
libtorque: Portable Multithreaded Continuations
for Scalable Event-Driven Programs

Nick Black and Richard Vuduc
Georgia Institute of Technology

nickblack@linux.com, richie@cc.gatech.edu

Abstract

Since before even 4.4BSD or POSIX.11, programming via events and continuations has marked best
UNIX practice for handling multiplexed I/O2. The idiom’s programmability was proved sapient astride a
decade’s architectures and operating systems, as libevent [19], libev, Java NIO and others achieved ubiquity
among network applications. Academic [32] and proprietary systems have responded to multiproces-
sor economics with threaded callback engines, but such I/O cores remain rare in open source: Firefox uses
multiple functionally-decomposed event loops, nginx multiple processes with static load distribution, and
Apache’s mpm-worker variant a thread per connection. Economic employment of even COTS (Consumer
Off-The-Shelf) hardware already requires concurrent workloads, and manycore’s march into the data cen-
ter still more: dynamic parallelism as rule rather than exception. The community agrees that UNIX net-
work programming must change [6] [13], but consensus of direction remains elusive [14] [29]. We present
our open source, portable libtorque library, justify the principles from which it was derived, extend previous
threaded cores through aggressively exploiting details of memories, processors, and their interconnections
(as detected at runtime), and imply a new state-of-the-art in architecturally-adaptive, high-performance
systems programming. Built with scalability (in both the large and small), low latency, and faithfulness to
UNIX idiom as guiding lights, libtorque subsumes the functionality of existing I/O frameworks (for which
we provide compatibility wrappers) despite superior performance across most loads and apparatus.

1 Intro

It’s a rare and rather lucky program which spends
most of its wall time calculating. Whether an inter-
active application, a desktop widget, or a network
server, relative eternities are made up of waiting for,
shuffling, and signaling the presence of data. Spin-
ning on event readiness implies ineffective use of
processor and power, motivating event registration
and data readiness notification schemes (of which
blocking I/O—with or without a timeout—can be
thought the uniplex special case. Each thread has
a single channel, bound to a single source). This
concept forms the essential omphalos of POSIX’s sys-
tem interfaces: Pthread condition variables, asyn-
chronous I/O, and humble read(2) can all be inter-
preted as some mapping between threads and event
sources, with the goal always of sleeping as much as
local service requirements allow. Every non-trivial
program will use them at least once.

Given our definition of blocking I/O, spinless
employ of multiple event sources requires either

multiple threads or multiplexed, non-blocking (pos-
sibly asynchronous, i.e. kernel-demultiplexed) I/O.
The former solution, at the cost of O(n) threads and
O(n) context switches for n event sources, retains
the simplicity and streamline (thanks to the absence
of any multiplexing interfaces) of blocking. With
the advent of Linux’s NPTL and FreeBSD’s libthr,
this method has seen a resurgence, and even argu-
ment a posteriori that its performance might exceed
that of multiplexed I/O [31]. That this is possible—
that O(n) time and space costs are negated by multi-
plexing overhead, as evidenced in [28]—shows how
much room for improving non-blocking I/O solu-
tions exists on modern machines. We enumerate
and address five possible overheads: memory ef-
fects, multiplex setup (“enplexing”?), synchroniza-
tion within the system call, walking of the event ta-
ble, and copying the results to userspace. We il-
lustrate several ways I/O-intensive applications can
(and libtorque does) make effective use of system ar-
chitecture properties. We show that a tradeoff ex-
ists between dynamic balance under arbitrary load

1select(2) first showed up in 4.2BSD, poll(2) in SVR4. 2As canonicalized within the books of W. Richard Stevens [24].

1



and synchronization costs, and how it might be op-
timized. The result is as powerful, flexible, and
scalable as POSIX.1b Asynchronous I/O [10], Win-
dows’s I/O Completion Ports [23] or Solaris’s Event
Completion Framework [20], but makes better use of
modern, complex architectures (see [30] and [9] for
the profound effects of multicore and CMT on net-
work servers). We see it as a viable successor to or
merge candidate for libev, especially given its com-
patibility interface3.

2 Architecture and APIs

libtorque assumes exclusive use of all n proces-
sors in its cpuset (as inherited from the creating
thread, which ought prune processors prior to call-
ing libtorque init() if appropriate). n threads are
created via exponential bloom (requiring O(n) work
in O(log n) depth), and use hard affinity to pre-
clude expensive migrations (see [21] and Section 3.4
for justification). Each thread probes its processor
and attached memories, collaboratively establishing
a map of hardware. Stacks and event queues—
optimal in number and placement—are created, and
entered via the method of sigaltstack(2) trampo-
line [7]. Threads begin the event loop, the signal
mask is reset, and control is returned to the caller.

Figure 1: Architecture of a libtorque-enabled process.

All entry points are thread-safe4. All save

the constructor (libtorque init()) and destructors
(libtorque stop() and libtorque block()) oper-
ate in O(1) time and space. All are lock-free through-
out userspace (the kernel itself locks in some cases)
and usually wait-free5. This arises from the kernel’s
synchronization of new file descriptors (ensuring no
two entities are given the same descriptor), the ker-
nel’s synchronization of event notification state with
descriptor closings (closing a descriptor atomically
removes it from all queues), and the kernel’s syn-
chronization of event queue modifications and re-
trievals.

2.1 Currying as de-layering

Network programming abounds with task idioms.
libtorque implements several ((de)compression,
X.509-based authentication and symmetric encryp-
tion via OpenSSL [26], and asynchronous hostname
resolution via GNU adns [12]) in a fully layerable
fashion reminiscent of SVR4 STREAMS [22]. This is
easily achieved via the generic marshaling technique
known as currying. In addition, several types of
buffering are provided. libtorque’s extensive system
detection allows (possibly NUMA and/or heteroge-
neous) memories’ (usually multiple) page sizes to be
taken into consideration for buffer sizing and even
placement. Since buffers are highly unlikely to be
truly shared among threads or to exhibit temporal
locality throughout the threads’s life, we color both
threads’ stacks and buffers, of which each thread
keeps a properly-formed pool. This aggressive mo-
bilization of the memory hierarchy is a major reason
why libtorque makes use of hard affinity.

2.2 Callback semantics

In the interests of simplicity, robustness and ease of
porting existing code, callbacks are restricted as lit-
tle as possible. They may spawn child programs or
helper threads, close arbitrary file descriptors, and
call back into a libtorque instance. Fatal signals con-
tinue to terminate the process, unless caught else-
where. Some requirements are unavoidable:
• Blocking calls must be avoided. Numerous sys-

tems exist to automatically dispatch blocking
I/O [5], and libtorque provides the facilities to
support them. Any code written with perfor-
mance in mind is almost certainly already using
non-blocking or asynchronous I/O.

• Callbacks must not freely operate on event
sources registered with libtorque, save to
close(2) file descriptors; this is safe due to the
atomicity properties described above.

3A tradition begun with libev’s similar wrapper for libevent.
4None are async(signal)-safe.

5Lock-free implies system progression, while wait-free requires
progression from each thread.
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• Obviously, the callback ought not directly mod-
ify signal handlers (all non-fatal signals are
blocked during callbacks)6.

3 Implementation
libtorque’s implementation is non-trivial. Tradition-
ally free parameters such as buffer sizes, stack sizes,
and distribution of queues among threads are de-
rived through system discovery and simple feed-
backs. Making optimal use of various operating
systems (and versions thereof) required intimacy
with a garden of kernel implementations. The re-
sult serves as something of a tour of UNIX system
API’s since the 3rd Single UNIX Specification; much
of libtorque’s value lies simply in uniting these dis-
parate interfaces.

3.1 Why not POSIX.1b AIO?

Some argue that POSIX.1b asynchronous I/O fits
our requirements better than multiplexed I/O. It is
true that AIO scales, handles demultiplexing itself,
and can be dynamically balanced across threads:

Method Demux Thr Evs Misc
Blocking Kernel 1 1 O(n) state
AIO Kernel N N Restrictions
Multiplex User N N Complexity

Native AIO on Linux, however, is restricted to those
descriptors which support lseek(2) (this excludes
terminals and sockets, which employ a polling fall-
back [3]; FreeBSD restricts use to terminals and sock-
ets, excluding disks [25]). Linux has only natively
supported any AIO since late in the 2.6 development
cycle, having emulated it until then. On all systems,
AIO is restricted to file descriptors as event sources.
These limitations make POSIX.1b unattractive as a
core notification mechanism. Performance of the
two is comparable (both require a system call to reg-
ister the event, and at least one context switch before
the notification can be received), though AIO could
be expected a slight advantage here: when and if it
proves desirable, AIO could be used in conjunction
with multiplexing. libtorque does, of course, support
callbacks based on AIO events.

3.2 Multiplexing primitives

The poll(2) of POSIX.1-2001 requires an unaccept-
able O(n) copy of event registration state per invo-
cation. Divergent alternatives exist:

Linux: epoll(7) since 2.5.44 [8].
FreeBSD: kqueue(4) since 5.0 [17].

Solaris: Eventports since OpenSolaris 10.
Windows: I/O Completion Ports since NT 4.0.

epoll(7) is rather more limited than kqueue(4).
Most importantly, it explicitly supports only file de-
scriptors. libtorque supports events based on file
descriptor readiness, signal receipt, network state
changes, filesystem changes, AIO and condition
variables. Much of this must be emulated on Linux:

Event source Mechanism Version
File descriptor N/A N/A
Signal/AIO signalfd(2) 2.6.22
Signal/AIO epoll pwait(2) 2.6.19
Signal/AIO Self-pipe trick [2] N/A
Timer timerfd(2) 2.6.25
Timer POSIX timer 2.6
Timer Hashed wheel N/A
Filesystem inotify(7) 2.6.13
Filesystem F NOTIFY 2.4

libtorque addresses these further differences:
• kqueue(4) supports batching of event changes
• kqueue(4) can change and retrieve in one call
• kqueue(4) has incomplete error reporting
• epoll wait(2) is a cancellation point
• epoll wait(2) is unaffected by SA RESTART

Clearly, the functionality of epoll wait(2) and
epoll ctl(2) can be emulated in terms of
kqueue(4), or vice versa. libtorque’s event core pro-
vides kqueue(4)-like semantics, both to take advan-
tage of batching7 and because no fine-grained action
is prompted by a state modification error.

Events are greedily retrieved, up through the
space provided. Retrieving more events means
fewer system calls overall, but can also result in
unnecessary system imbalances without a work-
stealing implementation [4] and its attendant locks.
Each thread thus initially requests a single event,
and uses an algorithm similar to that of TCP’s con-
gestion control: request more events when all re-
quested are returned, and request fewer if fewer
than that requested were returned. The buffer off-
sets and number requested are tuned based off the
smallest page size and properties of shared caches.

3.3 Thread-safe event retrieval

Avoiding expensive locking operations, and espe-
cially contention, is critical in any parallel program.
Wrapping the event monads (see Fig. 1) in locks, re-
quiring O(n) pthread trylock(3) operations for n
returned events, is clearly undesirable.

6Or mess with affinities, install alternate sigstacks, invoke
pthread exit(3), call exec(2), ad nauseam. . .

7And also to prevent high-bandwidth connections from
bouncing around threads sharing a given queue.
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By default, both epoll(7) and kqueue(4) are
level-triggered. Under level-triggered semantics, it’s
more correct to speak of monitoring states rather
than events. An event will be returned so long as the
specified case applies to the monitored object. This
is entirely unsuitable for threaded operation:

• LT event 1 becomes ready
• Thread A retrieves LT event 1 instance 1
• Thread B retrieves LT event 1 instance 2
• Thread A enters LT event 1 handler
• Thread B enters LT event 1 handler
• either contention or race follows. . .

Adding locks results in spinning: threads loop
through event retrieval and attempted lock acquisi-
tion. It is similarly unacceptable to refrain from re-
trieving events until a common producer-consumer
buffer is emptied: a heavyweight connection could
in this case add significant latency to other process-
ing. This furthermore results in a O(n) walk-and-
copy operation from the system call on n monitored
descriptors, though this is merely a consequence of
existing implementations.

For these reasons, libtorque makes exclusive use
of edge-triggered semantics (on Linux, EPOLLET, and
on FreeBSD, EV CLEAR). Such semantics truly de-
scribe discrete “events”—the event, for instance, of
becoming readable. It ought be noted that a readable
event source must become unreadable before it again
becomes readable—edge-triggered events imply a con-
tract: the available resource must be fully consumed.
To prevent starvation due to a heavyweight connec-
tion, libtorque embeds a postponed event queue within
the system event queue, ensuring global flow pro-
gression. libtorque thus hides edge-triggering’s addi-
tional complexity.

This eliminates some races, and for certain
handlers is sufficient synchronization (consider for
instance an accept(2) loop which merely calls
the concurrency-friendly libtorque addfd(), not
touching any other state). In general, this is true for
any handler which synchronizes any access to call-
back state (as implicitly performed by accept(2) in
our example), and can be indicated to libtorque via
the LIBTORQUE EV MTSAFE flag. Otherwise, for in-
stance if read(2)ing data into a buffer pointed to by
callback state:

• ET event 1 becomes ready
• Thread A retrieves ET event 1 instance 1
• Thread A read(2)s all available data

• ET event 1 is automatically rearmed
• Thread B retrieves ET event 1 instance 2
• Thread B read(2)s some/all data
• Thread B enters ET event 1 critical section
• Thread A enters ET event 1 critical section
• either contention or race follows. . .

Thankfully, it’s once again possible to make use of
synchronization implied by the kernel interfaces8. If
we disabled the event immediately after it was re-
turned, and then reënabled it once truly done with
the callback, the race would be eliminated. Once-
triggered semantics (on Linux, EPOLLONESHOT, and on
FreeBSD, EV ONESHOT) internally disables the event
whenever it’s returned, saving this scheme one sys-
tem call. Once-triggered semantics are orthogonal to
edge- vs. level-triggering, though libtorque uses only
the edge-triggered variant.

3.4 Queue distribution

The distribution of event sources among event
queues, and event queues among threads, is a ma-
jor research question and the focus of ongoing ex-
perimentation. This distribution affects the system
in several ways:

Balance: Long-term balance among threads is max-
imized by sharing one event queue among all
workers (short-term balance is further a func-
tion of the number of events retrieved at once,
maximized by serial event retrieval. This is the
default model of POSIX.1b AIO). Any thread
without work can handle any event.

Locality: Locality of event handling is maximized
by associating one event queue with each
thread, which will be the only thread to ever
handle the event. This is only relevant if lo-
cality is being effectively exploited in the first
place.

Overhead: Neither epoll wait(2) nor kevent(2)

can, as of this time, be considered truly scal-
able for large n. Even assuming improvements
in their implementations9, sharing among
more threads leads to more synchronization
overhead.

Robustness: It is preferred that libtorque threads
have exclusive access to their processors, but
this might not always be the case. Greater
numbers of processors furthermore imply less
time before a processor failure. Robustness
against lack of access to certain processors in-
creases with greater sharing.

8Detailed analysis of the relevant kernel source can be found
in doc/mteventqueues within a libtorque checkout.

9Or RCU. Or transactional memory.
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At this time, event queues are shared based upon
sharing of memories. The lowest-level caches or
memories shared by multiple (possibly logical) pro-
cessors demarcate queue sharing.

4 Future Work

It is expected that the copy of events to userspace
will cause three delays: the copies themselves, the
calling thread’s delay while copies are made, and de-
lay of any contending threads. While the first cannot
be eliminated, a lockless ring buffer shared between
kernel and userspace could hide the other two de-
lays. Such use has precedent in, for instance, Alexey
Kuznetzov’s mmap(2)’d packet socket [15], and vari-
ants have been developed for modern machines [16].
Profiling of heavily-loaded event retrieval ought be
performed at large scales (hundreds of events re-
turned per retrieval, dozens to hundreds of proces-
sors), and such a change tested if justified.

Userspace networking stack implementations
have been shown to provide excellent performance,
primarily through their lack of copies and context
switches. With the recent addition of mmap’d packet
socket-based transmission to the Linux kernel [1],
this approach could be the fastest path to true zero-
copy networking [27]. libtorque could add protocol
decomposition to its multiplexing to efficiently pro-
vide clients userspace transport demultiplexing [18].

Recent processors have included support for
“non-temporal” memory operations [11]. When
used, these variants minimize cache pollution.
Many I/O operations could make effective use of
these methods: not only would large copies lead
to fewer evictions (and thus better general perfor-
mance), but the copies themselves could be enlarged
without fear of further disrupting cache (especially
for our carefully-placed stacks).

Event sources could be added as communal or
solitary. Sources forming a commune share a great
deal of (hopefully read-only) data, and sharing pref-
erences ought follow sharing of memory. Solitary
sources share little data, and ought prefer shar-
ing among corresponding members of isomorphism
classes within the interconnect.

Unified caches can negate our careful data place-
ment. It ought be possible to detect at least the core
code paths traversed by a libtorque thread, and inte-
grate their locations into the occupancy map.
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