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Why is GPU Debugging so Difficult?
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CPU GPU

// ... various host code ...
cudaMalloc(...);
// ... various host code ...
cudaMemcpy(...); 
// ... various host code ...
kernel<<<gridDim,blockDim>>>(...); 
// ... various host code ...
cudaFree(...); 
// ... various host code ...

__device__ void subFunc(...) {
// gpu code

}

__global__ void kernel(void) {
// gpu code
subFunc(...);
// gpu code

}

valgrindgdb sanitizers ?



Why is GPU Debugging so Difficult? cont’d
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 GPUs…
 Are physically and logically a separate device
 Have a highly parallel, non-x86 hardware architecture
 Have their own memory address space
 Run their own CUDA threads with (partially) CPU-independent execution flow

 Standard debugging tools…
 Do not have access to these devices
 Are not equipped for dealing with these special properties



Debugging with CUDA
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 Debugging is required
 No reasonable code development without it

 Debugging tools supporting GPUs are available for CUDA
 Part of why CUDAs was/is so successful compared to e.g. OpenCL

 Nvidia offers extensions of standard tools
 Minimally-invasive approach
 Improves user adoption compared to developing fully distinct tools
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 cuda-gdb
 Extension of gdb

 cuda-memcheck
 Similar to valgrind

 Parallel Nsight
 Graphical tool
 Visual Studio / Eclipse integration

 Arm FORGE (Alinea DDT)

 TotalView

 Others

Selection of Available Tools
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 Nsight (multiple variants)
 Profilers for CUDA kernels, API calls and 

GPU hardware metrics

 Visual Profiler
 GUI with “timeline” view

 CUPTI
 CUDA Profiling Tools Interface
 Enables hardware counter access 

for third-party tools

 PAPI
 C library for reading hardware counters

 Score-P
 CPU/GPU performance analysis tool

 Cube, Vampir, …
 Performance reporting and 

visualization tools

There are also Performance Debugging Tools



Compilation Flags
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 Add flags for debug information
 -g for the CPU code
 -G for the GPU code (turns off all optimizations, considerable slowdown!)

 Alternative: -lineinfo for the GPU code (line numbers only), use when profiling

 Example:
 nvcc -g -G prog.cu -o prog



cuda-memcheck
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 Stand-alone run-time error checker tool
 Stack overflows, out-of-bounds accesses, misaligned accesses, memory leaks, etc.
 Similar to valgrind
 Also offers racecheck, synccheck, and initcheck tools
 https://docs.nvidia.com/cuda/cuda-memcheck/

 Does not require recompilation
 But needs debug information for proper error location indication

 Not all error reports are precise

 Can be used from within cuda-gdb

https://docs.nvidia.com/cuda/cuda-memcheck/


Execution
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 Part of CUDA installation
 cuda-memcheck prog_name

 Also works with MPI
 mpiexec -n 8 xterm -e cuda-memcheck prog_name
 mpiexec -n 1 cuda-memcheck prog_name : -n 7 ./prog_name
 mpiexec -n 8 cuda-memcheck prog_name



Example Output
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==== Invalid __global__ write of size 4
====     at 0x00000010 in demo.cu:8:out_of_bounds_kernel(void)
====     by thread (0,0,0) in block (0,0,0)
====     Address 0xffffffff87654320 is out of bounds
====     Saved host backtrace up to driver entry point at kernel launch time
====     Host Frame:/usr/local/lib/libcuda.so (cuLaunchKernel + 0x3ae) [0xddbee]
====     Host Frame:/usr/local/lib/libcudart.so.5.0 [0xcd27]
====     Host Frame:/usr/local/lib/libcudart.so.5.0 (cudaLaunch + 0x1bb) [0x3778b]
====     Host Frame:/lib64/libc.so.6 (__libc_start_main + 0xfd) [0x1eb1d]
......... snip .........
====     Host Frame:memcheck_demo [0x9b9]

__global__ device memory
write operation

4 bytes (SP float, integer, etc.)

program counter address
source file, line no., kernel name

memory address
type of error

thread and block indices (x,y,z)



Synchronization Checking
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 cuda-memcheck offers a synccheck tool
 Can identify incorrect use of synchronization primitives such as __syncthreads()
 Needs to be enabled with --tool synccheck

 Does NOT check for memory errors
 When debugging, first run memcheck
 Afterwards, run synccheck if required



Example Output
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==== Barrier error detected. Divergent thread(s) in block
====     at 0x00000130 in divergence.cu:61:threadDivergence(int*)
====     by thread (37,0,0) in block (0,0,0)

always “barrier error”

divergent threads
within same block

program counter address
source file, line no., kernel name

thread and block indices (x,y,z)
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 Yes, CUDA allows printf() to be 
used inside GPU code
 Arguments and format specifiers (%d, 
%.5f, …) just like C-library-printf()

 Returns number of arguments parsed 
(not number of characters printed)

 Behaves like any other device 
function
 Executed by every (!) thread
 in the current context

__global__ void mallocTest() {
printf("Thread %d\n", threadIdx.x);

}

// Output:
// Thread 0
// Thread 1
// Thread 2
// ...

printf() Debugging



cuda-gdb
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 Built around GDB
 All standard GDB debugging features (set breakpoints, inspect memory/variables/registers, …)
 Allows debugging both CPU and GPU code
 Supports multiple GPUs, contexts, kernels
 https://docs.nvidia.com/cuda/cuda-gdb/

 Graphical wrappers available (e.g. GNU DDD, Emacs)
 We’ll focus on the command line though

 Careful on PCs: breakpoints can freeze the GPU (and output of connected screens)!
 No issue when remotely debugging via ssh, when using two GPUs, 

or with compute capability >= 6.0
 Mitigated when enabling software preemption (beta, compute capability ≥ 3.5)

https://docs.nvidia.com/cuda/cuda-gdb/


Execution
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 Part of CUDA installation
 cuda-gdb prog_name

 Also works with MPI
 mpiexec -n 8 xterm -e cuda-gdb prog_name
 mpiexec -n 1 cuda-gdb prog_name : -n 7 ./prog_name
 mpiexec -n 8 cuda-gdb --batch --command=script.txt prog_name
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 Launch application
 (cuda-gdb) run

 Resume after any halt
 (cuda-gdb) continue

 Kill application
 (cuda-gdb) kill

 Interrupt application
 CTRL+C

 Set breakpoint in line 7
 (cuda-gdb) break prog.cu:7

 Where in my program are we?
 (cuda-gdb) backtrace

 Run step-by-step (over function calls)
 (cuda-gdb) next

 Run step-by-step (into function calls)
 (cuda-gdb) step

cuda-gdb: Execution control



cuda-gdb: Inspecting Data
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 Print content of a variable
 (cuda-gdb) print variable_name

 Print address of a variable
 (cuda-gdb) print &variable_name

 Print content of a pointer
 (cuda-gdb) print *pointer_name

 Print consecutive elements of array
 print array_name[3] @ 4



cuda-gdb: Dealing with Threads
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 List and switch CPU threads
 info threads
 thread 3

 List and switch CUDA threads
 info cuda threads
 cuda thread (20,0,0)
 cuda kernel 0 grid 1 block (0,0,0) thread (20,0,0)



cuda-gdb: Misc
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 List all devices and device in focus
 (cuda-gdb) info cuda devices

 List all running kernels
 (cuda-gdb) info cuda kernels

 Change data while debugging
 (cuda-gdb) print my_variable = 5
 (cuda-gdb) print $R3 = 5



Usual (cuda-)gdb Workflow
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1. Set a breakpoint or enable a tool 
 (cuda-gdb) break my_program.cu:27
 (cuda-gdb) set cuda memcheck on

2. (cuda-gdb) run
3. (cuda-gdb) backtrace
4. Inspect current state, e.g.
 (cuda-gdb) print $variable

5. Figure out what went wrong



21

 1. Determine type and scope of bug
 Incorrect result
 Failure to launch
 Crash
 Hang
 Slow execution 

( performance debugging)

 2. Try to reproduce with debug build
 Re-compile with -g -G and re-run

 3. Try to create a minimum working 
example (MWE)
 Problem size, involved components, 

etc.

 4. Investigate and fix the bug
 Try cuda-memcheck alone (fast)
 cuda-gdb if needed (more 

information but slower)
 printf-debugging also possible

Best Practice



Tips
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 Try to maximize reproducibility
 Fix input data
 Fix seeds of random number generators
 Etc.

 Increase determinism by launching kernels synchronously
 CUDA_LAUNCH_BLOCKING=1

 Limit available devices
 CUDA_VISIBLE_DEVICES=0,1



Conclusion
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 Debugging parallel programs is difficult
 Debugging on GPUs even more so

 CUDA offers some handy tools for the job
 Most notably cuda-gdb and cuda-memcheck

 Heed coding guidelines and best practice
 Takes effort in the beginning
 Large pay-off down the road



cuda-memcheck: Practical Exercise 1
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 Compile day_2/debugging/vector.cu with debugging symbols

 Run with cuda-memcheck

 Interpret the results!
 What is the problem?
 How can we fix it?
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 We work on an array of size 256 but 
we are starting 265 threads!

 2 possible solutions
 correct 265 to 256, or
 suspend threads with ID ≥ ARRAYDIM

__global__ void KrnlDmmy(int *x) {
int i;
i = (blockIdx.x*blockDim.x) + threadIdx.x;

if(i >= ARRAYDIM) { return; }

x[i] = i;
return;

}

// OR

thrds_per_block.x = 256;

cuda-memcheck: Practical Exercise 1 Solution



cuda-memcheck --tool syncheck: Practical Exercise 2
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 Compile day_2/ho1/synchthreads.cu with debugging symbols

 Run with cuda-memcheck --tool synccheck

 Check the results!

 Solution? See morning lecture!



cuda-gdb: Practical Exercise 3
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 Compile day_2/debugging/stencil.cu with debugging symbols

 Run in gdb with
 (cuda-gdb) set cuda memcheck on

 Check the results!
 What is the problem?
 How can we fix it?
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 We have two size variables, one for the 
size of the domain (size) and one for 
the size of our stencil (wsize).

 We allocate all three buffers of size 
wsize
 Should be d_weights only
 d_in and d_out should be size long 

instead

 We also copy all buffers with size!

int size = N * sizeof(float);
int wsize = (2 * RADIUS + 1) * sizeof(float);

cudaMalloc(&d_weights, wsize);
cudaMalloc(&d_in, wsize); // Incorrect!
cudaMalloc(&d_out, wsize); // Incorrect!

cuda-gdb: Practical Exercise 3 Solution
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