
Using the CUDA Debugger
(content adapted from Dave Goodwin and Nvidia)

Philipp Gschwandtner

Why is GPU Debugging so Difficult?

2

CPU GPU

// ... various host code ...
cudaMalloc(...);
// ... various host code ...
cudaMemcpy(...);
// ... various host code ...
kernel<<<gridDim,blockDim>>>(...);
// ... various host code ...
cudaFree(...);
// ... various host code ...

__device__ void subFunc(...) {
// gpu code

}

__global__ void kernel(void) {
// gpu code
subFunc(...);
// gpu code

}

valgrindgdb sanitizers ?

Why is GPU Debugging so Difficult? cont’d

3

 GPUs…
 Are physically and logically a separate device
 Have a highly parallel, non-x86 hardware architecture
 Have their own memory address space
 Run their own CUDA threads with (partially) CPU-independent execution flow

 Standard debugging tools…
 Do not have access to these devices
 Are not equipped for dealing with these special properties

Debugging with CUDA

4

 Debugging is required
 No reasonable code development without it

 Debugging tools supporting GPUs are available for CUDA
 Part of why CUDAs was/is so successful compared to e.g. OpenCL

 Nvidia offers extensions of standard tools
 Minimally-invasive approach
 Improves user adoption compared to developing fully distinct tools

5

 cuda-gdb
 Extension of gdb

 cuda-memcheck
 Similar to valgrind

 Parallel Nsight
 Graphical tool
 Visual Studio / Eclipse integration

 Arm FORGE (Alinea DDT)

 TotalView

 Others

Selection of Available Tools

6

 Nsight (multiple variants)
 Profilers for CUDA kernels, API calls and

GPU hardware metrics

 Visual Profiler
 GUI with “timeline” view

 CUPTI
 CUDA Profiling Tools Interface
 Enables hardware counter access

for third-party tools

 PAPI
 C library for reading hardware counters

 Score-P
 CPU/GPU performance analysis tool

 Cube, Vampir, …
 Performance reporting and

visualization tools

There are also Performance Debugging Tools

Compilation Flags

7

 Add flags for debug information
 -g for the CPU code
 -G for the GPU code (turns off all optimizations, considerable slowdown!)

 Alternative: -lineinfo for the GPU code (line numbers only), use when profiling

 Example:
 nvcc -g -G prog.cu -o prog

cuda-memcheck

8

 Stand-alone run-time error checker tool
 Stack overflows, out-of-bounds accesses, misaligned accesses, memory leaks, etc.
 Similar to valgrind
 Also offers racecheck, synccheck, and initcheck tools
 https://docs.nvidia.com/cuda/cuda-memcheck/

 Does not require recompilation
 But needs debug information for proper error location indication

 Not all error reports are precise

 Can be used from within cuda-gdb

https://docs.nvidia.com/cuda/cuda-memcheck/

Execution

9

 Part of CUDA installation
 cuda-memcheck prog_name

 Also works with MPI
 mpiexec -n 8 xterm -e cuda-memcheck prog_name
 mpiexec -n 1 cuda-memcheck prog_name : -n 7 ./prog_name
 mpiexec -n 8 cuda-memcheck prog_name

Example Output

10

==== Invalid __global__ write of size 4
==== at 0x00000010 in demo.cu:8:out_of_bounds_kernel(void)
==== by thread (0,0,0) in block (0,0,0)
==== Address 0xffffffff87654320 is out of bounds
==== Saved host backtrace up to driver entry point at kernel launch time
==== Host Frame:/usr/local/lib/libcuda.so (cuLaunchKernel + 0x3ae) [0xddbee]
==== Host Frame:/usr/local/lib/libcudart.so.5.0 [0xcd27]
==== Host Frame:/usr/local/lib/libcudart.so.5.0 (cudaLaunch + 0x1bb) [0x3778b]
==== Host Frame:/lib64/libc.so.6 (__libc_start_main + 0xfd) [0x1eb1d]
......... snip
==== Host Frame:memcheck_demo [0x9b9]

__global__ device memory
write operation

4 bytes (SP float, integer, etc.)

program counter address
source file, line no., kernel name

memory address
type of error

thread and block indices (x,y,z)

Synchronization Checking

11

 cuda-memcheck offers a synccheck tool
 Can identify incorrect use of synchronization primitives such as __syncthreads()
 Needs to be enabled with --tool synccheck

 Does NOT check for memory errors
 When debugging, first run memcheck
 Afterwards, run synccheck if required

Example Output

12

==== Barrier error detected. Divergent thread(s) in block
==== at 0x00000130 in divergence.cu:61:threadDivergence(int*)
==== by thread (37,0,0) in block (0,0,0)

always “barrier error”

divergent threads
within same block

program counter address
source file, line no., kernel name

thread and block indices (x,y,z)

13

 Yes, CUDA allows printf() to be
used inside GPU code
 Arguments and format specifiers (%d,
%.5f, …) just like C-library-printf()

 Returns number of arguments parsed
(not number of characters printed)

 Behaves like any other device
function
 Executed by every (!) thread
 in the current context

__global__ void mallocTest() {
printf("Thread %d\n", threadIdx.x);

}

// Output:
// Thread 0
// Thread 1
// Thread 2
// ...

printf() Debugging

cuda-gdb

14

 Built around GDB
 All standard GDB debugging features (set breakpoints, inspect memory/variables/registers, …)
 Allows debugging both CPU and GPU code
 Supports multiple GPUs, contexts, kernels
 https://docs.nvidia.com/cuda/cuda-gdb/

 Graphical wrappers available (e.g. GNU DDD, Emacs)
 We’ll focus on the command line though

 Careful on PCs: breakpoints can freeze the GPU (and output of connected screens)!
 No issue when remotely debugging via ssh, when using two GPUs,

or with compute capability >= 6.0
 Mitigated when enabling software preemption (beta, compute capability ≥ 3.5)

https://docs.nvidia.com/cuda/cuda-gdb/

Execution

15

 Part of CUDA installation
 cuda-gdb prog_name

 Also works with MPI
 mpiexec -n 8 xterm -e cuda-gdb prog_name
 mpiexec -n 1 cuda-gdb prog_name : -n 7 ./prog_name
 mpiexec -n 8 cuda-gdb --batch --command=script.txt prog_name

16

 Launch application
 (cuda-gdb) run

 Resume after any halt
 (cuda-gdb) continue

 Kill application
 (cuda-gdb) kill

 Interrupt application
 CTRL+C

 Set breakpoint in line 7
 (cuda-gdb) break prog.cu:7

 Where in my program are we?
 (cuda-gdb) backtrace

 Run step-by-step (over function calls)
 (cuda-gdb) next

 Run step-by-step (into function calls)
 (cuda-gdb) step

cuda-gdb: Execution control

cuda-gdb: Inspecting Data

17

 Print content of a variable
 (cuda-gdb) print variable_name

 Print address of a variable
 (cuda-gdb) print &variable_name

 Print content of a pointer
 (cuda-gdb) print *pointer_name

 Print consecutive elements of array
 print array_name[3] @ 4

cuda-gdb: Dealing with Threads

18

 List and switch CPU threads
 info threads
 thread 3

 List and switch CUDA threads
 info cuda threads
 cuda thread (20,0,0)
 cuda kernel 0 grid 1 block (0,0,0) thread (20,0,0)

cuda-gdb: Misc

19

 List all devices and device in focus
 (cuda-gdb) info cuda devices

 List all running kernels
 (cuda-gdb) info cuda kernels

 Change data while debugging
 (cuda-gdb) print my_variable = 5
 (cuda-gdb) print $R3 = 5

Usual (cuda-)gdb Workflow

20

1. Set a breakpoint or enable a tool
 (cuda-gdb) break my_program.cu:27
 (cuda-gdb) set cuda memcheck on

2. (cuda-gdb) run
3. (cuda-gdb) backtrace
4. Inspect current state, e.g.
 (cuda-gdb) print $variable

5. Figure out what went wrong

21

 1. Determine type and scope of bug
 Incorrect result
 Failure to launch
 Crash
 Hang
 Slow execution

( performance debugging)

 2. Try to reproduce with debug build
 Re-compile with -g -G and re-run

 3. Try to create a minimum working
example (MWE)
 Problem size, involved components,

etc.

 4. Investigate and fix the bug
 Try cuda-memcheck alone (fast)
 cuda-gdb if needed (more

information but slower)
 printf-debugging also possible

Best Practice

Tips

22

 Try to maximize reproducibility
 Fix input data
 Fix seeds of random number generators
 Etc.

 Increase determinism by launching kernels synchronously
 CUDA_LAUNCH_BLOCKING=1

 Limit available devices
 CUDA_VISIBLE_DEVICES=0,1

Conclusion

23

 Debugging parallel programs is difficult
 Debugging on GPUs even more so

 CUDA offers some handy tools for the job
 Most notably cuda-gdb and cuda-memcheck

 Heed coding guidelines and best practice
 Takes effort in the beginning
 Large pay-off down the road

cuda-memcheck: Practical Exercise 1

24

 Compile day_2/debugging/vector.cu with debugging symbols

 Run with cuda-memcheck

 Interpret the results!
 What is the problem?
 How can we fix it?

25

 We work on an array of size 256 but
we are starting 265 threads!

 2 possible solutions
 correct 265 to 256, or
 suspend threads with ID ≥ ARRAYDIM

__global__ void KrnlDmmy(int *x) {
int i;
i = (blockIdx.x*blockDim.x) + threadIdx.x;

if(i >= ARRAYDIM) { return; }

x[i] = i;
return;

}

// OR

thrds_per_block.x = 256;

cuda-memcheck: Practical Exercise 1 Solution

cuda-memcheck --tool syncheck: Practical Exercise 2

26

 Compile day_2/ho1/synchthreads.cu with debugging symbols

 Run with cuda-memcheck --tool synccheck

 Check the results!

 Solution? See morning lecture!

cuda-gdb: Practical Exercise 3

27

 Compile day_2/debugging/stencil.cu with debugging symbols

 Run in gdb with
 (cuda-gdb) set cuda memcheck on

 Check the results!
 What is the problem?
 How can we fix it?

28

 We have two size variables, one for the
size of the domain (size) and one for
the size of our stencil (wsize).

 We allocate all three buffers of size
wsize
 Should be d_weights only
 d_in and d_out should be size long

instead

 We also copy all buffers with size!

int size = N * sizeof(float);
int wsize = (2 * RADIUS + 1) * sizeof(float);

cudaMalloc(&d_weights, wsize);
cudaMalloc(&d_in, wsize); // Incorrect!
cudaMalloc(&d_out, wsize); // Incorrect!

cuda-gdb: Practical Exercise 3 Solution

	Using the CUDA Debugger�(content adapted from Dave Goodwin and Nvidia)
	Why is GPU Debugging so Difficult?
	Why is GPU Debugging so Difficult? cont’d
	Debugging with CUDA
	Selection of Available Tools
	There are also Performance Debugging Tools
	Compilation Flags
	cuda-memcheck
	Execution
	Example Output
	Synchronization Checking
	Example Output
	printf() Debugging
	cuda-gdb
	Execution
	cuda-gdb: Execution control
	cuda-gdb: Inspecting Data
	cuda-gdb: Dealing with Threads
	cuda-gdb: Misc
	Usual (cuda-)gdb Workflow
	Best Practice
	Tips
	Conclusion
	cuda-memcheck: Practical Exercise 1
	cuda-memcheck: Practical Exercise 1 Solution
	cuda-memcheck --tool syncheck: Practical Exercise 2
	cuda-gdb: Practical Exercise 3
	cuda-gdb: Practical Exercise 3 Solution

