XRay: A Function Call Tracing System

Authors:
Alistair Veitch (aveitch@google.com)
Dean Berris (dberris@google.com)
Eric Anderson (echoalfa@google.com)
Nevin Heintze (nch@google.com)
Ning Wang (nwang@google.com)
Contact:
google-xray@googlegroups.com

Date: 2016-04-05

Table of Contents

Function Call Tracing in Production
Introducing XRay
How XRay Works
XRay Overheads
Implementation Details
Compiler-inserted Instrumentation Points
Runtime Logging and Support Library
Conversion and Analysis Tools
Current Work and Future Plans

Abstract

Debugging high throughput, low-latency C/C++ systems in production is hard. At Google we
developed XRay, a function call tracing system that allows Google engineers to get accurate
function call traces with negligible overhead when off and moderate overhead when on,
suitable for services deployed in production. XRay enables efficient function call entry/exit
logging with high accuracy timestamps, and can be dynamically enabled and disabled. This
white paper describes the XRay tracing system and its implementation. It also describes
future plans with open sourcing XRay and engaging open source communities.


mailto:aveitch@google.com
mailto:dberris@google.com
mailto:echoalfa@google.com
mailto:nch@google.com
mailto:nwang@google.com
mailto:google-xray@googlegroups.com

Function Call Tracing in Production

At Google we run distributed systems handling massive amounts of concurrent requests
that do everything from serving a webpage to storing bytes on disks. Understanding the
performance of these complex systems is difficult given the abstractions involved,
asynchronous programming with callbacks, and even interaction between threads
synchronising amongst each other. It can be especially difficult to track down what affects
performance in rare events, which can be rare because they occur at the latency tail', or
because they are outlier requests to the service. Seeing what happens "at the tail" allows
software engineers to diagnose the performance of systems in these rare events that have
an impact on the overall performance of the system.

The question then becomes how do you find these "needle in a haystack" events while
running in production? Time-based traces let developers track down these issues when
standard approaches such as sampling, logging, and aggregate statistics fail. What kind of
time-based trace data would be useful?

Ideally, we'd like to get non-sampled function call traces with high precision timestamps
from production servers that tell us which threads are running what code and when.
However, instrumenting all functions is usually too expensive for production use. To deploy
in production, we require that:

@® The cost is acceptable when tracing and barely measurable when not tracing.

@® Instrumentation is automatic and directed towards functions that are important for
understanding the binary’s execution time.

@ Tracing is efficient in both space and time -- only recording what is required and what
matters.

In addition to the above, we also require:

@ Tracing is configurable with thresholds for storage (how much memory to use) and
accuracy (whether to log everything or only function calls taking at least some
amount of time).

Tracing does not require changes to the operating system nor super-user privileges.
Tracing can be turned on and off dynamically without having to restart the server.

' For more on why optimising tail latency matters, refer to "The Tail at Scale", by Jeff Dean and Luiz
Barroso, published to the Communications of the ACM, vol. 56 (2013), pp. 74-80.


http://research.google.com/pubs/pub40801.html

Introducing XRay

XRay is a function call tracing system developed internally at Google for debugging
performance issues in production servers. XRay is not specific to a class of applications and
is applicable to any C/C++-based binary -- from storage servers handling multiple thousands
of requests per second to debugging command-line tools and unit tests. XRay is a suite of
tools integrated to provide insights into how an application is performing through a
combination of compiler infrastructure, a runtime library, and post-tracing analysis tools.

In more detail, XRay consists of the following:

@® Changes to the compiler to insert small "no-op" code sequences in function entry
and exit points, which at runtime get patched to enable function-level tracing.

@® Aruntime library for logging function entry/exit events that dynamically prunes
recorded events to maximize the ‘value-per-MB' of the recorded traces. .

@ A tool that reconstructs timestamped function call trees from the XRay traces.

@ Analysis tools that take the function call logs and highlight potential issues such as
lock contention.

This allows engineers to build and deploy a single XRay-instrumented binary to production
that can be used both for standard deployment (tracing turned off, overhead minimal) as
well as for debugging . When debugging live systems, the runtime library gathers trace data
on demand which provides very detailed function call traces, as well as input to analysis
tools.

XRay is one part of a suite of tools for debugging systems at Google. It has been used
successfully to identify latency issues in storage systems, web serving, ads serving, as well as
other services in production.

How XRay Works

XRay relies on compiler changes to insert no-op sleds? in function entry/exits, and record
those locations in tables encoded in the object files. At runtime, if XRay is disabled, these
no-op sleds are executed as-is and add minimal execution overhead. However, if XRay is
enabled, the XRay runtime library overwrites these no-ops with calls to instrumentation
code that logs function entry/exit information to in-memory buffers. These logs also contain

2 These "no-op sleds" are a few bytes of code emitted by the compiler that do nothing.



cycle-counter timestamps and enough metadata to reconstruct the program's operation in
post-processing.

XRay works in fully multithreaded programs. Turning tracing on introduces code at runtime
to insert instrumentation at the right sections of the program code. Turning tracing off
undoes these changes. XRay keeps the program semantics intact without having to force
single processor mode or stopping execution of the program while the instrumentation is
being added and enabled.

XRay Overheads

To minimize the costs of the no-op sleds inserted at function entry and exit points, XRay
employs heuristics to determine which functions to instrument. XRay will only instrument
functions that are either:

@ Atleast N instructions. By default N is 200, based on an assumption that really small
functions (without loops in them) are unlikely to take a significant amount of time
and therefore are not worth instrumenting. This can be tuned by flags at compilation
time to tweak the number of instructions to use as a threshold.

@® Containing non-trivial loops. This assumes that loops may be introducing a variable
amount of time, and that users in general would like to see this variability accounted
for by XRay.

When tracing is enabled, we've measured an increase of between 20-40% in CPU usage with
a proportional in execution time. Because of this known overhead, we usually enable XRay
tracing and collection for brief periods of time to minimise the effect on live running
systems and collect useful data from services under load. Typically we collect around a few
seconds of data, which requires around 200MB of memory on a busy server.

We also typically only see up to a 2% increase in binary size with the XRay instrumentation
points.

Implementation Details

XRay has a few moving parts that work together to provide an accurate picture of what
functions are running in a server. We cover each of those moving parts in detail in the
following sections.



Compiler-inserted Instrumentation Points

At Google, we have patches on top of GCC that implement the XRay instrumentation point
insertion heuristics. The result of these patches yield code that in x86 assembler looks like:

local_block_sled_0:
jmp . + 0Ox09
(9 bytes worth of nops)
# function prologue starts, followed by the body.
# function epilogue starts, just before ret...
local_block_sled_1:
retq
(10 bytes worth of nops)

Each object file then has two named sections (__function_patch_prologue,
__function_patch_epilogue) where the various addresses of the sled labels
(Local_block_sled_N) are kept. These sections gets consolidated when the binary is
linked statically.

As mentioned earlier, we apply a heuristic on each function encountered by the compiler
when emitting the assembler. The heuristic can be thought of as an implementation of the
following pseudocode:

if dinstruction_count(function) > threshold
OR has_non_trivial_loop(function):
xray_instrument(function)

emit_function(function)

The threshold is user-controllable as a command-line option.

XRay also supports attributes that can be added to functions to ensure that they are always
instrumented if the XRay option is enabled in the compiler. These attributes take the form:

__attribute__((always_patch_for_instrumentation))
void Function() {

}

These attributes can be explicitly provided for functions that should always be instrumented
(e.g. functions for locking mutexes for lock contention analysis) and treated as special by the
runtime library.



Runtime Logging and Support Library

At runtime, XRay provides APIs to install the appropriate patch instructions into the
instrumentation sleds. This API also includes a mechanism for installing a logging function
called for every function entry and exit sled. The library loads the instrumentation map and
goes through and patches the following instructions:

#(1) for function entry sleds
mov $<function id>, %rioed
call __xray_FunctionEntryStub

#(2) for function exit sleds
mov $<function id>, %rioed
jmp __xray_FunctionExitStub

The process of patching and un-patching the instrumentation sleds is:

1. We go through each entry in the instrumentation map either loaded at runtime from
an external file or from the special sections in the binary and do the following;:

a. For the function entry sleds, we replace the jmp and 9-byte nops with # (1)
above by writing the last 9 bytes first (the call), then atomically writing the
first two bytes (the mov) over the "jmp . + Ox09 instruction.

b. For the function exit sleds, the process is similar to preserve correct execution
in multithreaded environments.

2. Once all the sleds have been patched, we atomically set a flag at runtime checked by
both the __xray_FunctionEntryStub and __xray_FunctionExitStub
functions to enable function call logging.

3. When tracing is explicitly turned off, we do either one of the following:

a. If asked to explicitly "unpatch” the code, we go through the instrumentation
map and reverse the process donein 2, 1.3, and 1.b.

b. If we only disable the logging but keep the instrumentation in place, we
atomically set the flag checked by both __xray_FunctionEntryStub and
__xray_FunctionExitStub to false. As an optimisation we also change the
first instruction in both __xray_FunctionEntryStub and
__Xray_FunctionExitStub to be an immediate “ret" to further lower the
cost of the instrumentation functions.

This process has been tuned to be safe on multithreaded applications, allowing the process
to continue making progress while instrumentation is being added and removed. The atomic
updates above makes sure that the program counter for all cores always points to a valid
instruction.



The choice in 3 above is determined by whether the user just wants to disable the logging
functionality for a period of time. This has been useful for periodic tracing of the same
application running in production at different times. Collecting sample traces is one way of
gathering enough data for offline analysis.

The __xray_FunctionEntryStub and __xray_FunctionExitStub functions call
logging functions for entry and exit logging respectively. These logging functions do the
following:

LogFunctionEntry:
@® Get a cycle counter (RDTSC in x86)
@ Log an entry to a thread-specific buffer of the following form:
O Function ID, Function Entry Identifier, Cycle counter delta
@ Returns to the calling function.

LogFunctionExit:
@ Get a cycle counter (RDTSC in x86)
@® Logs an entry of the form:
O Function ID, Function Exit Identifier, Cycle counter delta
@ Returns to the calling function.

Each thread will be provided an 8 Kilobyte (KB) buffer the first time a thread needs to write a
log entry. Each 8KB block is dedicated to a thread, eliminating the need to synchronise
among multiple threads and implicitly maps blocks to threads without having to record the
thread ID for every record. These blocks have a 192-byte header and 1000 8-byte (64-bit)
chunks for each record. Each entry as described above will be:

<metadata (8 bits), function id (24 bits), 32 bits Cycle counter delta>

The 32 bits come from a 64 bit TSC discarding the 10 least significant and highest 22 bits.
This represents microsecond accuracy for each log entry in this buffer. The 8 bits of
metadata indicate whether this entry is a function entry, function exit, or a metadata entry.
For example, a metadata entry is used to indicate when a TSC wraps around. Further
optimisations also allow for writing just 4 bytes for a record (6 bits metadata, 19 bits
function id, and 8 bits cycle counter delta).

The header bytes include information about the thread (the processid and thread id in
Linux), and a reference 64-bit TSC and a wallclock entry in microsecond precision (from
gettimeofday). These are used in post-processing to stitch together the timestamps from TSC
in microsecond granularity to allow conversion to human-readable timestamps relative to
some reference wallclock time.



The logging functions by default prune records that are less than 5 microseconds equivalent
in walltime deduced from the cycle counter deltas. This allows XRay to retain only records
that have a measurable impact in walltime. This behaviour is based on internal
experimentation and is configurable.

The remaining part of the logging implementation is a "dump data" function, which gathers
all the thread-specific buffers used by the tracing system and either makes the data
available in memory as an iterable set of 8K chunks of data or writes it out to different files
with a predefined naming convention. The XRay library uses a filename provided via a
commandline option. Each thread's chunks will be written out into different files containing
the thread id. The files will contain the raw XRay trace logs which will later be analysed by a
separate set of tools.

When the thread runs out of space for a given block it returns this block to, and gets another
block from, a circular buffer of blocks.

Conversion and Analysis Tools

XRay provides a library to allow for reconstructing function call trees from the raw trace data
into a canonical data format for events. We have internal tools that convert the event data
files into different formats:

@® HTML Trace File. We turn the data into a standalone interactive spreadsheet-like
HTML file that shows all the function calls that were recorded, which threads they
showed up in, in which RPCs they were being processed in, and how long each
function call took. We've implemented some optimisations in terms of encoding the
data so that search and filtering functionality is efficiently implemented in self-hosted
JavaScript. This has been used to debug both rare and common performance issues
(expensive copies of large objects, memory allocation/deallocation patterns, etc.)

@® Domain specific analysis results. We also have internal tooling that allows for writing
analysers using an analysis framework to perform domain specific pattern matching.
We've used this to find certain call patterns that usually show common problems
(slow writes, lock contention, thread residency analysis, etc).

In Google, XRay is used as one data source within a more comprehensive performance
analysis and debugging suite of tools.



Current Work and Future Plans

We are committed to making XRay available as open source software, and as such we are
engaging the LLVM? community to get all of the pieces of XRay released -- changes to the
compilers, the runtime library, and ways to work with the generated traces. We are also
committing to engaging open source communities to build the tools to make XRay data
more useful. We believe that function call tracing is one tool in a toolbox of debugging and
performance analysis tools that every developer should have available.

Once XRay is released and widely available, we are going to work with developers willing to
port XRay into other machine architectures and operating systems. We will actively be
involved in maintaining XRay and improving it based on feedback from the open source
community. Because XRay is used at Google to find hard-to-debug problems, we will make
sure that XRay continues to be an actively maintained project for the long term.

We are also going to engage potential users and tool builders that want to make
performance debugging a more pleasant experience for the C/C++ developer community as
well as other languages.

Acknowledgements

XRay was done at Google by Harshit Chopra, Robert Bowdidge, Sanjay Bhansali, and Vlad
Losev with additional contributions by David Goldblatt . Without their efforts and investment
in building XRay, the team currently working with it (Alistair Veitch, Dean Berris, Eric
Anderson, Nevin Heintze, Ning Wang) and other Google teams would have a very hard time
finding performance bugs in production systems. We also would like to thank Eric
Christopher, Chandler Carruth, Matt Austern, and Andrew Fikes who reviewed an early draft
of this white paper.

% The LLVM Project is at http://llvm.org/.


http://llvm.org/

