35

A List of Acronyms 37

Bibliography 39

II

List of Figures

2.1 Communication layers of the Open Systems Interconnection (OSI) model. 3

3.1 Reference to a string that has been moved away. Based on “Programming
Rust: Fast, Safe, Systems Development” [1]. 11

5.1 Receive queue with DMA descriptors pointing to packet bu�ers in the
memory pool.. 21

5.2 Packet layout in C and in Rust. 24

6.1 Bidirectional single-core forwarding performance with varying CPU speed
and a batch size of 32 packets. 28

6.2 Bidirectional single-core forwarding performance with varying batch size
at 1.6 GHz. 30

6.3 Bidirectional single-core forwarding performance with varying batch size
at 3.3 GHz. 30

List of Tables

6.1 Processing time in CPU cycles per packet. 30
6.2 Lines of unsafe code in three di�erent network drivers written in Rust. . 31

List of Listings

3.1 Attempt to move a borrowed value. 11
3.2 Naive implementation of split_at_mut(), taken from “The Rust Pro-

gramming Language” [9]. 13
3.3 Actual implementation of split_at_mut() including unsafe code. . . . 13
5.1 Memory-mapping in Rust. 20
5.2 Setting a 32-bit register in Rust. 20
5.3 Setting a 32-bit register in C. 21
5.4 Memorypool in C. 23
5.5 Memorypool in Rust. 23
5.6 Packet in Rust. 24
5.7 forward() from the forwarder application of the ixy driver. 25

Chapter 1

Introduction

In recent years more and more developers are moving drivers from kernel space to user
space. One of the main reasons for this development in relation to network drivers
is the performance bottleneck of the socket API. The general-purpose kernel stack is
just too slow for modern requirements. In the past, developers were writing their own
kernel drivers to circumvent this problem. But driver development in the kernel is a
cumbersome process that requires painful accuracy since programming mistakes at such
low level can and will crash the kernel eventually. Besides, the kernel imposes various
restrictions on the development environment and available tools inside the kernel.

Thankfully, there are alternatives to driver development in the kernel. In Chapter 2
we illustrate these alternatives by showing di�erent approaches to low-level network
communication in Linux. We also talk about the advantages of user space drivers. One
of the most pleasant benefits regarding them is the ability to choose any programming
language for the implementation. However, most user space drivers are still written in C,
an ancient programming language that leads to bu�er and stack overflows, segmentation
faults, memory leaks and other undefined behavior if not handled carefully. Because of
the ability to use any programming language, the question arises which programming
language is particular suitable for network drivers.

To answer this question, we discuss desirable properties of programming languages for
network drivers in Chapter 3 and suggest – as an alternative to C – Rust for network
programming, a state-of-the-art programming language that promises to fulfill all our
favored properties. We talk about Rust in detail by presenting its core features and
some Rust-unique concepts.

Chapter 1: Introduction

To prove Rust’s suitability for network drivers we reimplemented the ixy driver, a fast
and lightweight user space network driver written for educational purposes by Paul
Emmerich, Maximilian Pudelko, Simon Bauer and Georg Carle. We lay out the driver’s
main characteristics in a few sentences in Chapter 4 and explain why ixy is particularly
suitable for our task.

We then present our implementation in Chapter 5 in much detail. We show which data
structures and algorithms are used inside the driver and how they work together. In
Chapter 6 we evaluate the performance and other aspects of our code.

In Chapter 8 we draw our conclusions about using Rust as a programming language for
network drivers while Chapter 7 presents Redox, an operating system written entirely
in Rust that contains two real-world network drivers.

2

Chapter 2

Network Communication in Linux

Although the Internet is ubiquitous nowadays, network communication, network cards
and network drivers in particular are still often seen as black boxes by developers and
users. For users, most of the time it is su�cient to plug an ethernet cable into their
computer to go online. For developers, high-level APIs provided by the operating system
let them include network communication features in their programs easily while not
having to deal with the intricacies of low-level network programming.

However, if there is no driver for a certain network card yet or when the performance
of packet processing becomes relevant, it is necessary to gain rudimentary knowledge of
the foundations of network communication, especially of the way applications interact
with the operating system and the network card. Every time data is sent from an
application, the data is processed by several layers until it arrives at the network card.
A good model – the de facto standard – to characterize these layers is the OSI model

Application7

Presentation6

Session5

Transport4

Network3

Data link2

Physical1

Figure 2.1: Communication layers of the OSI model.

Chapter 2: Network Communication in Linux

shown in Figure 2.1. Every layer in the model provides di�erent services like packet
segmentation (layer 4), routing (layer 3) or reliable transmission (layer 2) to the layers
above.

Usually, the application is responsible for application, presentation and session layer,
while transport and network layer are handled by the operating system through the
general-purpose kernel network stack. The lowest two layers, the physical layer and
the data link layer are controlled by the network interface card (NIC) and the network
driver.

Traditionally, the di�erent tasks of network application and network driver have been
separated in Linux by user space and kernel space due to Linux’s operating system
design. Nevertheless, there are di�erent approaches to low-level packet processing in
Linux: Most applications use the socket API of the kernel, while some applications
run their own kernel modules, some handle everything in kernel space and some handle
everything in user space.

2.1 Kernel Space

Linux is based on a monolithic kernel, which means the whole operating system is
working in kernel space while all other services operate in user space. The kernel
provides the socket API to user space applications, i.e. various functions and data
types for a simple-to-use interface on so called Berkeley or POSIX sockets. These
sockets are special files that can be used to communicate with local processes or distant
hosts by plain read and write operations, following the Unix concept of “everything is a
file”. A user space application that wants to establish a communication channel issues
a call to the socket() function that eventually creates an instance of a socket struct in
the kernel and returns a file descriptor for that socket to the application. Subsequently,
bind() and connect() or listen() and accept() associate a connection between two
or more processes to a socket and send() and recv() are used for sending and receiving
data to or from a socket.

Using sockets is a convenient way for applications to communicate with other hosts since
the API provides a simple yet powerful interface for inter-process communication and
the kernel manages the network card. However, using the socket API is slow, since the
kernel allocates huge structs with countless metadata fields for every packet and due to
the fact that all packets have to be copied from kernel space to user space and back. This
is especially noticeable if the kernel has to handle a vast number of small packets. To
diminish the problems of the general-purpose kernel stack, some applications implement

4

2.2 User Space

their own kernel modules. Two well-known examples for this are Open vSwitch [13] and
the Click Modular Router [10].

Nevertheless, using a custom kernel module might still not be fast enough due to the
frequent context switches between kernel and user space. This can be mitigated by
operating entirely in kernel space. Although applications in kernel space allow for very
fast packet processing, writing them is cumbersome because of missing debugging tools
in the kernel, general restrictions like no floating-point operations and the ubiquitous
thread of crashing the system in case of bugs in the software.

2.2 User Space

Another approach to fast packet processing are applications working entirely in user
space (including their own network stack/driver) like DPDK [2] and Snabb [5]. Special
device files that can be mapped into memory with root privileges allow applications to
access network cards and other physical devices from user space.

Although some operations like interrupt handling can be tricky, user space drivers mit-
igate many problems concerning kernel space drivers. They are generally simpler and
more flexible, can be written in any programming language and profit of all the tools that
are normally available for software development. Bugs have less severe consequences,
and performance can be significantly better since there are far less context switches and
received and sent packets do not necessarily have to be copied between user and kernel
space. DPDK, for example, is able to operate at a performance very close to line rate.

Because of these advantages we chose to develop our driver in user space, although it is
possible to write kernel modules in Rust as well [8].

5

Chapter 3

Choosing Rust for Drivers

Programming languages are the basic tools of any developer. Thousands of them have
been created over the years. One of the first high-level programming languages was
Plankalkül, created by Konrad Zuse between 1942 and 1945, followed by FORTRAN,
COBOL and many others up to C, C++ in the seventies/eighties and modern lan-
guages like Kotlin and Swift. The sheer mass of programming languages alone raises
the question which programming languages are generally and which ones are particularly
suitable for network drivers.

Every language follows various concepts also known as programming paradigms that
classify how code is organized and how it is executed. Since programming languages
di�er fundamentally, it is necessary to choose an appropriate programming language
that suits our task of writing network drivers. Generally speaking, network drivers are
expected to be highly performant, reliable, i.e. without any undefined behavior and
software bugs, simplistic, easy to use and comprehensible.

These requirements lead to some crucial design decisions regarding the programming
language. First of all, to meet a high performance the language should be a compiled
language instead of an interpreted language. Though interpreted languages are generally
easier to implement and can be executed “on the fly”, they have to be interpreted (thus
the name) while being executed and lack the opportunity for powerful optimizations
while compiling. Therefore, languages like Python are slower and should not be our
first choice.

Regarding reliability and safety, the compiler should reject any unsafe code and alert us
on programming errors as far as possible. Although the C/C++ compilers are improving

Chapter 3: Choosing Rust for Drivers

continuously, there are still far too many situations where they do not foreclose undefined
behavior by warning the developer.

Another point to be considered for the development phase is the ecosystem of a program-
ming language. It consists mainly of the tools available for programming like compilers,
development environments, bug checkers, etc., documentation and usually a developer
or user community.

Summarized one can say that the perfect programming language for a network driver
would be a highly performant compiled language that is memory safe, simple to read and
use and that provides great documentation and other development aids. Fortunately
for us, there is a relatively new language that claims to fulfill all of these goals: Rust.

Rust is a new systems programming language developed by Mozilla and others to provide
a “safe, concurrent and practical” programming language. It was publicly announced in
2010 by Mozilla, the first stable release, Rust 1.0, was published on May 15, 2015. Rust is
syntactically similar to C++ but intends to o�er better memory safety und trustworthy
concurrency while being highly e�cient through zero-cost abstractions. It is a compiled
programming language that combines di�erent paradigms like concurrent, functional
and generic programming. Rust consists of a unique system of ownership, moves and
borrows that is enforced at compile time and makes garbage collection unnecessary.
This system is the key to meeting Rust’s goal of memory safety [1, 9].

3.1 Syntax

Rust’s syntax is closely related to the syntax of C and C++. Statements are separated
by a semicolon, code blocks enclosed by curly brackets. The control flow is ruled by
keywords such as if, else and while. Nevertheless, di�erences like for that introduces
for-each-loops in Rust, match for the more powerful pattern matching instead of switch

and a missing ternary conditional exist. Functions are declared with the fn keyword and
variables with let. Functions and variables are generally written in snake case while
data types use a camel case style. In addition, Rust supports functional programming
like lambda functions that have their own syntax.

3.2 Type System

Rust is a statically typed programming language. Although the Rust compiler must
know the types of all variables at compile time, that does not imply that these types

8

3.3 Memory Management and Safety

have to be declared explicitly. Rust features type inference to determine the types of
variables. Failing assignments of values to variables in the code due to conflicting or
unknown types lead to compile time errors. To assign values multiple times to a variable,
the variable has to be declared with the mut keyword as variables in Rust are by default
immutable.

User defined data types can be declared as structs or enums (tagged unions). Using
the impl keyword, methods can be declared on these user defined data types (like it
is possible with classes in other languages). A mechanism similar to type classes is
available in Rust, called “traits”. Traits are a set of methods that can extend the
functionality of a class. They allow for ad hoc polymorphism by adding constraints to
type variable declarations and are inspired by Haskell. For instance, implementing the
Add trait allows to use the + operator with user defined types. Functions can be called
with generic parameters that are usually required to implement one or multiple traits.
Instead of inheritance, Rust uses composition by combining traits.

3.3 Memory Management and Safety

Rust’s most essential feature is its unique ownership system. Ownership allows Rust to
make memory safety guarantees while avoiding garbage collection. Although plenty of
languages make use of a garbage collector that automatically keeps track of objects and
frees them when not being used anymore, this is not without two major drawbacks.

First of all, cleaning up resources with a garbage collector is non-deterministic. Garbage
collectors are complex pieces of software and understanding why memory is not being
freed can be a challenge. If a developer wants to ensure that a resource is cleaned up
at a certain point, this typically means he either has to force the garbage collector to
cleanup everything or wait until the resource is ready to be freed. Both of these options
take away control from the developer and are disappointing.

Second, garbage collection leads to potential performance issues as the garbage collector
needs a varying amount of CPU cycles to perform the cleanup. The time spent on
garbage collection is especially high if there is a lot to be cleaned up. This can be
problematic on real-time applications like online games or – as in our case – network
drivers.

Without a garbage collector, the developer is responsible to return memory to the
operating system when it is no longer used. The amount of security problems listed in
public databases concerning memory misuse proves that this is a di�cult responsibility

9

Chapter 3: Choosing Rust for Drivers

to meet. If a developer forgets to free memory, he is wasting memory and the application
will crash when it is running out of memory. If a developer frees memory too early, there
will be an invalid reference also known as a dangling pointer, which is undefined behavior
as is freeing memory twice.

C and C++ are well known for these issues. Rust does not accept these drawbacks and
takes a di�erent approach by restricting the way pointers are used through its ownership
system. Rust’s rules enable its compiler to verify at compile-time that a program is free
of memory safety errors, i.e. the before mentioned dangling pointers, double frees, etc.
Yet it aims to keep the developer in charge of the memory while preventing unsafe
operations. At runtime there is no di�erence to programs written in C/C++ except
that the compiler has proven that memory is handled safely. In fact, the same rules
are the basis for safe concurrent programming as they prevent data races and data
corruption. Having a thread-safe programming language is a valuable point since most
network cards use multiple receive and transmit queues and can therefore be managed
by di�erent threads.

3.4 Ownership

Rust’s ownership system consists of three simple rules. In Rust, every value has an
owner. There can only be one owner at a time for a certain value. When this owner
goes out of the scope, i.e. its lifetime ends, the value will be freed. In Rust terminology
this is called “dropping” a value and is a pattern similar to Resource Acquisition Is
Initialization (RAII) from C++.

The scope of a variable is the range within a program for which the variable is valid,
e.g. variables defined inside a function become invalid when the function returns, and
their values are freed. Ownership can be transferred from one variable to another. This
is called “moving” a value and happens when a function is called with a parameter, a
value is assigned to a variable, or a function returns a value. This value is then not
copied but moved.

To be precise, that is not true for all values. Types with a known size at compile time
like integers, booleans, floats, etc., are copied as they are stored entirely on the stack
and it is thus cheap to copy them.

When a value has been moved, the previous reference becomes invalid and cannot be
accessed anymore to ensure memory safety, i.e. no dangling pointers. To pass a value to
a function without transferring ownership, i.e. moving the value, Rust uses references.

10

3.4 Ownership

A reference to a value can be created with the & operator. Having references as function
parameters is called “borrowing” since the value cannot be used by other functions if a
mutable reference has been passed until the borrowing function returns.

Similar to variables, there are mutable and immutable references, and all references are
immutable by default. In relation to references, Rust enforces additional restrictions:
There can be unlimited immutable references to a variable or a single mutable reference,
but not both. A value has to live at least as long as any reference to that value. This
means we cannot return a reference to a value that was declared inside a function.

Besides, a value cannot be moved as long as there is a reference to that value. Listing 3.1
and Figure 3.1 illustrate why this is forbidden in Rust. s is a variable that points to the
string “hello” on the heap. It contains the length of the string as well as the capacity of
the memory bu�er and the actual pointer and is stored on the stack. r is a reference to
s. Up to this point, i.e. line 3 in Listing 3.1, the code is perfectly legit. However, the
assignment of s to t moves s, leaving the previously used memory empty and turning
r into a dangling pointer. To eliminate this error, Rust disallows values to be moved
while being referenced, and they cannot be modified either to prevent data races.

1 fn main () {
2 let s = String :: from(" hello ");
3 let r = &s;
4 let t = s;
5 }

Listing 3.1: Attempt to move a borrowed value.

stack
frame

r
5 5

heap h e l l o

s t

Figure 3.1: Reference to a string that has been moved away. Based on “Programming Rust: Fast,
Safe, Systems Development” [1].

11

Chapter 3: Choosing Rust for Drivers

3.5 Unsafe Code

The ownership system of Rust is very powerful. However, static analysis is quite conser-
vative and still subject to limited decision capabilities. There are valid programs that
are rejected by the compiler when the compiler is unable to determine whether or not
the code upholds the required guarantees.

To make the Rust compiler accept this kind of code, Rust uses the keyword unsafe.
Using the unsafe feature is similar to signing a contract: the developer is now responsible
to follow the rules to avoid undefined behavior as the compiler is unable to enforce them
automatically.

With unsafe code it is possible to use four additional features of Rust. This includes
dereferencing raw pointers, calling unsafe functions, including functions from Rust’s
foreign function interface, accessing and modifying mutable static variables and imple-
menting unsafe traits.

When using these features, the developer has to take care that he follows the rules. For
example, dereferencing a pointer beyond the end of its original referent is forbidden. It
breaks the contract of using unsafe and leads to undefined behavior. Lots of features
in Rust have rules to follow, but as long as the possible consequences of misusing them
does not lead to undefined behavior, they do not require the unsafe keyword.

Therefore, having unsafe code inside of a function does not necessarily imply that that
function has to be marked as unsafe. In fact, declaring a function as unsafe is inde-
pendent of whether that function uses code that requires unsafe or not. There are rare
cases – like Packet::new() in our driver – where the function itself does not include
any unsafe code but should nevertheless be declared as unsafe.

Idiomatic Rust code often means that unsafe code is wrapped inside a safe API. A good
example for a method that requires unsafe code is split_at_mut(), a function that
takes a slice1 and splits it into two slices at a given index. Listing 3.2 shows a naive
implementation for split_at_mut().

1 a reference to a contiguous sequence of elements in a collection similar to arrays in other languages
but with an unknown size at compile time

12

3.5 Unsafe Code

1 fn split_at_mut (slice : &mut [i32], mid: usize) -> (& mut [i32], &mut [i32]) {
2 let len = slice .len ();
3
4 assert! (mid <= len);
5
6 (& mut slice [.. mid],
7 &mut slice [mid ..])
8 }

Listing 3.2: Naive implementation of split_at_mut(), taken from “The Rust Programming Language”
[9].

The function asserts that the index at which the slice shall be split is within the slice.
If the assertion fails, the program terminates immediately. In Rust, terminating due to
an unrecoverable programming error is called “panicking”.

Unfortunately, Rust’s borrow checker is unable to understand that the function borrows
di�erent parts of the slice which is valid to do and returns an error when compiling,
stating that there are two mutable references to the same slice at the same time. Using
unsafe Rust code, it is possible to implement split_at_mut(). Listing 3.3 shows the
generic implementation from the Rust standard library, slightly modified for readability
here.

1 pub fn split_at_mut (slice : &mut [T], mid: usize) -> (& mut [T], &mut [T]) {
2 let len = slice .len ();
3 let ptr = slice . as_mut_ptr ();
4
5 unsafe {
6 assert! (mid <= len);
7
8 (from_raw_parts_mut (ptr , mid),
9 from_raw_parts_mut (ptr. offset (mid as isize), len - mid))

10 }
11 }

Listing 3.3: Actual implementation of split_at_mut() including unsafe code.

Just like the naive implementation, the function asserts that the index is inside the slice
and either panics or returns two mutable references to the di�erent parts by calling
from_raw_parts_mut() with a raw pointer to each part of the slice and the lengths of
the new slices.

from_raw_parts_mut() is unsafe because the user has to ensure that the raw pointer
is valid and indeed points to a slice (with the correct length). The offset method is
unsafe because it cannot be sure that the pointer at the given o�set is valid. However,
the combination of the two unsafe functions together with the previous assertion is a
safe abstraction and therefore appropriate use of unsafe code.

13

Chapter 3: Choosing Rust for Drivers

By forcing developers to use unsafe for code possibly leading to undefined behavior,
Rust makes sure that developers are aware of their actions, i.e. do not use unsafe

features unknowingly, and hopefully refrain from unsafe code as far as possible which is
desirable for any computer program and especially for network drivers.

14

Chapter 4

Ixy

Ixy is a network driver written to show how network cards work at the driver level. It
is implemented entirely in user space with an architecture similar to DPDK and Snabb.

The primary design goals of the ixy network driver written in C are simplicity, no
dependencies, usability and speed. While Snabb has very similar design goals, the ixy
C version tries to be “one order of magnitude simpler”. Thus, a simple forwarder and the
driver consist of less than 1000 lines of C code. As there are no external libraries and no
kernel code, the di�erent code-levels can be explored within a few steps. Every function
is only a few calls away from the application logic. Some features (like various hardware
o�oading possibilities) have been left out to keep the driver as simple as possible.

Initialization and operation of the driver is very similar to Snabb while memory man-
agement, batching and abstraction come from DPDK. Ixy provides two di�erent imple-
mentations, ixgbe and VirtIO. On initialization the appropriate driver is selected and a
struct containing function pointers to the driver-specific implementation is returned to
the user. Ixy o�ers functionality to initialize a network card at a given pci address and
send and receive packets. The framework also exposes device statistics to conduct per-
formance measurements as well as a safe packet API with custom-built data structures
to allocate and free packets in its memory pools. Applications include ixy directly, and
using these abstractions leads to a comfortable handling of the driver. Users can read
it from top to bottom without any complex hierarchies.

Ixy uses NICs of the ixgbe family because these cards are very common in general
purpose servers and Intel releases extensive datasheets about them.

Chapter 4: Ixy

As ixy tries to “take the magic out of user space network drivers” with its simplicity,
usability and speed, it is very well-suited as a template for implementing these kinds of
drivers. Because of this and to be able to compare our work with future implementations
we used ixy as a reference implementation for our user space driver written in idiomatic
Rust code.

16

Chapter 5

Implementation

The implementation of the ixgbe driver relies heavily on the original ixy C driver and the
Intel datasheet. Any code references in the following sections refer to commit e193471

of the master branch of our implementation where not stated otherwise. Page numbers
and section numbers regarding the Intel datasheet refer to revision 3.3 (March 2016) of
the 82599ES datasheet [6].

5.1 Design

Ixy aims to be simple, fast and usable. All the same applies to our implementation.
But we add another goal to our project: safety.

Rust by itself is a safe programming language as long as developers avoid the unsafe

keyword. Thus, our implementation of the driver tries to minimize the use of unsafe
code where this is reasonable. We will explain where and why there is unsafe code in
the implementation. Currently, the driver uses about one hundred lines of unsafe code
in total.

Unlike ixy in C, we do not focus on no dependencies. With crates.io and cargo, Rust
provides a great package management system and actively encourages developers to use
packages provided by others, following the Unix philosophy of making each program do
one thing well. As with unsafe code, we will state where and why we included packages
(called “crates” in Rust). So far there are four crates in our dependencies. One of them
is the log crate to provide a logging API so that the users of our driver can decide
whether they want to use logging and if so in which form.

Chapter 5: Implementation

We provide two sample applications with our driver to show how the driver can be used.
One application is a packet forwarder and the other one is a packet generator. The two
applications show how the logging API works by writing all output of the driver to
stdout.

5.2 Architecture

The architecture of our implementation is based on the architecture of the C driver. To
provide a simple interface to the users of our driver, we use a trait that is implemented
by a greatly reduced version of the Intel ixgbe driver and could by implemented by a
VirtIO version in the future as well (similar to ixy). That trait is the public interface for
all applications employing our driver. It o�ers methods to initialize an ixgbe network
card at a given pci address and send and receive packets with it. Using a trait is
much more elegant than the simple abstraction provided by the C implementation. We
implement all driver related functions as methods on our device while in C a pointer
to the device has to be passed to every function. Just like the original ixy driver, we
expose device statistics for performance measurements and provide a safe API for all
memory operations.

5.3 Security Considerations

It is important to note that our implementation requires root privileges to access the
PCIe device. However, a custom-built kernel module would still be worse as it has –
because of its nature – root privileges and has to be written in C, an unsafe programming
language.

In theory, the driver could drop its privileges after initializing the device with seccomp(2).
Unfortunately, this is not enough since the device is still under full control of the driver
and can write to any memory regions through direct memory access (DMA).

To write a truly secure user space network one would have to make use of the I/O
memory management unit (IOMMU), a modern virtualization feature to pass PCIe
devices into virtual machines. In Linux this can be done using vfio, a framework
specifically designed for “safe, non-privileged, userspace drivers” [11]. Making use of
vfio should be considered for future work on the driver as it goes beyond the scope of
this thesis.

18

5.4 Initialization

5.4 Initialization

Preparing a NIC of the 82599ES family to send and receive packets requires a single
call to the ixy_init function with three parameters containing the PCIe address of the
network card and the desired number of send and receive queues.

To communicate with and manage the PCIe device, Linux o�ers a pseudo filesystem
called sysfs. The driver reads from and writes to special files to change the state of the
device. For instance, to unbind any kernel driver using the network card before device
initialization, the driver writes the NIC’s PCIe address to the unbind file. To enable
DMA, two bytes are read from the config file, modified and written back. Previous to
these actions, we do a rudimentary check if the PCIe device is indeed a network card by
reading the device class from the config file. We include the byteorder crate in our
driver to be able to read di�erent sized integers (with the correct endianness) from this
file instead of having to fiddle with raw bytes and unsafe code.

Following unbinding and DMA-enabling, the file exporting the base address registers
(BARs) of the device is mapped into memory as shared memory which means that
changes to the memory mapped region, i.e. the di�erent registers, are written back to
the file and vice versa. The base address registers are used to configure the network
card. The o�sets of all registers are documented in the Intel datasheet. We use a
slightly reduced copy of ixgbe_type.h (containing all o�sets as #defines and some
structs) from the ixy driver that we translated into Rust code by annotating structs
as C structs, replacing the #defines by Rust’s equivalent const, rewriting all ternary
operators and so an. Technically speaking, using this constants file increases our code
base by more than 4,000 lines of code. However, we use less than one hundred out of
these 4,000 lines and having a file with all registers on hand is very comfortable for
future work on the driver.

For the memory mapping, we do not use a special crate from crates.io since working
with raw pointers is more comfortable with our o�set constants and o�set functions and
implementing a safe API on top of the raw pointers is straightforward.

Listing 5.1 shows how we memory map files in our driver. The mapping function opens
a file at a given path with read-write access and passes the file descriptor and the length
of the file to libc::mmap() that maps the file as shared memory into memory and
returns a pointer to the memory location. libc::mmap() has to be inside an unsafe

block as it is just a call to mmap(2) from the C standard library (a foreign function).
If mmap(2) returns a null pointer or the length of the given file equals zero, an error is

19

Chapter 5: Implementation

returned from the function. Otherwise the pointer and the length of the mapped file
are returned.

1 pub fn mmap_file (path: &str) -> Result <(* mut u8 , usize), Box <Error >> {
2 let file = fs :: OpenOptions :: new (). read(true). write (true). open (& path)?;
3 let len = fs :: metadata (& path)?. len () as usize ;
4
5 let ptr = unsafe {
6 libc :: mmap(
7 ptr :: null_mut (),
8 len ,
9 libc :: PROT_READ | libc :: PROT_WRITE ,

10 libc :: MAP_SHARED ,
11 file. as_raw_fd (),
12 0,
13) as *mut u8
14 };
15
16 if ptr. is_null () || len == 0 {
17 Err(" mapping � failed ".into ())
18 } else {
19 Ok ((ptr , len))
20 }
21 }

Listing 5.1: Memory-mapping in Rust.

To call foreign functions from Rust we have to specify the function’s signature and
annotate it with extern. This is called a binding. The libc crate provides bindings
for all functions from the libc, so we use that crate in our driver to not have to worry
about bindings.

After memory-mapping the device file, interrupts are disabled to prevent re-entrance as
recommended in the datasheet, the device is reset, interrupts are disabled again since
we do not support interrupt handling, auto negotiation for the network is enabled and
the statistical counters of the device for received and sent packets are reset.

1 fn set_reg32 (& self , reg: u32 , val: u32) {
2 assert! (
3 reg as usize <= self.len - 4 as usize ,
4 " memory � access �out�of� bounds "
5);
6
7 unsafe {
8 ptr :: write_volatile ((self.addr as usize + reg as usize) as *mut u32 , val);
9 }

10 }

Listing 5.2: Setting a 32-bit register in Rust.

20

5.5 DMA

1 static inline void set_reg32 (uint8_t * addr , int reg , uint32_t value) {
2 __asm__ volatile ("" : : : " memory ");
3 *((volatile uint32_t *) (addr + reg)) = value ;
4 }

Listing 5.3: Setting a 32-bit register in C.

All of these actions happen by getting and setting some registers of the mapped device.
Listing 5.2 and Listing 5.3 show the di�erences between the set_reg32() function in
Rust and in C.

The C implementation uses a compiler barrier in line 2 to prevent the compiler from
resorting the following memory access to addr + reg and the volatile keyword in line
3 is there to prevent the compiler from optimizing away the memory access altogether.
Rust misses this compiler barrier since it is unnecessary for x86 architectures. The
same e�ect as volatile is achieved by using write_volatile() from the ptr module.
Since writing to an arbitrary memory location is unsafe, write_volatile() requires
an unsafe block. By asserting that the register is indeed inside the mapped memory
of the device, we provide a safe abstraction and do not have to mark set_reg32() as
unsafe.

5.5 DMA

...huge page

ixgbe_adv_rx_desc.read.pkt_addr

receive queue memory pool

Figure 5.1: Receive queue with DMA descriptors pointing to packet bu�ers in the memory pool..

After resetting the device, the queues for receiving (RX) and transmitting (TX) packets
are initialized. Figure 5.1 shows the general structure of the receive queues. Every queue
is a ring bu�er filled with descriptors containing pointers to the physical addresses of
the packets as well as some metadata about the packets, e.g. their size. The network

21

Chapter 5: Implementation

card can be configured to split tra�c on multiple queues using filters or hashing. For a
simple setup, using one receive and one transmit queue is su�cient.

To initialize the receive and transmit queues, memory has to be allocated for the queues.
This memory has to stay resident in physical memory since the network card uses the
memory independently of the central processing unit (CPU), i.e. accesses the memory
via its physical addresses. In kernel space there is an API to allocate DMA memory,
in user space we have to use other mechanisms since this API is not available here.
To disable swapping, we can use mlock(2). Unfortunately, this function is not part
of Rust’s standard library, but it is part of the libc. So, we use the binding from the
libc crate and call mlock(2). However, mlock(2) only ensures that the page is kept
in memory. The kernel is still able to move pages to di�erent physical addresses. To
circumvent this problem, we use huge pages with a size of 2 MiB. These pages cannot
be migrated yet by the Linux kernel, thus stay resident in physical memory.

Allocating DMA memory on huge pages is fairly simple. The setup-hugetlbfs.sh

script in our repository creates a hugetlbfs mount point and writes the required number
of huge pages to a sysfs file. Memory allocation is then accomplished by creating a
new file in the mounted directory and mapping the file into memory using mmap(2) from
the libc.

The physical address of the mapped memory can be derived via the procfs file
/proc/self/pagemap. Every queue is matched to one huge page and the physical
address is communicated to the network card through the BARs.

5.6 Memory Pools

As explained in the previous section, the descriptors of receive and transmit queues
contain pointers to packet data which is read from and written to by the network card
via DMA. Thus, the packet data has to be inside DMA memory, too.

Allocating memory every time a packet is received is a huge overhead. The general-
purpose network stack in the kernel needs about 100 CPU cycles to perform these
allocations. Using memory pools that manage already allocated memory decreases the
amount of CPU cycles significantly.

Consequently, every receive queue has a memory pool attached to it for incoming pack-
ets. Transmit queues do not have their own memory pools as it su�ces to pass packets
from an existing pool to them.

22

5.6 Memory Pools

1 struct mempool {
2 void* base_addr ;
3 uint32_t buf_size ;
4 uint32_t num_entries ;
5 uint32_t free_stack_top ;
6 uint32_t free_stack []; // contains the entry id
7 };

Listing 5.4: Memorypool in C.

1 pub struct Mempool {
2 base_addr : *mut u8 ,
3 num_entries : usize ,
4 entry_size : usize ,
5 phys_addresses : Vec <usize >,
6 pub(crate) free_stack : Vec <usize >,
7 }

Listing 5.5: Memorypool in Rust.

Listing 5.4 and Listing 5.5 show the structure of the memory pools in C and in Rust.
In C, the memory pools are implemented as structs containing a stack of entry id’s
to free packet bu�ers. The virtual address of a bu�er is calculated by base_addr +

(entry_id * entry_size). In Rust, it is all the same except that we use a Vec<T>

(called Vector) for free_stack and another one to store the physical addresses of the
bu�ers in the memory pool. Vectors are Rust’s native data type for stacks, they are de
facto contiguous growable arrays.

In C, the packet bu�ers from the memory pool are structs themselves with some header
fields like the packet size or a reference to the memory pool and an unsized data field.
In Rust it is possible to have structs with unsized fields, but they are not comfortable
to handle and generally quite unusual. Besides, putting the packet header right next to
the packet data that is written by the network card seems like an odd idea.

Hence we follow a di�erent approach, displayed in Figure 5.2. The packet bu�ers do
not contain any headers, just the packet data, and their physical addresses are stored
inside a vector in the memory pool. There is still a stack inside the memory pool that
keeps track of the packet bu�ers. Whenever a packet is returned to the user, a Packet

struct is instantiated that contains all necessary information: a pointer to the packet
data, physical address of the packet data, size of the packet, a reference to the memory
pool and the position of the packet bu�er inside the memory pool. This Packet struct
is shown in Listing 5.6.

23

Chapter 5: Implementation

stack
frame

packet

heap len ... packet data ...

pool
packet (in memory pool)

(a) Packet in C

stack
frame len ...

heap packet data ...

pool

packet

memory pool

(b) Packet in Rust

Figure 5.2: Packet layout in C and in Rust.

1 pub struct Packet {
2 pub(crate) addr_virt : *mut u8 ,
3 pub(crate) addr_phys : usize ,
4 pub(crate) len: usize ,
5 pub(crate) pool: Rc <RefCell <Mempool >>,
6 pub(crate) pool_entry : usize ,
7 }

Listing 5.6: Packet in Rust.

It stands out that the reference to the memory pool is not a normal reference like
&Mempool but a Rc<RefCell<Mempool>>. There are various reasons for this. First of
all, we have to be able to mutate the referenced memory pool through the packets (for
example when a Packet is dropped). Since we have multiple packets referencing the
same memory pool and Rust does not allow multiple &mut Mempool at compile time, we
use a RefCell<T>, a mutable memory field that checks the borrow rules dynamically.
The RefCell<Mempool> lets us borrow the memory pool mutably at runtime by calling
pool.borrow_mut(). It panics if we try to borrow the same memory pool mutably twice.
This pattern of being able to mutate data even when there are immutable references to
it is called Interior mutability in Rust.

Second, we cannot have a single owner for the memory pool since we need it to live as
long as it is used by the driver for sending or receiving and as long as there are any pack-
ets left referencing the pool (this might be longer than IxgbeRxQueue exists). To have
multiple owners for the pool, we use Rc<T>, a reference counter for RefCell<Mempool>.
The memory pool is freed when the number of references to it counted by Rc<T> drops
to zero.

As a consequence of having Rc<RefCell<Mempool>> inside the packets, we have to use
this construct for all variables referencing memory pools inside and outside of our driver.

24

5.7 Receiving Packets

This is the reason why Mempool::allocate() returns a Rc<RefCell<Mempool>> instead
of Mempool.

1 fn forward (buffer : &mut VecDeque <Packet >, rx_dev : &mut impl IxyDevice ,
2 rx_queue : u32 , tx_dev : &mut impl IxyDevice , tx_queue : u32) {
3 let num_rx = rx_dev . rx_batch (rx_queue , buffer , BATCH_SIZE);
4
5 if num_rx > 0 {
6 // touch all packets for a realistic workload
7 for p in buffer . iter_mut () {
8 p[48] += 1;
9 }

10
11 tx_dev . tx_batch (tx_queue , buffer);
12
13 // drop packets if they haven ’t been sent out
14 buffer . drain (..);
15 }
16 }

Listing 5.7: forward() from the forwarder application of the ixy driver.

The Packet struct implements three traits from the Rust standard library: Deref,
DerefMut and Drop. Listing 5.7 shows the use of these traits in the forward() function
of the forwarder application. We implemented Deref and DerefMut so that the packet’s
data can be accessed and modified by treating Packet as a slice of bytes (&[u8]). Line
8 shows how the application reads the 49th byte of packet p and increases it by one.
We implemented Drop so that the packet’s bu�er is returned to the memory pool when
a packet goes out of scope. This happens in line 14 when all packets are removed from
the bu�er.

Dereferencing the raw pointer of the Packet struct is unsafe just like returning a slice
with slice::from_raw_parts() for the Deref and DerefMut trait. However, since
we ensure that no slice with a size greater than the corresponding bu�er is returned
and only one object at a time uses the bu�er, we can provide a safe abstraction and
implement these traits.

5.7 Receiving Packets

During initialization of the device the driver fills all descriptors of the receive queues
with physical pointers to packet bu�ers. The receive and transmit descriptor queues
are actually rings that are accessed by both the driver and the device. The driver
controls the tail pointer of the ring while the network card controls the head pointer.
When a packet is received, a Packet struct pointing to the corresponding bu�er in the

25

Chapter 5: Implementation

memory pool is instantiated, the physical address of a free bu�er is stored in the receive
descriptor and the ready flag of that descriptor is reset. Since the receive descriptors do
not contain virtual addresses of the data bu�ers we have to keep track of which bu�er
belongs to which descriptor. This is done using a Vec<usize> of references to bu�ers
where the index of a bu�er equals the index of the descriptor in the descriptor ring.
Thus, the vector acts as a copy of the ring referencing the corresponding bu�ers.

Receiving and transmitting packets is done in batches to improve performance. The user
passes a VecDeque<T> (Rust’s native type for queues) to the receive function so that
the receive function can push the received packets onto that queue. This is di�erent to
the C implementation. In C, the user passes an array to the function and the function
puts pointers to bu�ers of received packets into that array. In Rust, we push Packet

structs onto a queue. We could also use references to packets, but by returning packets
we can explicitly pass ownership of the packet’s memory to the user. As long as the user
holds a certain Packet, he is the single owner of that Packet and its memory. When
the user returns the packet to the driver by either calling the send function or dropping
it, the packet’s memory is freed, i.e. it is returned to the memory pool by pushing a
reference to the bu�er onto the free stack of the memory pool. If the user had held only
a reference to the packet, he would have to return that reference explicitly to the driver
since there is no way to verify if a reference has been dropped.

5.8 Transmitting Packets

Transmitting packets works similarly to receiving packets but is more complicated as
sending packets is asynchronous. When a packet is to be sent, the descriptor at the
current index in the transmit descriptor ring is updated with the physical address of the
packet data, i.e. of the bu�er in the memory pool, and the data length, and the entry
id of the bu�er is stored inside a VecDeque<usize>. It is necessary for the transmit
queues to remember which bu�ers are still in use because otherwise the bu�ers would
be returned to the memory pool too early and could be reused before the actual data
has been sent out, thus sending other data than intended.

Therefore, the transmit function consists of two parts: verifying which packets have
been sent out and returning the corresponding bu�ers to the memory pool (this is called
cleaning), and sending new packets and storing their bu�ers for cleaning. Cleaning the
transmit queues is done in batches to reduce the amount of costly PCIe transfers.

26

Chapter 6

Evaluation

To evaluate the performance of our implementation, we run the forwarder application
under a full bidirectional load of 29.76 Mpps which equals the line rate of two 10 Gbit/s
connections with minimum-sized packets. To simulate a realistic workload, one byte of
each packet is modified. As a consequence, at least one byte is loaded into the L1 cache
of the processor. We compare our implementation to the reference implementation in C
(commit d89d68b), an implementation in C# (commit 484485b) written by Maximilian
Stadlmeier [18, 19] and an implementation in Go (commit 4145aa8) written by Sebastian
Voit [20]. All measurements have been performed on two single-ported Intel X510
(82599-based) NICs since they perform better than a dual-ported NIC (probably due to
hardware limitations of the PCIe connection).

6.1 Throughput

We run the forwarding application at di�erent CPU frequencies to measure the over-
all performance of our implementation and identify possible bottlenecks. Figure 6.1
compares the throughput of our implementation to ixy in C, C# and Go. The bench-
mark shows that the relative di�erence between the di�erent implementations becomes
smaller with increasing CPU frequency. The greatest performance di�erence between
C and Rust is at 2.6 GHz where the C implementation is about one-eighth faster than
Rust. At full CPU speed without overclocking, the di�erence between these two im-
plementations drops to 3%. With dynamic overclocking, i.e. the Intel Turbo Boost
feature that allows the CPU to accelerate to up to 3.6 GHz, there is no measurable
performance di�erence between the C and the Rust version. To forward a packet, the C

Chapter 6: Evaluation

1.6 1.8 2.1 2.3 2.6 2.7 3.0 3.3 3.60.0

10.0

20.0

30.0 Line Rate

CPU Frequency in GHz

Pa
ck

et
R

at
e

in
M

pp
s

C
C#
Go
Rust

Figure 6.1: Bidirectional single-core forwarding performance with varying CPU speed and a batch size
of 32 packets.

implementation requires a minimum of 100 CPU cycles, while the Rust implementation
needs at least 108 CPU cycles.

Interestingly, not modifying the packets when forwarding them has a di�erent impact
on the implementations. While the C version is surprisingly slightly slower when not
touching the packets at the native CPU clock rate of 3.3 GHz, the Rust version is at
least 3% faster.

The main reasons for the high performance of our implementation are on the one hand
the general driver design and on the other hand the used data structures. Avoiding
memory allocations in the receive and send functions by using already allocated bu�ers
in our memory pools and memorizing the physical addresses of all of these bu�ers instead
of reopening /proc/self/pagemap every time a virtual address has to be translated to
a physical address also make a huge performance di�erence.

Unlike the C version, we provide a safe interface regarding the packets by wrapping
them in Packet structs. Unfortunately, moving structs instead of simple raw pointers
has negative impacts on performance. We compensate for these performance losses
by utilizing e�cient data structures like Vec<T> and VecDeque<T> for all stacks and
queues in our driver since they provide amortized costs of O(1) for the push() and
pop(), respectively push_back() and pop_front() operations.

Before commit 6cbfac6, the internal stacks and queues of the receive and transmit
queues, i.e. IxgbeRxQueue and IxgbeTxQueue, used Packet structs to store all packets
currently in use by the queues. Replacing the structs by a single usize referencing the
corresponding bu�er in the memory pool boosted performance dramatically by almost
four million packets per second.

28

6.2 Batching

To prevent frequent resize and copy operations, all stacks and queues are allocated with
the maximum required capacity where this size is known at allocation time. That is the
case for all stacks and queues in our driver.

Due to the use of Rc<RefCell<Mempool>> for all references to our memory pools, ac-
cessing the pools is quite expensive. The reference counter has to be increased and
decreased and the RefCell<Mempool> has to verify that there is only one mutable ref-
erence to a pool at a time (similar to a mutex). To reduce the number of accesses to the
pools when cleaning the transmit queue, we enforce that packets sent through the same
queue belong to the same memory pool. Hence it is su�cient to access the memory
pool once for a batch of packets.

To improve the performance regarding the memory pool accesses, we tried to replace
the reference counter by an ordinary reference (&RefCell<Mempool>) which required
us to specify lifetimes for the references to the memory pool and all structs containing
references or structs referencing the memory pool. Unfortunately, this prolonged the
scopes of some values in an unexpected way due to yet-to-be-fixed bugs in the Rust
compiler, namely issue 219061 regarding our set_reg32() method and issue 511322

regarding reset_and_init(). Hence, changing these references to normal references
could be future work on the driver when these issues have been addressed.

6.2 Batching

Batching has a strong influence on the performance. Receiving and sending a packet
requires a costly PCIe round-trip when accessing the queue index registers. Figure 6.2
and Figure 6.3 show how the performance is a�ected by di�erent batch sizes at the
lowest and the highest possible CPU frequency. Unfortunately, the C# implementation
crashes with a batch size of 256 packets at 3.3 GHz, so we cannot tell if it could achieve
the same packet rate as C and Rust.

It can be stated that batch sizes up to 64 packets per batch lead to a better overall per-
formance for all implementations. Greater batch sizes than 128 packets per batch have
a very little gain on performance as the number of cache misses increases, too. Hence,
batch sizes should neither be chosen too small nor too large. For our implementation,
a batch size of 32 or 64 packets per batch seems reasonable.

1 https://github.com/rust-lang/rust/issues/21906
2 https://github.com/rust-lang/rust/issues/51132

29

Chapter 6: Evaluation

1 2 4 8 16 32 64 128 2560

10

20

30 Line Rate

Batch size

Pa
ck

et
R

at
e

in
M

pp
s

C
C#
Go
Rust

Figure 6.2: Bidirectional single-core forwarding performance with varying batch size at 1.6 GHz.

1 2 4 8 16 32 64 128 2560

10

20

30 Line Rate

Batch size

Pa
ck

et
R

at
e

in
M

pp
s

C
C#
Go
Rust

Figure 6.3: Bidirectional single-core forwarding performance with varying batch size at 3.3 GHz.

6.3 Profiling

Application RX TX Forwarding Memory Mmgt.
Rust forwarder 43.8 33.5 21.3 7.0
C forwarder 39.8 16.9 22.0 21.0

Table 6.1: Processing time in CPU cycles per packet.

To profile our forwarder application, we run perf at the minimum CPU speed of 1.6
GHz with the default batch size of 32 packets per batch to ensure that the CPU is the
bottleneck. Table 6.1 shows how many CPU cycles are spent on which function and
compares it to the C implementation.

In both drivers, the receive function is much slower as it has to fetch the data into L1
cache while all other functions operate on the cache. Overhead for memory management

30

6.4 Unsafe Code

is significant in C, although it is still far lower than the 100 CPU cycles of the Linux
kernel. Rust inlines many functions, so the seven CPU cycles for memory management
have to be taken with a small grain of salt.

Looking at DPDK with 61 CPU cycles per packet, there is still room for improvements
in our implementation. However, part of that truth is that DPDK supports almost all
hardware o�oading features at the price of increased complexity while ixy only uses
CRC checksum o�oading.

6.4 Unsafe Code

Our implementation of the ixy driver consists of a manageable number of lines of unsafe
code. Table 6.2 compares the amount of unsafe code used in our implementation to the
amount of unsafe code in two other Rust network drivers, the e1000 and the rtl8168
driver from Redox which are presented in more detail in Chapter 7.

Driver Speed Lines of Code Unsafe Code % Unsafe
ixy 10 Gbit/s 1306 125 9.57%
e1000 (Redox) 1 Gbit/s 393 140 35.62%
rtl8168 (Redox) 1 Gbit/s 362 144 39.78%

Table 6.2: Lines of unsafe code in three di�erent network drivers written in Rust.

The results clearly show that our implementation uses proportionally less unsafe code
than the two other drivers. In fact, while ixy consists of 10% unsafe code, e1000 and
rtl8168 are made up of almost 40% unsafe code. Interestingly, the driver with the
highest amount of code in total has the least amount of unsafe code while the driver
with the least amount of code in total has the highest amount of unsafe code.

However, many lines of unsafe code are not necessarily an indicator for bad code qual-
ity or unsafe programs. Vast amounts of the Rust standard library consist of unsafe
code and nevertheless Rust is considered a safe programming language. It is therefore
necessary to assess on a case by case basis whether unsafe code is used appropriately or
not.

In case of the Redox drivers, it stands out that they make massive use of unsafe

code with about 150 lines of unsafe code out of about 400 lines in total. Looking at
their source code, we suspect that the developers of Redox prioritized having working
implementations of these standard drivers over minimal use of unsafe and providing
safe abstractions, and thus declared too much code as unsafe.

31

Chapter 6: Evaluation

We do however have to note that reducing the amount of unsafe code should be the
goal of every developer as yet one erroneous line of unsafe code can be enough to cause
undefined behavior.

32

Chapter 7

Background and Related Work

Rust is still a quite new programming language. Since the first stable release was
published merely three years ago, there are not many Rust programmers and projects
(especially in relation to low-level programming) yet. Nonetheless, at least three oper-
ating systems are currently developed in Rust: Blog OS [21], intermezzOS (which was
heavily influenced by Blog OS) [7] and Redox [14]. Blog OS and intermezzOS are both
educational operating systems that provide a lot of documentation to enable the reader
to program an operating system himself. Redox on the other hand is a real-world oper-
ating system “aiming to bring the innovations of Rust to a modern microkernel and full
set of applications” [14]. Redox also provides a lot of documentation but less detailed
than the educational systems. However, as a working operating system Redox contains
real-world drivers. Therefore, we will go into more detail on Redox in the following
section.

7.1 Redox

Redox is an operating system written entirely in Rust. It was created by Jeremy Soller,
first published on April 20, 2015 and is still actively developed by about 25 developers.
Redox aims to be secure, free and usable by providing a fully functional Unix-like
microkernel. It currently supports all x86-64 CPUs.

At this time, Redox contains drivers for NICs of the e1000 and rtl8168 families. It is
interesting to read through the source code of these two drivers as they use di�erent
approaches and seem to be the only network drivers written in Rust so far. Unfortu-
nately, there is not much documentation on the drivers yet. There is an online book

Chapter 7: Background and Related Work

about Redox written by the Redox developers, however, the chapter about drivers is
still empty.

Looking at the source code, there are a few conceptual di�erences between the two
drivers. While the e1000 driver uses constants for the register o�sets of the NIC just
like our implementation does, the rtl8168 driver uses a special register struct consisting
of the registers defined as arrays of a user defined memory-mapped I/O (MMIO) type.

For reading from and writing to the registers, rtl8168 implements a read and a write

method on the MMIO type while e1000 uses a read_reg and a write_reg function
almost identical to our implementation.

Both drivers implement a device struct with methods like new to return a yet-to-be-
initialized device, init to reset and initialize the device or next_read returning the
size of the next packet in the receive queue. They also implement a trait SchemeMut

for this device struct containing a read and a write function. Unlike our driver, these
functions take a reference to a bu�er and copy the packet data from DMA memory to
that bu�er and back. We can therefore say with certainty that these drivers are less
performant than our implementation.

Nevertheless, these two real-world drivers prove that writing network drivers in Rust is
not just an abstruse scientific idea but a practical and feasible task, one that has already
been taken over.

34

Chapter 8

Conclusion

We implemented a user space network driver in Rust to show language specific advan-
tages and disadvantages of Rust and to answer the question whether Rust is a suitable
programming language for network drivers. The full code of our implementation as well
as the code of the reference implementation are available on GitHub [3, 4].

As Chapter 3 makes clear, one of the most important requirements for a programming
language for network drivers is performance. While this might not be the case for all
kinds of drivers, for network drivers it certainly is. Thus, a reasonable driver should
have a performance su�ciently close to an implementation in C or C++, two languages
well known for their e�ciency and widespread use. The performance measurements in
Chapter 6 show that Rust is able to fulfill this requirement. Though our implementation
is slightly less performant than the reference implementation in C, it is fast enough to
be used in real-world applications as it is more than six times faster than the default
kernel network stack.

The great advantage of Rust besides performance is its memory safety. Although, like
any man-made object, Rust is not 100% perfect – there is a lot of unsafe code in the
standard library and from time to time even bugs like a recent security vulnerability
regarding str::repeat() shows1 –, Rust does a great job on improving the safety of
computer programs by enforcing strict rules on memory handling.

Regardless of the programming language, code contains on average 15-50 errors per
1000 lines of code [12]. There might not be less programming errors in Rust code but

1 https://blog.rust-lang.org/2018/09/21/Security-advisory-for-std.html

at least they are less likely to lead to undefined behaviour and jeopardize our system
like programs in C/C++ do.

Future work on the driver might include an implementation of the VirtIO-version as
well as minor improvements regarding the overall performance. Additionally, a multi-
threaded version of the ixgbe-driver could be implemented. Most of our code like the
memory allocations on the huge pages should be thread-safe already so this might be
an achievable goal for the near future.

Based on our findings we can conclude that Rust is a very well-suited programming
language for writing network drivers. It is not only a fast and safe systems programming
language but was also voted most beloved programming language in 2016, 2017 and 2018
[15, 16, 17]. Writing more drivers in Rust would certainly lead to safer and more reliable
computer systems.

36

Chapter A

List of Acronyms

BAR Base address register.
CPU Central processing unit.
DMA Direct memory access. Feature of computer systems that allows hardware to

access main system memory independent of the CPU.

IOMMU I/O memory management unit. Connects a DMA-capable I/O bus to the
main memory.

MMIO Memory-mapped I/O.

NIC Network interface card.
OSI Open Systems Interconnection. Reference model for layered network archi-

tectures by the OSI.

Bibliography

[1] Jim Blandy and Jason Orendor�. Programming Rust: Fast, Safe Systems Devel-
opment. O’Reilly Media, 2017. isbn: 1491927283.

[2] DPDK Website. https://www.dpdk.org/. Accessed: 2018-10-05.
[3] Simon Ellmann. Ixy.rs source code. https://github.com/ixy-languages/ixy.

rs. Accessed: 2018-09-13. 2018.
[4] Paul Emmerich. Ixy source code. https://github.com/emmericp/ixy. Accessed:

2018-09-13. 2018.
[5] L Gorrie et al. Snabb: Simple and fast packet networking.
[6] Intel 82599 10 GbE Controller Datasheet. Rev 3.3. Intel. 2200 Mission College

Blvd., Santa Clara, CA 95052, USA, Mar. 2016.
[7] intermezzOS. http://intermezzos.github.io/. Accessed: 2018-09-15.
[8] Taesoo Kim. A minimal Linux kernel module written in rust. https://github.

com/tsgates/rust.ko. Accessed: 2018-10-03. 2016.
[9] Steve Klabnik and Carol Nichols. The Rust Programming Language. No Starch

Press, 2018. isbn: 9781593278281.
[10] Eddie Kohler et al. “The Click modular router”. In: ACM Transactions on Com-

puter Systems (TOCS) 18.3 (2000), pp. 263–297.
[11] Linux Kernel Documentation: VFIO - "Virtual Function I/O". https://www.

kernel.org/doc/Documentation/vfio.txt. Accessed: 2018-10-01.
[12] Steve McConnell. Code complete. Pearson Education, 2004.
[13] Ben Pfa� et al. “The Design and Implementation of Open vSwitch.” In: NSDI.

Vol. 15. 2015, pp. 117–130.
[14] Redox. https://www.redox-os.org/. Accessed: 2018-09-15.
[15] Stack Overflow Developer Survey Results 2016. https://insights.stackoverflow.

com/survey/2016#technology-most-loved-dreaded-and-wanted. Accessed:
2018-09-28.

[16] Stack Overflow Developer Survey Results 2017. https://insights.stackoverflow.

com/survey/2017#technology-most-loved-dreaded-and-wanted-languages.
Accessed: 2018-09-28.

[17] Stack Overflow Developer Survey Results 2018. https://insights.stackoverflow.

com/survey/2018#technology-most-loved-dreaded-and-wanted-languages.
Accessed: 2018-09-28.

[18] Maximilian Stadlmeier. Ixy.cs source code. https://github.com/ixy-languages/

ixy.cs. Accessed: 2018-09-21. 2018.
[19] Maximilian Stadlmeier. “Writing Network Drivers in C#”. BA thesis. Technical

University Munich, Aug. 2018.
[20] Sebastian Voit. Ixy.go source code. https://github.com/ixy-languages/ixy.

go. Accessed: 2018-10-13. 2018.
[21] Writing an OS in Rust (Second Edition). https://os.phil-opp.com/. Accessed:

2018-09-15.

40

	Introduction
	Network Communication in Linux
	Kernel Space
	User Space

	Choosing Rust for Drivers
	Syntax
	Type System
	Memory Management and Safety
	Ownership
	Unsafe Code

	Ixy
	Implementation
	Design
	Architecture
	Security Considerations
	Initialization
	DMA
	Memory Pools
	Receiving Packets
	Transmitting Packets

	Evaluation
	Throughput
	Batching
	Profiling
	Unsafe Code

	Background and Related Work
	Redox

	Conclusion
	List of Acronyms
	Bibliography

