
automemcpy: A Framework for Automatic
Generation of Fundamental Memory Operations∗

Guillaume Chatelet
Google Research

France

gchatelet@google.com

Chris Kennelly
Google

USA

ckennelly@google.com

Sam (Likun) Xi
Google

USA

xyzsam@google.com

Ondrej Sykora
Google Research

France

ondrasej@google.com

Clément Courbet
Google Research

France

courbet@google.com

Xinliang David Li
Google

USA

davidxl@google.com

Bruno De Backer
Google Research

France

bdb@google.com

Abstract

Memory manipulation primitives (memcpy, memset, memcmp)

are used by virtually every application, from high perfor-

mance computing to user interfaces. They often consume a

significant portion of CPU cycles. Because they are so ubiq-

uitous and critical, they are provided by language runtimes

and in particular by libc, the C standard library. These im-

plementations are heavily optimized, typically written in

hand-tuned assembly for each target architecture.

In this article, we propose a principled alternative to hand-

tuning these functions: (1) we profile the calls to these func-

tions in their production environment and use this data to

drive the important high-level algorithmic decisions, (2) we

use a high-level language for the implementation, delegate

the job of tuning the generated code to the compiler, and (3)

we use constraint programming and automatic benchmarks

to select the optimal high-level structure of the functions.

We compile our memfunctions implementations using

the same compiler toolchain that we use for application

code, which allows leveraging the compiler further by al-

lowing whole-program optimization. We have evaluated our

approach by applying it to the fleet of one of the largest

∗Our memory function implementations [14], benchmarking methodol-

ogy [11, 13] and raw measurements [10] have been open sourced.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

ISMM ’21, June 22, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8448-3/21/06.

https://doi.org/10.1145/3459898.3463904

computing enterprises in the world. This work increased the

performance of the fleet by 1%.

CCS Concepts · Software and its engineering → Soft-

ware development techniques; ·General and reference

→ Measurement; Performance; Empirical studies; Met-

rics.

Keywords memory functions, C standard library

ACM Reference Format:

Guillaume Chatelet, Chris Kennelly, Sam (Likun) Xi, Ondrej Sykora,

Clément Courbet, Xinliang David Li, and Bruno De Backer. 2021.

automemcpy: A Framework for Automatic Generation of Funda-

mental Memory Operations. In Proceedings of the 2021 ACM SIG-

PLAN International Symposium on Memory Management (ISMM ’21),

June 22, 2021, Virtual, Canada. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3459898.3463904

1 Introduction

Interacting with memory is an essential part of software

development. At the lowest level the two fundamental mem-

ory operations are load and store, but developers frequently

use higher level memory primitives such as initialization,

comparison, and copy. These operations are at the base of

nearly all libraries,1 language run-times,2 and even program-

ming languages constructs.3 They may be customized for

some particular contextsÐsuch as for kernel use or embed-

ded developmentÐbut the vast majority of software depends

1e.g., std::string and std::vector in the C++ Standard Template Library.
2Garbage collectors move memory to reduce fragmentation, reflection APIs

rely on run-time type identifier comparison.
3In some C implementations, passing a large struct by value inserts a call

to libc’s memcpy.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

39

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3459898.3463904
https://doi.org/10.1145/3459898.3463904

ISMM ’21, June 22, 2021, Virtual, Canada G. Chatelet, C. Kennelly, L. S. Xi, O. Sykora, C. Courbet, X. D. Li, and B. De Backer

Table 1. Overview of memcpy source code language for vari-

ous architectures and libc implementations.

bi
on
ic

gl
ib
c

fr
ee
bs
d

di
et
lib
c

uC
lib
c

eg
lib
c

kl
ib
c

m
us
l

aarch64 asm asm asm - - - - asm

arm asm asm asm - - asm - asm

i386 asm asm asm asm C asm - asm

x86-64 asm asm asm asm asm asm - asm

alpha - asm - - - asm - -

generic - - - - - - C C

ia64 - asm - - asm asm - -

mips - asm asm - - - - -

powerpc - asm asm - C - - -

s390 - asm - - - asm - -

sh - asm - - asm asm - -

sparc32 - asm - asm asm asm - -

sparc64 - asm - asm - asm - -

on their implementations in the C standard library: memset,

memcmp and memcpy4.

In the rest of this paper, we will focus on the optimization

of memcpy as the hottest of the three functions, but the same

approach can be applied to the other two.

As a reminder, memcpy is defined in ğ7.24.2.1 of the C

standard [21] like so: The memcpy function copies n characters

from the object pointed to by s2 into the object pointed to by

s1. If copying takes place between objects that overlap, the

behavior is undefined.

2 Overview of Current Implementations

2.1 Pervasive Use of Assembly

Memory primitives have been part of the C standard library

for at least three decades. They have seen persistent efforts

to exploit the capabilities (and work around the quirks) of

each architecture as it evolved over time. Developers, who

were typically well-versed in the subtleties of their target

micro-architecture, would choose assembly to obtain the

maximal amount of control on the resulting generated code.

As a result, out of the eight main publicly available libc im-

plementations (see Table 1), all but one use assembly to

implement memcpy. As shown in Table 2, glibc5 alone has six

x86-64 versions of memcpy to exploit different instruction set

extensions such as SSE2, SSE3, AVX, and AVX512.

2.2 Dynamic Loading and Relocation

Standard C libraries are usually provided as shared libraries,

which brings a number of advantages:

• it avoids code duplicationÐsaving disk space and mem-

ory,

4memmove is not considered in this paper as: (1) it requires additional logic

and (2) in our experience, its use is anecdotal compared to memcpy, memcmp

and memset.
5The GNU C library.

Table 2. Binary size of glibc 2.31 memcpy implementations

for x86-64.

Name Size (bytes)

__memcpy_avx512_no_vzeroupper 1855

__memcpy_avx512_unaligned_erms 1248

__memcpy_avx_unaligned_erms 984

__memcpy_sse2_unaligned_erms 765

__memcpy_sse3 10695

__memcpy_sse3_back 10966

• it enables quick updatesÐthis is especially important

for maintenance and security reasons,

• to the developer, it accelerates the compilation process

by reducing link time.

Shared libraries also come with costs:

• Symbols from shared libraries can’t be resolved at com-

pile time and they need extra run-time infrastructure.

Modern Linux systems and x86-64 in particular imple-

ment shared libraries using Position Independent Code

(PIC) [5ś7]. PIC avoids costly relocation of function

addresses at load time by using an extra indirect call

through the Procedure Linkage Table (PLT). This indi-

rect call hurts performance and increases instruction

Translation Lookaside Buffer (iTLB) misses.

• Functions imported from shared libraries are not vis-

ible to the linker. This prevents optimizations such

as inlining and Feedback-Directed Optimization (FDO).

We discuss FDO in more detail in Section 2.4.

In Google data centers, applications are statically linked and

their size is typically in the hundreds of megabytes. Statically

linking the memory primitives only marginally increases the

binary size and overcomes the aforementioned problems.

2.3 Run-Time Dispatch

As CPUs and Instruction Set Architectures (ISAs) evolve, new

instructions become available and performance of older in-

structions may improve or degrade. Unless a libc is built for

a specific CPU model, it must accommodate the older models

but it should also provide an optimized versions for newer

CPU models. To this end, Linux libraries use a run-time dis-

patching technique on top of PLT called IFUNC [26] that is

commonly used by glibc. On the first call to an IFUNC, the

indirect addressÐstored in the Global Offset Table (GOT)Ð

points to a custom resolver function that determines the best

implementation for the host machine. The resolver then over-

rides its own GOT entry so that subsequent calls access the

selected function. After the setup phase, an IFUNC has the

same indirect call costs and limitations as a function from a

shared library, even if it is linked statically.

40

automemcpy: A Framework for Automatic Generation of Fundamental Memory Operations ISMM ’21, June 22, 2021, Virtual, Canada

2.4 Feedback-Directed Optimization

The most significant optimizations in recent years came from

the mainstream adoption of Feedback-Directed Optimiza-

tion6 (FDO) with global efficiency improvements typically

over 10% [15]. FDO relies on a measured execution profile to

make informed compilation decisions7 based on how the ap-

plication actually executes the code. Because memory primi-

tives are so pervasive among all applications, they are espe-

cially well covered by sampling profilers8 and could greatly

benefit from FDO.

However, FDO can only be applied to the parts of the

application for which source code is available to the com-

piler/linker. In particular, it can’t be applied to dynamically

linked functions and IFUNCs. Moreover, FDO does not under-

stand and is not allowed to modify code written in assembly.

This effectively means that the way memory functions are

implemented onmost systems prevents them from benefiting

from one of the most efficient optimization techniques.

3 Our Approach

Based on our analysis of the shortcomings of current im-

plementations, we design our implementation primitives

around two main principles:

• High-level description. The implementation should

be written using a high-level languageÐwe chose C++

for its expressiveness. This makes the code shorter and

more readable, and it allows the compiler to use ad-

vanced optimization techniques, including FDO.When

needed, we examine the generated code to debug per-

formance issues, but never write assembly directly.

• Data-based optimization. On top of fleet-wide ex-

ecution profiles, we record run-time values of the

memcpy size argument for several representativework-

loads. We use the measured size distribution to auto-

matically select the best set of elementary strategies

and design the decision logic driving the function.

3.1 Measuring size Distributions

There are several ways of collecting the run-time values for

the size argument:

1. Manually instrument our memcpy implementations.

2. Rely on compiler’s instrumentation and value profiler.

3. Rely on profiling infrastructure.

Solutions 1 and 2 require a special (instrumented) build

of each application and add an extra run-time cost which

is impractical for use in production. Instead, we make use

of existing profiling infrastructure: the Linux perf tool [27].

This is an interface to the Linux performance monitoring

6In some contexts, FDO is also called Profile-Guided Optimization.
7Examples of what can be achieved are: determining which functions to

inline, or how to lay out the code to improve locality and reduce branching.
8Modern datacenters continuously run sampling profilers on their work-

loads as a part of standard operations [22].

subsystem that can attach to a running process and collect

profiling data without a need to recompile or restart the ap-

plication. Among other features, it allows sampling register

values at certain points during the execution of the program.

In our case, we set it up to sample the RDX register right af-

ter a call instruction. Under the System V x86-64 ABI [25],

this register contains the size argument of memcpy. Since

memcpy is statically linked, its address in the binary is known

at compile time, so we can easily filter samples belonging to

memcpy and gather them into a histogram.

3.2 Performance Definition

There are many dimensions to consider when designing

a memory function implementation. Contrary to existing

implementations that usually optimize for throughput,9 we

will focus on latency and code size as they aremost important

for our use cases. Code size is measured with the help of

the nm linux command and latency is measured through a

custom benchmarking framework. We define latency as the

running time of the memory operation for a given hardware

in a given context.

3.3 Benchmarking

Measuring the performance of memory functions is both

hard and critical, so we devote a whole section to our bench-

marking methodology. In the context of Google, we can rely

on fleet-wide profiling to measure the efficiency of an imple-

mentation. However, linking statically means that we have

to wait for all applications to be released before seeing the

results, which is not practical.

The aim here is to provide an accurate and reproducible

measurement of latency. To do so we heed the following

design principles:

1. Measuring instrument. We make use of the Time

Stamp Counter (TSC). It is the most precise clock avail-

able: a hardware register located on the CPU itself,

counting the number of CPU cycles elapsed since boot.

There are two versions of the TSC on x86-64 proces-

sors. One is in-core and ticks at a rate depending on a

number of factors (power saving mode, defined max-

imum and minimum frequency, thermal regulation);

the other one is Uncore,10 which ticks at a fixed fre-

quency usually referred to as ref cycles. Most high

end CPU architectures provide similar functionality

(SPARC, ARM, IBM POWER). The Uncore counter’s

frequency is about the same as that of the processor

in non-turbo mode. We use the Uncore counter to ac-

count for uniformly elapsing time.

2. Frequency Scaling. The Operating System usually

provides a way for the user to control the CPU core

frequencies (i.e., Scaling Governors under Linux), but

9Number of bytes processed per unit of time.
10https://en.wikipedia.org/wiki/Uncore

41

https://en.wikipedia.org/wiki/Uncore

ISMM ’21, June 22, 2021, Virtual, Canada G. Chatelet, C. Kennelly, L. S. Xi, O. Sykora, C. Courbet, X. D. Li, and B. De Backer

the CPUmay reduce its frequency automatically under

some workloads [19, 24]. By instructing the CPU to

run at the maximum allowed frequency and using the

uncore TSC, we make sure to account for potential

frequency reductions.

3. Operating System. To lower the impact of interrup-

tion and process migration, we pin the benchmarking

application to a reserved core.11

4. Compiler perturbations. Clever dead-code and de-

pendency analyses performed automatically by the

compiler may cancel or distort the measurement. To

this end we use techniques such as the escape inline

assembly described by Carruth [8].

5. Memory Subsystem. On modern non-embedded sys-

tems, RAM bus frequency is only a fraction of the

CPU core frequency. This well-known bottleneck is

balanced out by several levels of caching. The number,

size, and speed of each of these layers makes it hard

to attribute the result of the measurement to the algo-

rithm itself. For this reason, our framework takes extra

care to fit all the needed data into the L1 cache. The

results are slightly idealized but more reproducible and

comparable between CPUs of different cache sizes.

6. CPU. At the CPU level, out-of-order execution, su-

perscalar architecture, Macro-Operation Fusion (MOP

Fusion), Micro-Operation Fusion, and speculative exe-

cution make it harder to correlate TSC with individual

instructions. To mitigate these imprecisions and in-

crease the Signal to Noise Ratio (SNR) we run enough

iterations of each function to get noise down to ±1%.

Note that the repeated execution will bias the results

as the CPU will learn the branching pattern perfectly.

Consequently, we randomize the size of the operation

as well as the source and destination pointers. Ran-

domization is pre-computed and stored in an array so

it is not accounted for in the measurement. The size

of the array is large enough to prevent quantization

effects but small enough to keep all data in L1.

Additionally, it is worth noting that a number of effects

do play a role in production and are not directly measurable

through microbenchmarks. We end this section with the

following known limitations:

1. The code size of the benchmark is smaller than the

hot code of real applications and it doesn’t exhibit

instruction cache and iTLB pressure as much.

2. For the reasons stated in item 5 above, the current

version of the benchmark does not handle large oper-

ations spanning multiple cache levels.

11If the processor supports Simultaneous MultiThreading (SMT) all the logi-

cal CPUs sharing the same core should be reserved as well, or SMT should

be disabled altogether.

+ . . .

+ . . .

= . . .

Figure 1. Example Overlapping operation on 11 bytes. Bytes

from the source location are copied using two 8-byte block

operations that partially overlap. The five bytes in the middle

are copied twice.

3.4 Generic Access Strategies

At a high level, a memcpy implementation is assembled from

a set of simpler copying strategies (elementary strategies)

along with its associated decision logic that selects the best

copying strategy for a given size.

By analyzing the code of available implementations and

through experimentation, we identified the following pat-

terns for processing memory. In this section, we list these

strategies and describe their specifics.

3.4.1 Block Operation

A Block Operation consists of accessing a fixed amount of

memory of size 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 . To be efficient, 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 should

correspond to sizes natively supported by load and store

instructions of the CPU architecture. It is the simplest access

pattern and is implemented using the simple load and store

instructions provided by the ISA.

3.4.2 Overlap Operation

This access pattern is the composition of two Block Opera-

tions that may partially overlap, and it is a central compo-

nent of efficient implementations. This approach has several

advantages. First, a single access pattern involving two op-

erations of size 𝑁 can handle a range of sizes ∈ [𝑁 ; 2 × 𝑁].

Second, modern processors offer memory addressing modes

that render this pattern efficient in practice.

Figure 1 shows an example of Overlap Operation for 11

bytes. As depicted by the darker cells, one or more bytes

may be accessed several times. While this strategy is valid

for implementing memcpy, such a technique is not suitable

when volatile12 semantics apply.

3.4.3 Loop Operation

The Loop Operation involves a repetition of Block Opera-

tions followed by a trailing Overlap Operation. Note that

up to 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 − 1 bytes may be accessed twice. Figure 2

shows an example of a Loop Operation.

3.4.4 Aligned Loop Operation

The Aligned Loop Operation starts with a Block Operation

to ensure that reads are aligned. It is then followed by a

12Note that the volatile keyword in C presents a number of issues and is

considered for deprecation [4].

42

automemcpy: A Framework for Automatic Generation of Fundamental Memory Operations ISMM ’21, June 22, 2021, Virtual, Canada

+ . . .

+ . . .

+ . . .

+ . . .

= . . .

Figure 2. Example Loop Operation on 13 bytes. The first 12

bytes are copied using three non-overlapping 4-byte Block

Operations. The remaining one byte is copied using a par-

tially overlapping 4-byte Block Operation. Three bytes are

accessed twice.

+ . . .

+ . . .

+ . . .

+ . . .

+ . . .

= . . .

Figure 3. Example Aligned Loop Operation on 17 bytes. Two

partially overlapping operations are used at the beginning

and at the end. All remaining bytes are handled using aligned

non-overlapping Block Operations.

Loop Operation. Note that in a worst case scenario, up to

𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 − 2 bytes may be accessed three times. Figure 3

shows an example of an Aligned Operation.

3.4.5 Special Instructions

Some ISAs provide primitives to accelerate string manipu-

lation. For example, x86-64 offers specialized instructions

for copy (rep mov), initialization (rep sto) and comparison

(repe cmps). The performance of these instructions varies

greatly from microarchitecture to microarchitecture [28] but

it is important to consider them as their footprint is so small

they could be easily inlined everywhere. In the rest of this

paper we refer to these special instructions as accelerators.

3.5 Run-Time Size Coverage

The Generic Access Strategies we presented in the previous

section can handle one or more sizes, Table 3 lists their run-

time size coverage in terms of 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 .

These strategies can be composed in different ways to

build a full implementation covering the whole size_t range

[0, SIZE_MAX]. By way of illustration, a possible coverage is

given in Table 4.

To find the best memcpy implementation, we use a con-

straint solver to enumerate all valid memcpy implementations

matching our specification. We consider only memory func-

tions that subdivide the range [0, SIZE_MAX] into smaller

Table 3. Size coverage for a given strategy

Operation Size range

Block [𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒, 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒]

Overlap [𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒, 2 × 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒]

Loop [𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒, +∞]

Aligned Loop [𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒, +∞]

Accelerator [0, +∞]

Table 4. An example of coverage for a memory operation

Size range Operation BlockSize

[0, 0] - -

[1, 1] Block 1

[2, 4] Overlap 2

[5, SIZE_MAX] Loop 4

regions and cover each of them using one of the strategies

described in Section 3.4 using the following schema:

A B C D E

| individual sizes | overlap | loop | accelerator |

where A, B, C, D and E are bounds separating the regions.

If the run-time copy size is in [A, B) the copy will be

handled with the individual sizes strategy, in [B, C) with

the overlap strategy, and so on. A and E are anchored to 0

and SIZE_MAX respectively to make sure the whole range

is covered (eq. 1), and we make sure that the bounds are

ordered (eq. 2).

(𝐴 = 0) ∧ (𝐸 = SIZE_MAX) (1)

(𝐴 ≤ 𝐵) ∧ (𝐵 ≤ 𝐶) ∧ (𝐶 ≤ 𝐷) ∧ (𝐷 ≤ 𝐸) (2)

When the two bounds of a region are equal, e.g., when

𝐴 = 𝐵, the region is empty and the corresponding strategy

is not used in the generated function.

The individual sizes region handles each run-time size

individually with a Block Operation. In this study we restrict

B to small values as larger values substantially increase code

size.

(𝐴 = 𝐵) ∨ (𝐵 ≤ 8) ∨ (𝐵 = 16) (3)

The overlap region handles run-time sizes from B to C

by using one or more Overlap Operations. In this study we

explore all overlap regions for 𝑠𝑖𝑧𝑒 ∈ [4; 256] as well as the

empty region.

(𝐵 = 𝐶) ∨





𝐵 < 𝐶

𝐵 ∈ {4, 8, 16, 32, 64, 128}

𝐶 ∈ {8, 16, 32, 64, 128, 256}

(4)

The loop region employs the aligned loop strategy with a

run-time 𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 ∈ {8, 16, 32, 64}. If 𝐶 = 𝐷 , we also force

loop_block = 0 to remove redundant implementations.

43

ISMM ’21, June 22, 2021, Virtual, Canada G. Chatelet, C. Kennelly, L. S. Xi, O. Sykora, C. Courbet, X. D. Li, and B. De Backer

1

2

4

8

(a) Simple tree processing

small sizes first

8

4

1 2

(b) An optimized tree where

most values are above 8

Figure 4. A depiction of two branching strategies

loop_block = 0

𝐶 = 𝐷

}
∨





loop_block ∈ {8, 16, 32, 64}

𝐶 > 2 × loop_block

𝐷 −𝐶 > loop_block

(5)

The accelerator regionmakes use of special instructions

where available. We allow accelerator to start for small

sizes or amongst a set of discrete values.

(𝐷 ≤ 16) ∨ (𝐷 ∈ {32, 64, 128, 256, 512, 1024}) ∨ (𝐷 = 𝐸) (6)

3.6 Branching Pattern

Once a coverage has been determined, it is necessary to

decide which branch should be favored to lower the whole

operation latency. A simple approach is to make sure that

small sizes are processed first so that the cost of branching

is proportional to the amount of bytes to process (Figure 4a).

Another possibility is to prioritize sizes that occur the most.

To this end, we make use of Knuth’s Optimum Binary Search

Trees [23] that constructs a binary search tree producing

code with the shortest expected control height for a given

set of probabilities (Figure 4b).

The implementation can also explore a more elaborate

model to represent the cost of compares, branch instructions,

and taken branches. A hybrid expansion approach can also

be used. For instance when a sequence of individual sizes

gets dispatched to Block Operations, all sizes can be lumped

together and share one jump table. Note that this approach

will be the most effective when it is used for inliningÐusing

per-callsite profile data.

3.7 Optimized Memory Functions

The usage of memory primitives varies widely depending

on the use case. One extreme case is the Linux kernel that

spends a very significant proportion of its time clearing

or copying memory pages, which are always 4096 bytes

in length. Just like libc, the Linux kernel provides several

implementations, with a dynamic selection mechanism. In

contrast, for typical applications running on Google fleet,

we’ve found that sizes are very biased towards zero (see

Section 4.1). The best algorithm for the Linux kernel is not

necessarily optimal for other applications. In this section we

provide a principled approach to design efficient memory

functions tailored to a given environment:

1. We first model the function in terms of its coverage

strategies as described in Section 3.5, and use the Z3

Solver [16] to enumerate all valid coverages. Each of

them is described in terms of its parameters A, B, C, D,

E, and loop_block, and whether we use an optimized

branching pattern or not (Section 3.6).

2. We generate the source code for all of them and en-

code the values of the parameters into the function

nameÐthis allows us to generate all functions in a

single file and quickly identify and understand the

implementation.

3. The code is then compiled and benchmarked on all rel-

evant microarchitectures using synthetic distributions

observed in production.

4. The best performing implementation is chosen, in the

case of a fleet of heterogeneous microarchitectures we

pick the implementation that minimizes the overall

latency.

Not only does this approach allow the functions to be opti-

mized for a particular application (or set of applications) but

it also adapts to special requirements like special compila-

tion flags, new microarchitectures or new CPUs. The model

described here generates 290 different functions which are

benchmarked in one or two hours. It is straightforward to

extend the exploration of the implementation space.

The techniques mentioned here are related to the domain

of auto-tuning which has been an important field of research

inHigh Performance Computing (HPC) [3] and Signal Process-

ing libraries [17, 18, 30]. To our knowledge, the only related

work in this domain is the one from Ying et al. [31], focusing

on optimal generation of assembly for Reduced Instruction

Set Computer (RISC).

4 Results

4.1 Memfunctions Size Distributions

The instrumentation procedure described in Section 3.1 in-

troduces a small overhead (1ś3%) on the application itself

during the time that the profiler is active, due to the overhead

introduced by perf_events profiling. A 30-second profiling

session typically gathers enough data for analysis, depend-

ing on the frequency with which the application calls the

memory operations. Figures 5, 6, and 7 shows the cumula-

tive probability distribution for sizes of the biggest users of

memcpy, memcmp and memset at Google. The data is publicly

available [12]. Table 5 summarizes these figures and shows

44

automemcpy: A Framework for Automatic Generation of Fundamental Memory Operations ISMM ’21, June 22, 2021, Virtual, Canada

0 64 128 192 256 320 384 448 512 576

memcpy size (B)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
er
ce
n
ta
g
e
o
f
al
l
ca
ll
s database 1

database 2

database 3

logging

service 1

service 2

service 3

service 4

storage

Figure 5. Cumulative histogram of memcpy size for various

Google workloads.

0 64 128 192 256 320 384 448 512 576

memcmp size (B)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
er
ce
n
ta
g
e
o
f
al
l
ca
ll
s database 1

database 2

database 3

logging

service 1

service 2

service 3

service 4

storage

Figure 6. Cumulative histogram of memcmp size for various

Google workloads.

Table 5. Percent of calls below certain size values

Function % of calls ≤ 128 % of calls ≤ 1024

memcpy 96% 99%

memcmp 99.5% 100%

memset 91% 99.9%

that the majority of calls to memory functions act on a small

number of bytes.

The fact that the size distribution is strongly skewed to-

wards small sizes advocates optimizing for latency instead

of throughput. We have seen previously that relocation and

run-time dispatch introduce an indirect call which delays pro-

cessing. For example, a trivial zero size memory operation

would still have to go through address resolution and per-

form the indirect call before returning to the calling code. To

remove this latency entirely we link the memory primitives

0 64 128 192 256 320 384 448 512 576

memset size (B)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
er
ce
n
ta
g
e
o
f
al
l
ca
ll
s

database 1

database 2

service 3

storage

Figure 7. Cumulative histogram of memset size for various

Google workloads.

statically inside the binary and refrain from using IFUNC.

This comes with the disadvantage that we can no longer

pick the best implementation for the CPU at run-time; this

choice has to be made during compilation. Arguably, for dis-

tributions skewed towards small sizes, the use of wider load

and store instructions available on newer microarchitectures

doesn’t matter as much. In situations where it is important,

this can be mitigated by providing several binaries covering

the diversity of the fleet.

4.2 C++ Library

In Listing 1, we provide Block, Overlap andAligned Loop C++

implementations of the copy operation. The individual build-

ing blocks are unit tested for correctness, buffer overflow and

maximum number of accesses per byte. Note that the use of

__builtin_memcpy_inline is a compiler intrinsic function

that is semantically equivalent to a for loop copying bytes

from source to destinationÐi.e., has the semantic of memcpy.

Its use is necessary to prevent the compiler from recognizing

the memcpy pattern which leads to a reentrancy problem [9].

4.3 Fleet-Wide Manual Implementation

Now that we have defined the primitive C++ copy functions,

we can assemble them to handle all run-time sizes. Listing 2

shows a generic yet efficient implementation of memcpy that

has been tuned by trying out different building block combi-

nations and parameters. Full source code is available in [14].

Note that this version handles small sizes first. In Section 4.4,

we will take a closer look at size distributions and explore

optimized branching patterns.

A note on the use of AVX instructions. Although a

large portion of Google fleet supports the AVX instruction

set extension, their use is restricted to prevent important

slowdown due to frequency reduction [19, 24]. To that end

45

ISMM ’21, June 22, 2021, Virtual, Canada G. Chatelet, C. Kennelly, L. S. Xi, O. Sykora, C. Courbet, X. D. Li, and B. De Backer

template <size_t kBlockSize>

void CopyBlock(char *__restrict dst,

const char *__restrict src) {

__builtin_memcpy_inline(dst, src, kBlockSize);

}

template <size_t kBlockSize>

void CopyLastBlock(char *__restrict dst,

const char *__restrict src,

size_t count) {

const size_t offset = count - kBlockSize;

CopyBlock<kBlockSize>(dst + offset, src + offset);

}

template <size_t kBlockSize>

void CopyBlockOverlap(char *__restrict dst,

const char *__restrict src,

size_t count) {

CopyBlock<kBlockSize>(dst, src);

CopyLastBlock<kBlockSize>(dst, src, count);

}

template <size_t kBlockSize, size_t kAlignment = kBlockSize>

void CopyAlignedBlocks(char *__restrict dst,

const char *__restrict src,

size_t count) {

CopyBlock<kAlignment>(dst, src);

const size_t ofla =

offset_from_last_aligned<kAlignment>(src);

const size_t limit = count + ofla - kBlockSize;

for (size_t offset = kAlignment; offset < limit;

offset += kBlockSize)

CopyBlock<kBlockSize>(

dst - ofla + offset,

assume_aligned<kAlignment>(src - ofla + offset));

CopyLastBlock<kBlockSize>(dst, src, count);

}

Listing 1. Real C++ code for various copy operation strate-

gies

we make use of LLVM’s -mprefer-vector-width=128 op-

tion that limits the width of generated vector instructions.

For this reason, the x86-64 generated code (clang 12, op-

tions -O3 -mcpu=haswell -mprefer-vector-width=128)

will not use AVX. It is still quite compact (377 bytes) and fits

in six cache lines.

Performance. It is important to point out that although

this implementation does not use all the techniques applied

by glibc (e.g., non temporal move or rep mov) [29], it per-

forms better on Google workloads. As suggested in [2], the

smaller memory footprint compared to glibc (377B vs 765B,

see Table 2) allows more application code to stay in the

instruction cache. Indeed memcpy, memcmp, and memset are

called on a regular basis and can contribute to instruction

cache pressure, evicting previous application code from L1.

void memcpy(char *__restrict dst,

const char *__restrict src,

size_t count) {

if (count == 0)

return;

if (count == 1)

return CopyBlock<1>(dst, src);

if (count == 2)

return CopyBlock<2>(dst, src);

if (count == 3)

return CopyBlock<3>(dst, src);

if (count == 4)

return CopyBlock<4>(dst, src);

if (count < 8)

return CopyBlockOverlap<4>(dst, src, count);

if (count < 16)

return CopyBlockOverlap<8>(dst, src, count);

if (count < 32)

return CopyBlockOverlap<16>(dst, src, count);

if (count < 64)

return CopyBlockOverlap<32>(dst, src, count);

if (count < 128)

return CopyBlockOverlap<64>(dst, src, count);

return CopyAlignedBlocks<32>(dst, src, count);

}

Listing 2. an efficient yet readable implementation of

memcpy

Using this version of memcpy and associated memcmp and

memset improved the throughput of one of our main ser-

vices by +0.65% ± 0.1% Requests Per Second (RPS) compared

to the default shared glibc. Overall we estimate that this work

improves the performance of the fleet by 1%.

4.4 Fleet-Wide Autogenerated Implementations

As illustrated in Figure 5, most of the sizes for memcpy at

Google are heavily skewed toward small values. The most

occurring ones being spread between 0 and 32 with spikes

depending on specific workloads. For the optimized branch-

ing pattern (Section 3.6) we use the sum of the measured

size probability distribution; giving an equal weight to each

of them. The code is compiled and benchmarked on a dedi-

cated pool of machines with isolated cores running the per-

formance frequency governor. We benchmark the following

x86-64 microarchitectures: Intel Sandybridge, Intel Ivybridge,

Intel Broadwell, Intel Haswell, Intel Skylake Server (SKX)

and AMD Rome. The benchmarks make use of the rep mov

instruction and a total of 290 memcpy configurations. We

measure the average latency for each of the 9 size distribu-

tions of Figure 5 and an additional synthetic distribution for

larger sizes (uniformly distributed sizes between 384 and

4096). We produce 1000 samples for each of them to get a

sense of the statistical distribution. We show a sample of the

distributions in Figure 8.

46

automemcpy: A Framework for Automatic Generation of Fundamental Memory Operations ISMM ’21, June 22, 2021, Virtual, Canada

Implementations of memcpy

350 𝜇𝑆

400 𝜇𝑆

450 𝜇𝑆

Figure 8. Distributions of latency measurement for several

memcpy implementations as measured on SKX for service 1.

In the context of this paper, we reduce the thousand sam-

ples to a single median value13 as this provides a total order

over the set of functions. For each distribution we derive a

speedup ratio by dividing each median latency by the one of

the glibc14Ðwhich is our baseline implementation. We use

the geometric mean (geomean) of these speedups to repre-

sent the performance of a particular implementation over the

baseline and across the selected distributions. In the rest of

the paper, we refer to this metric as the score of the function.

This systematic exploration exhibits implementations that

perform about +10% faster than our manual implementa-

tion for four out of six microarchitectures in our particular

environment (combination of workloads and special com-

pilation options). For Haswell and Broadwell, the manual

implementation is already close to the optimum. In Figure 9,

we plot the score for the 290 autogenerated x86-64 memcpy

implementations as measured on Skylake Server.

Key Takeaways. Overall, the best performing functions

for x86-64 rely on a small individual sizes region (𝐵 = 4

or 8) followed by a set of overlapping copies up to 256 bytes

while an aligned copy loop using blocks of 64 bytes helps

accommodate the bigger sizes. The rep mov instruction may

be useful for even bigger copies depending on the microarchi-

tecture but it’s usually on par with implementation relying

exclusively on aligned copy loop. It is to be noted that the

worst performing functions for our workloads are the ones

that rely almost exclusively on the specialized rep mov in-

struction.

Timings. The whole process takes a few hours. The enu-

meration and code generation for all valid implementations

takes a few seconds. The duration of the benchmarking pro-

cess ranges from tens of minutes to a few hours, depending

on a number of parameters such as: the number of samples,

13Considering that some distributions of latency measurement are multi-

modal we acknowledge that a better metric is desirable.
14GNU C Library 2.19 with local modifications.

Table 6. Score for worst, manual implementation and best

memcpy functions taking the system glibc as a baseline.

worst manual best

Rome 0.42 1.35 1.43

Skylake Server 0.54 1.38 1.53

Haswell 0.52 1.39 1.40

Broadwell 0.52 1.42 1.43

Ivybridge 0.57 1.22 1.34

Sandybridge 0.26 1.23 1.35

Neoverse-N1 0.82 1.21 1.36

the number and shapes of the distributions, the number and

efficiency of the generated functions, and the number and

the performance of the considered microarchitectures. In this

study, we used 1000 samples, 10 distributions, 290 functions

and 6 microarchitectures. The single threaded benchmark

is launched on the 6 microarchitectures in parallel and the

results are available in under two hours.

Open Source. One of our goals is to make our improve-

ments available publicly to people who do not have access

to Google fleet. The community should be able to measure

performance and contribute improvements, so we released

the methodology and the source code of our benchmark as

open source [11, 13].

Results. The worst, manual implementation and best per-

forming implementations are summarized in Table 6. It is

worth mentioning that the optimized branching pattern does

not yield a systematic performance improvement and seems

to be quite dependent on the processor microarchitecture.

Further investigation is required to determine the usefulness

of this optimization.

Case Study. To test the robustness of our method on a

different architecture, we conducted the same experiment

on an ARM Neoverse-N1 machine. The ARM ISA has no

instructions similar to rep mov, so the number of generated

functions drops to 60. We complement this set of functions

with a particular implementation from ARM Optimized Rou-

tines [1] to check how close we get to optimized assemblyÐ

this implementation is statically linked. In our context, our

top performing function has an overall speedup of 1.36 over

the system’s glibc15 which is about +8% faster than the hand-

written assembly scoring 1.26. We note that each of them has

different strengths andweaknesses depending on a particular

size distribution.

4.5 Tailored Implementations

In the two previous sections, we have shown how we can

write a generic implementation of memcpy that works effi-

ciently across the fleet. However, we do not claim that all

workloads are similar to those that we run at Google. In this

15GNU C Library 2.27 with local modifications.

47

ISMM ’21, June 22, 2021, Virtual, Canada G. Chatelet, C. Kennelly, L. S. Xi, O. Sykora, C. Courbet, X. D. Li, and B. De Backer

score

database 1

database 2

database 3

logging

service 1

service 2

service 3

service 4

storage

uniform 384 to 4096
0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Figure 9. The speedups of the 290 generated memcpy functions for individual applications on SKX over glibc (𝑠𝑐𝑜𝑟𝑒 ∈

[0.53, 1.53]).

20 22 24 26 28 210 212 214 216 218 220 222 224

copy size

0%

20%

40%

60%

80%

100%

P
er
ce
n
ta
g
e
o
f
al
l
ca
ll
s 400.perlbench

401.bzip2

403.gcc

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

471.omnetpp

473.astar

483.xalancbmk

Figure 10. Cumulative distribution of memcpy sizes for each

SPEC int benchmark (ref set). Note the log scale.

section, we show how our approach can be used to derive

efficient implementations for a specific workload.

The SPEC benchmark suite [20] is a widely used set of

benchmarks that covers a diverse set of compute-intensive

workloads from real-world applications. Figure 10 shows the

distribution of memcpy sizes for each benchmark of the ref

data set.

One important thing to notice is that even though most

workloads make small copies, some of them (e.g., h264ref,

libquantum) perform a significant number of large copies.

Table 7. Percentage of the time spent in memcpy for each

SPEC int benchmark (ref dataset) using the glibc implemen-

tation on Haswell

benchmark % time in memcpy

400.perlbench 1.1%

401.bzip2 0.2%

403.gcc 0.3%

429.mcf 0.0%

445.gobmk 0.3%

456.hmmer 0.0%

458.sjeng 0.0%

462.libquantum 0.0%

464.h264ref 24.3%

471.omnetpp 0.0%

473.astar 0.0%

483.xalancbmk 3.3%

Additionally, Table 7 shows that for some of them, memcpy

represents a very significant portion of the total time for the

benchmark. Among all these examples, 464.h264ref is an

outlier as it has both a non-standard distribution of sizes,

and spends a large amount of time in memcpy (about 24% of

total cycles).

We focus on 464.h264ref to demonstrate the power of

this techniques on an application with very specific needs.

48

automemcpy: A Framework for Automatic Generation of Fundamental Memory Operations ISMM ’21, June 22, 2021, Virtual, Canada

if (count == 0) {

return; // 0

} else if (count >= 1) {

if (count == 1) {

return CopyBlock<1>(dst, src); // 1

} else if (count >= 2) {

return CopyRepMovsb(dst, src, count); // [2, +inf]

}

}

Listing 3. The auto-generated implementation selected by

automemcpy for 464.h264ref.

Table 8. Performance of the glibc, fleet-wide and specialized

memcpy for the 464.h264ref SPEC benchmark, on HSW.

Intervals are given with 95% confidence, and the speedup is

defined as the ratio between the time for glibc and that for

the implementation (larger is better)

memcpy % time in memcpy total

implementation memcpy speedup speedup

glibc 24.35% ± 0.13 1.00 1.00

fleet-wide 25.14% ± 0.10 0.96 0.99

specialized 15.05% ± 0.15 1.80 1.11

To generate an optimized memcpy implementation, we col-

lected a size profile when running the benchmark, and ran

automemcpy on the result. The framework selected the im-

plementation shown in Listing 3. Intuitively the framework

detects, based on data, that memcpy sizes are either 0, 1, or

very large, and so it optimizes for these two cases. The re-

sulting code is extremely simple and small.

We ran the 464.h264ref benchmark with the original

glibc implementation, our fleet-wide implementation, and

the specialized implementation generated by automemcpy.

All experiments were performed on a 6-core Xeon E5 running

at 3.50GHz with 16MB L3 cache. The results are summarized

in Table 8. Unsurprisingly, our fleet-wide implementation

is worse than the original glibc, because the implementa-

tion optimizes for a different size distribution than that of

464.h264ref. However, the specialized implementation out-

performs the one from glibc by a factor of 1.8, resulting in

the benchmark’s running more than 10% faster overall.

Keep in mind that the auto-generated memcpy implemen-

tation is only going to be efficient as long as the size distribu-

tion of the data does not significantly differ from the one on

which is was trained. Therefore, such specializations must

be regenerated periodically. Ideally, they should be part of

the release process of the target application.

5 Limitations and Further Work

5.1 Collected Data

Since the resulting implementation depends on the collected

data, it is critical that the measured size distribution be as

representative as possible of the real run-time behavior. In

the context of this paper, we used nine archetypal work-

loads andÐas we have seen in Section 4.1Ðthese distribu-

tions are all very similar for memcpy. However, it is possible

that other workloads use a different size distribution. We

plan on working on a more systematic approach to collect

size distribution data for all workloadsÐweighted by their

prevalence in the fleet.

5.2 Heterogeneous size Distributions

As seen in Section 4.5, building tailored implementations for

a binary can greatly improve its global performance. Some

particular workloads may use an entirely different size dis-

tribution, some may also have a different size distribution

per call site. Wewant to explore letting the compiler automat-

ically generate the proper implementation by itself, based

on sampled run-time data. One can even envision generat-

ing multiple specialized implementations for one application,

based on the call site context. They could be inlined or shared

across multiple contexts via cloning.

5.3 Limitations of Benchmarking

Overall, we pick the function that maximizes the score, but

a number of effects do play a role in production that are

not directly measurable through benchmarks. For instance,

the code size of the benchmark is smaller than the hot code

of real applications and doesn’t exhibit instruction cache

pressure as much. When a candidate function is selected,

it is crucial to also test it in production and verify that the

performance gains are realized.

5.4 Framework Extensions

The framework presented in this paper can be extended in a

number of ways:

1. By design, the benchmarking methodology imposes

a restriction on the number of bytes to process: all

data movement should stay within L1 to prevent ac-

counting for the specifics of the memory subsystem. If

bigger sizes are needed, different benchmarking meth-

ods must be used as we can no longer rely on repeating

the measurement to increase SNR.

2. More Generic Access Strategies (Section 3.4) can be

added if necessary. One can think of new processor

capabilities like SVE for recent ARM processors or

special instructions hinting the memory subsystem

like PREFETCHT0 or PREFETCHNTA.

3. The Constraint System developed in Section 3.5 can be

adapted to explore other parts of the implementation

space (e.g., use more discrete values, use of unaligned

49

ISMM ’21, June 22, 2021, Virtual, Canada G. Chatelet, C. Kennelly, L. S. Xi, O. Sykora, C. Courbet, X. D. Li, and B. De Backer

loops, use of aligned loops with different values for

𝐵𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 and 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 , alignment on destination

rather than source for aligned loop).

4. If the number of possible implementations becomes so

great that a systematic exploration is nomore practical,

the problem can be viewed as an online optimization

problem.

6 Conclusion

In this paper, we have devised a method to quickly iterate

and explore the design space of memory primitives. It relies

on the composition of elementary strategies activated by

a decision logic written in C++. This is a departure from

the "hand-crafted assembly" approach where decision logic,

elementary strategies and instruction selection are all in-

tertwined. We have demonstrated that our implementation

matches the performance of hand-written assembly and ul-

timately provides better performance, because it is much

easier to optimize and tune for a given workload. The high

level implementation is also easier to test and maintain, as

logical units can be tested separately.

Furthermore, we present a method to automatically gener-

ate a set of valid C++ implementations of memcpy and eval-

uate them through a specific benchmark reproducing the

size distributions measured in production. It allows finding

and deploying the functions that perform best in a particular

environment. This process requires minimal human effort,

which makes it easy to repeat it whenever the usage patterns

of the functions change. This method is suitable for optimiz-

ing both fleet-wide deployment (Section 4.4) and particular

applications (Section 4.5).

Finally, we have demonstrated that we can improve the

performance of applications by taking into account the spe-

cific run-time size distributions of their memory primitives.

In specific benchmarks (SPEC 464.h264ref) we were able

to achieve up to ten percent speedup. In particular, by re-

lying exclusively on the manual implementation, we have

improved the performance of one of the most importantÐ

and highly optimizedÐservices at Google by +0.65% ± 0.1%

Requests Per Second (RPS). We have witnessed similar gains

throughout the fleet which lead to an overall 1% performance

increase.

References
[1] ARM. 2020. memcpy-advsimd.S. https://github.com/ARM-software/

optimized-routines/blob/master/string/aarch64/memcpy-advsimd.S

[2] Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu

Cho, Svilen Kanev, Christos Kozyrakis, Trivikram Krishnamurthy,

Heiner Litz, Tipp Moseley, and Parthasarathy Ranganathan. 2019. As-

mDB: Understanding and Mitigating Front-End Stalls in Warehouse-

Scale Computers. In International Symposium on Computer Architecture

(ISCA).

[3] Prasanna Balaprakash, Jack Dongarra, Todd Gamblin, Mary Hall, Jef-

frey K. Hollingsworth, Boyana Norris, and Richard Vuduc. 2018. Auto-

tuning in High-Performance Computing Applications. Proc. IEEE 106,

11 (2018), 2068ś2083. https://doi.org/10.1109/JPROC.2018.2841200

[4] JF Bastien. 2018. Deprecating volatile. http://wg21.link/P1152R0

[5] Eli Bendersky. 2011. Load-time relocation of shared libraries.

https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-

shared-libraries

[6] Eli Bendersky. 2011. Position Independent Code (PIC) in shared

libraries. https://eli.thegreenplace.net/2011/11/03/position-

independent-code-pic-in-shared-libraries

[7] Eli Bendersky. 2011. Position Independent Code (PIC) in shared li-

braries on x64. https://eli.thegreenplace.net/2011/11/11/position-

independent-code-pic-in-shared-libraries-on-x64

[8] Chandler Carruth. 2015. CppCon 2015: Chandler Carruth "Tuning

C++: Benchmarks, and CPUs, and Compilers! Oh My!". https://youtu.

be/nXaxk27zwlk?t=2441

[9] GuillaumeChatelet. 2019. [llvm-dev] [RFC][clang/llvm]Allow efficient

implementation of libc’s memory functions in C/C++. https://lists.

llvm.org/pipermail/llvm-dev/2019-April/131973.html

[10] Guillaume Chatelet. 2020. automemcpy paper supplementary materi-

als. http://github.com/google-research/automemcpy

[11] Guillaume Chatelet. 2020. Benchmarking llvm-libc’s memory

functions. https://github.com/llvm/llvm-project/blob/main/libc/

benchmarks/RATIONALE.md

[12] Guillaume Chatelet. 2020. [libc-dev] Q&A and the round table high-

lights from the virtual dev meeting. https://lists.llvm.org/pipermail/

libc-dev/2020-October/000211.html

[13] Guillaume Chatelet. 2020. Libcmem* benchmarking framework. https:

//github.com/llvm/llvm-project/tree/main/libc/benchmarks

[14] Guillaume Chatelet and "other contributors". 2020. Libc string func-

tions. https://github.com/llvm/llvm-project/tree/main/libc/src/string

[15] Dehao Chen, David Xinliang Li, and Tipp Moseley. 2016. AutoFDO:

Automatic Feedback-Directed Optimization for Warehouse-Scale Ap-

plications. InCGO 2016 Proceedings of the 2016 International Symposium

on Code Generation and Optimization. New York, NY, USA, 12ś23.

[16] Leonardo de Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT

Solver. In Tools and Algorithms for the Construction and Analysis of

Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 337ś340.

[17] Franz Franchetti, Yevgen Voronenko, and Markus Püschel. 2005. For-

mal Loop Merging for Signal Transforms. SIGPLAN Not. 40, 6 (June

2005), 315ś326. https://doi.org/10.1145/1064978.1065048

[18] M. Frigo and S.G. Johnson. 2005. The Design and Implementation

of FFTW3. Proc. IEEE 93, 2 (2005), 216ś231. https://doi.org/10.1109/

JPROC.2004.840301

[19] Mathias Gottschlag and Frank Bellosa. 2019. Mechanism to Miti-

gate AVX-Induced Frequency Reduction. CoRR abs/1901.04982 (2019).

arXiv:1901.04982 http://arxiv.org/abs/1901.04982

[20] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions.

SIGARCH Comput. Archit. News 34, 4 (Sept. 2006), 1ś17. https:

//doi.org/10.1145/1186736.1186737

[21] ISO/IEC. 2020. ISO International Standard ISO/IEC 9899:202x (E)

ś Programming Language C [Working draft]. http://www.open-

std.org/jtc1/sc22/wg14/www/docs/n2478.pdf

[22] Svilen Kanev, Juan Darago, Kim Hazelwood, Parthasarathy Ran-

ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2014. Pro-

filing a warehouse-scale computer. In ISCA ’15 Proceedings of the 42nd

Annual International Symposium on Computer Architecture. 158ś169.

[23] Donald E. Knuth. 1971. Optimum binary search trees. Acta informatica

1, 1 (1971), 14ś25.

[24] Vlad Krasnov. 2017. On the dangers of Intel’s frequency scaling. https:

//blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/

[25] Michael Matz and Janothers. 2014. System V Application Binary

Interface AMD64 Architecture Processor Supplement (With LP64 and

ILP32 Programming Models) Version 1.0. https://gitlab.com/x86-

psABIs/x86-64-ABI

50

https://github.com/ARM-software/optimized-routines/blob/master/string/aarch64/memcpy-advsimd.S
https://github.com/ARM-software/optimized-routines/blob/master/string/aarch64/memcpy-advsimd.S
https://doi.org/10.1109/JPROC.2018.2841200
http://wg21.link/P1152R0
https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries
https://eli.thegreenplace.net/2011/08/25/load-time-relocation-of-shared-libraries
https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries
https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries
https://eli.thegreenplace.net/2011/11/11/position-independent-code-pic-in-shared-libraries-on-x64
https://eli.thegreenplace.net/2011/11/11/position-independent-code-pic-in-shared-libraries-on-x64
https://youtu.be/nXaxk27zwlk?t=2441
https://youtu.be/nXaxk27zwlk?t=2441
https://lists.llvm.org/pipermail/llvm-dev/2019-April/131973.html
https://lists.llvm.org/pipermail/llvm-dev/2019-April/131973.html
http://github.com/google-research/automemcpy
https://github.com/llvm/llvm-project/blob/main/libc/benchmarks/RATIONALE.md
https://github.com/llvm/llvm-project/blob/main/libc/benchmarks/RATIONALE.md
https://lists.llvm.org/pipermail/libc-dev/2020-October/000211.html
https://lists.llvm.org/pipermail/libc-dev/2020-October/000211.html
https://github.com/llvm/llvm-project/tree/main/libc/benchmarks
https://github.com/llvm/llvm-project/tree/main/libc/benchmarks
https://github.com/llvm/llvm-project/tree/main/libc/src/string
https://doi.org/10.1145/1064978.1065048
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1109/JPROC.2004.840301
http://arxiv.org/abs/1901.04982
http://arxiv.org/abs/1901.04982
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2478.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2478.pdf
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://gitlab.com/x86-psABIs/x86-64-ABI
https://gitlab.com/x86-psABIs/x86-64-ABI

automemcpy: A Framework for Automatic Generation of Fundamental Memory Operations ISMM ’21, June 22, 2021, Virtual, Canada

[26] Carlos O’Donell. 2017. What is an indirect function (IFUNC)? https:

//sourceware.org/glibc/wiki/GNU_IFUNC

[27] Linus Torvalds. 2021. Linux Perf Tool. https://github.com/torvalds/

linux/tree/master/tools/perf

[28] Travis Downs aka BeeOnRope and Arnaud. 2019. Enhanced REP

MOVSB for memcpy. https://stackoverflow.com/a/43574756

[29] various contributors. 2021. Glibc memcpy Implementa-

tion Strategies. https://sourceware.org/git/?p=glibc.git;a=

blob;f=sysdeps/x86_64/multiarch/memmove-vec-unaligned-

erms.S;hb=6e02b3e9327b7dbb063958d2b124b64fcb4bbe3f#l20

[30] R. Whaley and Antoine Petitet. 2005. Minimizing development and

maintenance costs in supporting persistently optimized BLAS. Soft-

ware: Practice and Experience 35 (02 2005), 101ś121. https://doi.org/10.

1002/spe.626

[31] Huan Ying, Hao Zhu, Donghui Wang, and Chaohuan Hou. 2013. A

novel scheme to generate optimal memcpy assembly code. In 2013 IEEE

Third International Conference on Information Science and Technology

(ICIST). 594ś597. https://doi.org/10.1109/ICIST.2013.6747619

51

https://sourceware.org/glibc/wiki/GNU_IFUNC
https://sourceware.org/glibc/wiki/GNU_IFUNC
https://github.com/torvalds/linux/tree/master/tools/perf
https://github.com/torvalds/linux/tree/master/tools/perf
https://stackoverflow.com/a/43574756
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S;hb=6e02b3e9327b7dbb063958d2b124b64fcb4bbe3f#l20
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S;hb=6e02b3e9327b7dbb063958d2b124b64fcb4bbe3f#l20
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/multiarch/memmove-vec-unaligned-erms.S;hb=6e02b3e9327b7dbb063958d2b124b64fcb4bbe3f#l20
https://doi.org/10.1002/spe.626
https://doi.org/10.1002/spe.626
https://doi.org/10.1109/ICIST.2013.6747619

	Abstract
	1 Introduction
	2 Overview of Current Implementations
	2.1 Pervasive Use of Assembly
	2.2 Dynamic Loading and Relocation
	2.3 Run-Time Dispatch
	2.4 Feedback-Directed Optimization

	3 Our Approach
	3.1 Measuring size Distributions
	3.2 Performance Definition
	3.3 Benchmarking
	3.4 Generic Access Strategies
	3.5 Run-Time Size Coverage
	3.6 Branching Pattern
	3.7 Optimized Memory Functions

	4 Results
	4.1 Memfunctions Size Distributions
	4.2 C++ Library
	4.3 Fleet-Wide Manual Implementation
	4.4 Fleet-Wide Autogenerated Implementations
	4.5 Tailored Implementations

	5 Limitations and Further Work
	5.1 Collected Data
	5.2 Heterogeneous size Distributions
	5.3 Limitations of Benchmarking
	5.4 Framework Extensions

	6 Conclusion
	References

